تاثير شرايط كاري كوره رولري بر انحناي كاشي تاثير شرايط كاري كوره رولري بر انحناي كاشي

هدف
  هدف اين مقاله بررسي ويژگي‏هاي عملكردي كوره با نظارت لحظه به لحظه بر متغييرهاي عملياتي مهم كوره و همچنين تعيين اثر اين متغييرها بر انحناي كاشي است.
3. توليد آزمايشي
مجموعه طراحي شده شامل سيستم دريافت داده مي‏باشد كه اطلاعات مربوط به دما و فشار گاز درون كوره را به صورت خطي و در زمان واقعي، از محل دريچه‏هاي گاز ، جمع‏آوري مي‏كند. همچنين دستگاه اندازه‏گيري انحناي كاشي كه بر روي كوره نصب گرديد، كه مي‏توانست متغيرهاي كوره را به انحناي كاشي ربط دهد.

4. نتايج
4 – 1 تغييرات در دماي مجموعه ترموكوپل‏ها
انحناي  كاشي تحت تاثير تغييرات دماي ست شده براي مجموعه ترموكوپل‏ها كوره مي‏باشد. به عنوان مثالي براي اين وابستگي، نمودارهاي شكل 1، تغييرات انحناي كاشي در برابر تغيير دمايي يكي از ترموكوپل‏ها (TA21) كه در كانال بالايي كوره در منطقه پيك گرمايي قرار داشت را نشان مي‏دهد. اين تغيير دما همراه با خميري شدن سطح و قسمت بالايي كاشي بود، بنابراين انقباض (شيرينكيج) كاشي در اين منطقه نسبت به قسمت پاييني كاشي افزايش مي‏يابد و بدين ترتيب تحدب كاشي كاهش مي‏يابد.

4 – 2 تاثير وجود گپ‏ها در در كوره بر انحناي كاشي
وجود گپ‏ها در كوره باعث ايجاد ناپايداري در كل كوره مي‏شود، كه اين ناپايداري‏ها تنها تغييرات دمايي نيست بلكه تغييرات در فشار درون كوره را نيز در بر مي‏گيرد، كه در نتيجه آن در انحناي كاشي تغييراتي ايجاد مي‏شود. كاشي هايي كه بلافاصله بعد از گپ از كوره خارج مي‏گردند ميلي به تحدب ندارند (شكل 2). در بعضي اوقات به دليل رخ دادن تغييرات دمايي در ناحيه پخت و نيز در ناحيه خنك‏كننده همزمان تقعر نيز داريم.

4 – 3 بررسي كنترل پارامترهاي تنظيم كننده رفتار دريچه هاي گاز مشعل‏ها
 تغييرات مداوم سريع در دما كه به دليل گپهاي كوچك دركوره اتفاق مي افتد اشاره بر كنترل دما دارد، كه اساسا به وسيله باز شدن دريچه گاز مشعل‏ها صورت مي‏پذيرد و ممكن است به خوبي براي مدوله كردن اين تغييرات تنظيم نشده باشد. در واقع، با تجزيه و تحليل داده هاي ثبت شده از باز شدن دريچه‏ها ، مشاهده مي شود كه آنها دائماً در حال نوسان هستند. اين نوسانات، كه ممكن است به دليل انتخاب غلط مقادير برنامه ريزي شده پارامترها در كنترل‏ كننده‏هاي PID كه موقعيت دريچه‏ها را تنظيم مي‏كنند باشد، باعث تداوم در تغييرات دمايي ثبت شده در ترموكوپل‏هاي متفاوت مي‏شود. اين پارامترها از پيش به منظور پيشرفت عملكرد كوره بررسي و اصلاح شده است. تنظيمات ايجاد شده در پارامترهاي كنترلي متفاوت كه از تمامي كنترل‏كننده‏ها گرفته شده است در جدول شماره 1 آمده است. شكل 3 نشان مي‏دهد كه چگونه، با كاهش دوره نوسانات دريچه ممكن است به ثبات بيشتر دمايي برسيم.

5. نتيجه گيري نهايي:
1 - اين تحقيق نشان مي دهد كه تغييرات دمايي كه در ماژول‏هاي منطقه پخت كه بيشينه دما را دارند رخ مي دهد، منجر به تغيير انحناي كاشي مي‏شوند. اين موضوع اشاره بر وجود يك استراتژي براي كنترل انحناي كاشي به وسيله اندازه گيري انحناي كاشي و عملكرد خودكار بر روي حلقه انتخاب شده دارد.
2 - زماني كه گپ در داخل كوره رخ مي‏دهد، دما در تمام نقاط كوره تغيير مي‏كند بنابراين اصلاح انحناي كاشي بسيار مهم است.
3 - از مطالب فوق مشخص گرديد كه سازنده كوره بايد تمامي پارامترهاي شيرهاي گاز كه دائماً باعث نوسان دما مي‏شوند را بر اساس عيوب مشاهده شده در كاشي كنترل نمايد. اين حالت همچنين به طور قابل ملاحظه‏اي عمر مفيد دريچه‏هاي گاز را كاهش مي‏دهد.
4 – كنترل پارامترهاي شيرهاي گاز تعيين كننده ايجاد تنظيمات مناسبي است كه قادر به واكنش در برابر تغييرات كوچك دمايي در يك زمان مناسب هستند. اين بازده تعادل حرارتي كوره و در نتيجه انحناي پخت كاشي را بالاتر مي‏برد

سيستم ذخيره انرژي در کوره های سرامیکی

سيستم ذخيره انرژي در کوره های سرامیکی

شركت كوره سازي TCK با ايجاد تغييراتي در سيستم احتراقي مشعل هاي سوخت انواع كوره هاي رولري  صنعت سراميك اعم از كاشي پرسلاني، تك پخت، كوره بيسكوييت، چيني آلات بهداشتي، ظروف چيني و ... با سوخت گاز طبيعي و يا LPG مي تواند مصرف سوخت را با گارانتي 15 درصدي كاهش دهد. با توجه به اينكه هزينه گاز و انرژي سوخت يكي از پارامترهاي موثر بر روي قيمت تمام شده است، كاهش مصرف سوخت علاوه بر كاهش قيمت تمام شده، باعث كاهش آلايندگي محيط نيز مي شود.

 

نمونه هايي از پروژه هاي اين شركت در كشورهاي مختلف:

كشور

صنعت مورد نظر

مصرف سوخت Kcal/kg

درصد كاهش

قبل

بعد

كره جنوبي

كاشي تك پخت

550

440

20

امارات متحده عربي

Technical Stoneware

490

430

12

اندونزي

كاشي تك پخت

530

394

25

ايتاليا

كاشي دو پخت

334

263

21

فرانسه

كاشي تك پخت

648

447

31

فرانسه

Technical Stoneware

744

570

23

فرانسه

Technical Stoneware

740

565

23

ايتاليا

كاشي هاي زجاجي

446

318

28

ايتاليا

كاشي هاي زجاجي

365

289

20

 

نوع محصول

مصرف سوخت Kcal/kg

مصرف سوخت

خروجي گاز

نوع

مترمربع/ روز

مصرف قبل از نصب

مصرف بعد از نصب

درصد كاهش مصرف

Nm3/year

CO2  Tonnes/year

كاشي تك پخت

9800

414

371

10.4

295000

570

كاشي تك پخت

10000

412

368

10.7

310000

600

كاشي تك پخت

11000

445

396

11.0

385000

   

کوره‌های رولری

پیشرفت تکنولوژی ساخت سرامیک‌ها در چند دهه اخیر همراه با علاقه‌مندی ایجاد شده در جهت کاهش مصرف انرژی، صنعت تولید کاشی و سرامیک را به سمت استفاده از ماشین‌آلات و ابزارهایی هدایت کرده است که سرعت تولید را افزایش می‌دهند. بدین منظور کوره‌های رولری به‌طور گسترده‌ای مورد استقبال و استفاده صنعتگران قرار گرفتند.

کوره‌های رولری بهترین نوع کوره جهت پخت کاشی می‌باشند و اکنون در تمام دنیا برای پروسه تولید پذیرفته شده‌اند. طراحی این کوره‌ها به نحوی است که می‌توان سیکل دمایی پخت را که برای هر محصول  ممکن است متفاوت باشد، با طراحی نمودار دما – زمان تکرارپذیر کرد.

در این نوع از کوره، کاشی‌ها روی رولرهایی که با موتور به چرخش در می‌آیند با سرعت ثابت حرکت کرده و از مناطق مختلف دمایی می‌گذرند. این مناطق دمایی به نحوی روی کاشی‌ها اعمال می‌شوند که دیاگرام دما – زمان مورد نظر تحقق یابد. واضح است که طراحی و ساخت کوره‌های رولری و نیز منحنی پخت به گونه‌ای است که در کوتاه‌ترین زمان ممکن و با کمترین میزان مصرف انرژی محصولی با کیفیت مورد نظر تولید گردد.

در نگاه کلی می‌توان کوره را متشکل از دو قسمت دانست که در قسمت اول کاشی‌ها حرارت دیده و در بخش دوم سرد می‌شوند. در تصویر 1 قسمت‌های مهم تشکیل‌دهنده یک کوره رولری شامل مشعل‌ها، ترموکوپل‌ها، بافل‌ها و مسیرهای هوا و گاز احتراقی به‌طور شماتیک نشان‌داده شده‌اند که در بخش‌های بعدی به تفصیل مورد بررسی قرار خواهند گرفت.

از آنجایی که هر کوره برای تولید محصولات خاصی ساخته می‌شود، ماکزیمم دمای قابل تحمل اجزاء سازنده کوره‌های مختلف با هم متفاوت است. باید در نظر داشت که همواره ماکزیمم دمای کاری را باید 50 تا 100 درجه سانتی‌گراد کمتر از دمای اسمی قابل تحمل کوره در نظر گرفت. این کار باعث می‌شود که در هیچ منطقه‌ای از کوره دمای کاری بالاتر از حد مجاز نباشد. دمای خوانده شده توسط ترموکوپل‌ها در واقع میانگین دمایی چند المان است که آن منطقه را تشکیل داده‌اند. از طرف دیگر کنترل‌کننده اتوماتیک دمای کوره و مشعل‌ها از مقداری اینرسی برخوردار است که ممکن است واکنش آن در برابر افزایش یا کاهش دما را مدتی به تأخیر بیندازد.
 

 

کوره از تونلی که در یک خط مستقیم قرار گرفته است تشکیل شده و مقطعی مستطیلی دارد. کاشی‌های خام از یک طرف وارد کوره شده و پس از حرکت در طول کوره و طی کردن سیکل پخت از طرف دیگر خارج می‌شوند. رولرها کمی بالاتر از وسط دیواره کوره قرار گرفته‌اند و مشعل‌ها در سمت راست و چپ کوره، هم بالا و هم پایین رولرها به‌طور متناوب قرار می‌گیرند. چون حرکت کاشی‌ها یکنواخت است، هر مرحله از پروسه پخت توسط منحنی حرارتی خاصی که مخصوص آن قسمت از کوره است مشخص می‌شود. هر قسمت از کوره مشخصه رفتاری و کاربردی خاص خود را دارد تا شرایط بهینه جهت تبادل حرارت با کاشی‌ها و نیز کنترل مفید استحاله‌ها و واکنش‌های شیمیایی رخ داده در کاشی و رسیدن به محصول با کیفیت مورد نظر ایجاد گردد

سیلیسیم کاربید

سیلیسیم کاربید به دو فرم وجود دارد. یکی با بایندر فعال (reaction bond) ودیگری زنیته شده. هر دو نوع این ماده بسیار سخت هستند و رسانایی گرمایی بالایی دارند. این مسئله باعث شده است تا از آن درجاهای با شرایط سخت استفاده شود. (شکل 1)

سیلیسیم کاربید ؛ خواص وکاربردها

سیلیسیم کاربید برای کاربردهای ساینده
 

سیلیسیم کاربید مشکی رنگ
نوع سیاه این ماده ترد است و دانه هایی با لبه های تیز دارد. چرخ های ساینده وکاغذ سنباده های ساخته شده از سیلیسیم کاربید مشکی برای سایش مواد فلزی وغیر فلزی با استحکام کششی پایین مانند چدن خاکستری ، آلومینیوم ، موادسنگی، چرم ولاستیک مناسب است.
سیلیسیم کاربید سبزرنگ
سیلیسیم کاربید سبز رنگ برای ساخت ابزار آلات سایشی مورد استفاده برای آلیاژهای تیتانیم، کاربید سمنتدها وفولاد تندبرمناسب است. همچنین از آن می توان برای پولیش کردن مواد غیر فلزی مانند شیشه و سرامیک استفاده کرد.

کاربردهای سیلیسیم کاربید در صنعت دیرگداز
 

سیلیسیم کاربید با بایندر فعال (Reaction bonded silicon Carbide) که به اختصار آن را RBSC می نامند، دارای خواص خوبی در دماهای بالااست. ومی توان از آن در کاربردهای دیگر استفاده کرد . مواد سیلیسیم کاربیدی دارای مقاومت به ایروژن وسایش خوبی هستند از این رو از آن درکاربردهای متنوعی مانند فازل های اسپرسی کننده(Spray nazzles) ، نازل های شات بلست ( Shat blast nazzles ) واجزای سیلیکون (Cyclone Component) استفاده نمود.

نازل های مشعل ساخته شده از سیلیسیم کاربید
 

سری مشعل ساخته شد از کربوفراکس زنیته شده یک نوع مشعل مناسب برای کوره های با بستر متحرک (roller bed kiln)، کوره های تونلی وکوره های شاتلی و.... است. ویژگی های مهم این نوع مشعل عبارتند از : شدت بالا ، عدم به وجود آمدن دوده، طول عمر بالا وعدم ترک برداشتن . (شکل2)

سیلیسیم کاربید ؛ خواص وکاربردها

این نوع مشعل ها برای کوره های صنعتی که با گاز طبیعی ، گاز مایع ، گاز زغال سنگ و گازوئیل کارمی کنند مناسب هستند و از این رو در صنایعی مانند سرامیک ، شیمیایی ، شیشه ، متالوژی و... کاربرد دارد.

نازل های اسپری کننده ی سیلیسیم کاربیدی
 

نازل های اسپری کننده ی تولید شده از Sic دارای دو گروه عمده هستند. که این گروه های شامل بیش از ده نوع محصول متنوع اند. این نازل ها د رادوات سولفات زدائی که در کارخانجات تولید برق و بویلرهای بزرگ استفاده می شوند. کاربرد دارند. ویژگی های مهم این نوع نازل ها عمر مفید بالای آنهاست. وبا جایگزینی آنها درجاهای مهم تکنولوژی های داخلی مشکلات موجود مرتفع گشته است. (شکل 3)

سیلیسیم کاربید ؛ خواص وکاربردها

کاربرد سیلیسیم کاربید در الکترونیک قدرت
 

خواص فیزیکی والکتریکی سیلیسیم کاربید باعث شده است تا این ماده بهترین ماده ی رسانا برای دمای بالا ووسایل الکترونیکی ولتاژ قوی وفرکانس بالا باشند. خواص سیلیسیم کاربید باعث شده تا این ماده بهترین ماده ی نیمه رسانای مورد استفاده در وسایل الکترونیکی باشد که با ولتاژهای بالا کار می کند و این ماده رسانایی گرمایی بالایی دارد. ومی تواند دربرابر میدان های بزرگ ایستادگی کرده وهمچنین دارای نشت جریان بسیار پایینی در دماهای بالاست.
به هر حال درگذشته تولید سیلیسیم کاربید با مشکلات اقتصادی روبرو بوده وتهیه ی سیلیسیم کاربید با کیفیت بالا مقدور نبود. اما امروزه با تلاش تولید کنندگان وسایل پیچیده ای از این نوع نیمه رسانا تهیه شده است.
اندازه ی ویفرهای تهیه شده از این مواد یکی از فاکتورهای محدود کننده ی اقتصادی درتولید وسایل الکترونیکی سیلیسیم کاربیدی است. در ابتدا ویفرهای تهیه شده دارای اندازه ی 2 اینچ بودند که اخیراً ویفرهای 3 اینچی نیز ساخته شده است. اندازه ی بزرگتر ویفرهای سیلیسیم کاربیدی باعث افزایش توان عملیاتی یک نیمه رسانا می شود. واین مسئله تولید کنندگان را قادر می سازد تا هزینه ی ثابت خود را بر روی حجم بیشتری از محصولات پایانی پخش کنند. برای مثال یک ویفر 4 اینچی دارای مساحت سطی است که 78% نسبت به یک ویفر سیلیسیم کاربیدی 3 اینچی بیشتر است .که این مسئله باعث اقتصادی شدن فرآیند تولید می شود.

سیلیسیم کاربید

سیلیسیم کاربید به دو فرم وجود دارد. یکی با بایندر فعال (reaction bond) ودیگری زنیته شده. هر دو نوع این ماده بسیار سخت هستند و رسانایی گرمایی بالایی دارند. این مسئله باعث شده است تا از آن درجاهای با شرایط سخت استفاده شود. (شکل 1)

سیلیسیم کاربید ؛ خواص وکاربردها

سیلیسیم کاربید برای کاربردهای ساینده
 

سیلیسیم کاربید مشکی رنگ
نوع سیاه این ماده ترد است و دانه هایی با لبه های تیز دارد. چرخ های ساینده وکاغذ سنباده های ساخته شده از سیلیسیم کاربید مشکی برای سایش مواد فلزی وغیر فلزی با استحکام کششی پایین مانند چدن خاکستری ، آلومینیوم ، موادسنگی، چرم ولاستیک مناسب است.
سیلیسیم کاربید سبزرنگ
سیلیسیم کاربید سبز رنگ برای ساخت ابزار آلات سایشی مورد استفاده برای آلیاژهای تیتانیم، کاربید سمنتدها وفولاد تندبرمناسب است. همچنین از آن می توان برای پولیش کردن مواد غیر فلزی مانند شیشه و سرامیک استفاده کرد.

کاربردهای سیلیسیم کاربید در صنعت دیرگداز
 

سیلیسیم کاربید با بایندر فعال (Reaction bonded silicon Carbide) که به اختصار آن را RBSC می نامند، دارای خواص خوبی در دماهای بالااست. ومی توان از آن در کاربردهای دیگر استفاده کرد . مواد سیلیسیم کاربیدی دارای مقاومت به ایروژن وسایش خوبی هستند از این رو از آن درکاربردهای متنوعی مانند فازل های اسپرسی کننده(Spray nazzles) ، نازل های شات بلست ( Shat blast nazzles ) واجزای سیلیکون (Cyclone Component) استفاده نمود.

نازل های مشعل ساخته شده از سیلیسیم کاربید
 

سری مشعل ساخته شد از کربوفراکس زنیته شده یک نوع مشعل مناسب برای کوره های با بستر متحرک (roller bed kiln)، کوره های تونلی وکوره های شاتلی و.... است. ویژگی های مهم این نوع مشعل عبارتند از : شدت بالا ، عدم به وجود آمدن دوده، طول عمر بالا وعدم ترک برداشتن . (شکل2)

سیلیسیم کاربید ؛ خواص وکاربردها

این نوع مشعل ها برای کوره های صنعتی که با گاز طبیعی ، گاز مایع ، گاز زغال سنگ و گازوئیل کارمی کنند مناسب هستند و از این رو در صنایعی مانند سرامیک ، شیمیایی ، شیشه ، متالوژی و... کاربرد دارد.

نازل های اسپری کننده ی سیلیسیم کاربیدی
 

نازل های اسپری کننده ی تولید شده از Sic دارای دو گروه عمده هستند. که این گروه های شامل بیش از ده نوع محصول متنوع اند. این نازل ها د رادوات سولفات زدائی که در کارخانجات تولید برق و بویلرهای بزرگ استفاده می شوند. کاربرد دارند. ویژگی های مهم این نوع نازل ها عمر مفید بالای آنهاست. وبا جایگزینی آنها درجاهای مهم تکنولوژی های داخلی مشکلات موجود مرتفع گشته است. (شکل 3)

سیلیسیم کاربید ؛ خواص وکاربردها

کاربرد سیلیسیم کاربید در الکترونیک قدرت
 

خواص فیزیکی والکتریکی سیلیسیم کاربید باعث شده است تا این ماده بهترین ماده ی رسانا برای دمای بالا ووسایل الکترونیکی ولتاژ قوی وفرکانس بالا باشند. خواص سیلیسیم کاربید باعث شده تا این ماده بهترین ماده ی نیمه رسانای مورد استفاده در وسایل الکترونیکی باشد که با ولتاژهای بالا کار می کند و این ماده رسانایی گرمایی بالایی دارد. ومی تواند دربرابر میدان های بزرگ ایستادگی کرده وهمچنین دارای نشت جریان بسیار پایینی در دماهای بالاست.
به هر حال درگذشته تولید سیلیسیم کاربید با مشکلات اقتصادی روبرو بوده وتهیه ی سیلیسیم کاربید با کیفیت بالا مقدور نبود. اما امروزه با تلاش تولید کنندگان وسایل پیچیده ای از این نوع نیمه رسانا تهیه شده است.
اندازه ی ویفرهای تهیه شده از این مواد یکی از فاکتورهای محدود کننده ی اقتصادی درتولید وسایل الکترونیکی سیلیسیم کاربیدی است. در ابتدا ویفرهای تهیه شده دارای اندازه ی 2 اینچ بودند که اخیراً ویفرهای 3 اینچی نیز ساخته شده است. اندازه ی بزرگتر ویفرهای سیلیسیم کاربیدی باعث افزایش توان عملیاتی یک نیمه رسانا می شود. واین مسئله تولید کنندگان را قادر می سازد تا هزینه ی ثابت خود را بر روی حجم بیشتری از محصولات پایانی پخش کنند. برای مثال یک ویفر 4 اینچی دارای مساحت سطی است که 78% نسبت به یک ویفر سیلیسیم کاربیدی 3 اینچی بیشتر است .که این مسئله باعث اقتصادی شدن فرآیند تولید می شود.

کوره های سرامیک - کوره تونلی و کوره هوفمن

کورهٔ تونلی یا Tunnel Kiln یکی از کوره‌های مورد استفاده در شاخه‌های مختلف صنایع سرامیک است. اولین کورهٔ تونلی در سال ۱۷۵۱ توسطی فردی به نام وینسنز ابداع شد و در حال حاضر در صنایع آجر، سفال، مواد دیرگداز و چینی مورد استفاده قرار می‌گیرد. این کوره در گروه کوره‌های پیوسته یا مداوم قرار دارد. در این کوره، محصولات متحرک و آتش ثابت است.


ساختار کورهٔ تونلی

کورهٔ تونلی یک تونل دراز و باریک است که کف آن ریل‌گذاری شده‌است و محصولات، با عبور از درون آن در معرض حرارت قرار می‌گیرند و پخته یا زینتر می‌شوند. محصولات برای عبور از کورهٔ تونلی می‌بایست بر روی واگن‌های مخصوصی چیده شوند. کورهٔ تونلی شامل سه مرحلهٔ پیش‌گرمایش، پخت و خنک‌کن می‌باشد. در ساده‌ترین نوع کورهٔ تونلی، مشعل‌های موجود در منطقهٔ پخت باعث گرم شدن هوای کوره می‌شود. این هوا با حرکت به سمت ورودی تونل (پیش‌گرمایش) آرام آرام حرارت خود را به واگن‌های این منطقه منتقل می‌کند و در نهایت از دودکش خارج می‌شود. از سوی دیگر هوای تازه از خروجی تونل وارد می‌شود و در مواجهه با واگن‌هایی که مرحلهٔ پخت را پشت سر گذاشته‌اند، آنها را آرام‌آرام خنک می‌کند و دمایش به تدریج افزایش می‌یابد تا به منطقهٔ پخت برسد و اکسیژن لازم برای احتراق مشعل‌های این منطقه را فراهم نماید. البته قسمتی از هوای گرم شده به بیرون از کوره هدایت می‌شود تا در خشک‌کن و بعضا برای تنظیم دمای هوای سالن تولید مورد استفاده قرار بگیرد. معمولا ۶۰درصد از طول کوره به منطقهٔ پخت، ۲۰درصد به منطقهٔ پیش‌گرمایش و ۲۰درصد به منطقهٔ خنک‌کن اختصاص دارد. دمای مناطق مختلف کوره از طریق ترموکوبل و سیستم‌های کنترل اندازه‌گیری و تنظیم می‌شود. همچنین اتمسفر کوره نیز از نظر اکسیدی، احیایی یا خنثی بودن قابل کنترل است.




مزایای کورهٔ تونلی

استفاده از کورهٔ تونلی در مقایسه با سایر انواع کوره‌ها (کوره‌های سنتی، هوفمن و متناوب) دارای مزایایی است که برخی از آنها را می‌توان بدین شرح برشمرد:

کنترل مناسب‌تر دمای کوره و یکنواختی حرارت
افزایش کیفیت تولید
تشابه کیفی محصولات
افزایش سرعت تولید
کاهش نیروی انسانی
کاهش مصرف انرژی
کاهش آثار زیان‌بار زیست‌محیطی


کاربرد کورهٔ تونلی در صنایع آجر و سفال

کورهٔ تونلی یکی از پیشرفته‌ترین انواع کوره‌است که در صنایع آجر و سفال مورد استفاده قرار می‌گیرد. خشت‌های خام که قبلا از خشک‌کن تونلی عبور کرده‌ و بیشتر آب خود را از دست داده‌اند، وارد منطقهٔ پیش‌گرمایش می‌شوند و تا ۳۵۰ درجهٔ سانتی‌گراد گرم می‌شوند. خشت‌ها سپس وارد منطقهٔ پخت می‌شوند و با توجه به نوع مواد اولیه، در دمایی بین ۸۰۰ تا ۱۱۰۰ درجه سانتی‌گراد پخته می‌شوند

کورهٔ هوفمن یا کورهٔ هوفمان (Hoffmann kiln) یکی از کوره‌های مورد استفاده در شاخه‌های مختلف صنایع سرامیک است. این کوره در سال ۱۸۵۶ توسط فردی به همین نام ابداع شد و در حال حاضر در صنایع آجر، سفال و مواد دیرگداز مورد استفاده قرار می‌گیرد. این کوره در گروه کوره‌های پیوسته یا مداوم قرار دارد. در این کوره، محصولات ثابت و آتش متحرک است.


چگونگی پخت محصولات در کورهٔ هوفمن

کورهٔ هوفمن، تونل طویلی است که به شکل حلقه یا بیضی ساخته می‌شود و با استفاده از دیواره‌ها یا تیغه‌هایی به اتاقک‌هایی تقسیم می‌شود. اتاقک‌های کورهٔ هوفمن از کانال دریچه‌ها یا درهایی که در تیغه‌های جداکنندهٔ اتاق‌ها تعبیه شده‌است، با یکدیگر در ارتباط هستند. هر یک از اتاق‌ها نیز یک درب خروجی به بیرون دارند که برای بارگیری و تخلیهٔ کوره مورد استفاده قرار می‌گیرند. به این درها خمیره یا قمیره می‌گویند. اندازهٔ کورهٔ هوفمن با استفاده از این درها بیان می‌شود؛ مثلا یک کورهٔ ۳۲ قمیره‌ای، کوره‌ای است با ۳۲ درب که هر درب به یک اتاقک برای چیدن آجرها (یا سایر محصولات) مرتبط است. [محل استقرار سوخت‌پاش‌ها نیز در سقف قرار دارد.

در کورهٔ هوفمن، محصولات قبل از آنکه مستقیما توسط آتش پخته شوند، با حرارت سایر اتاقک‌ها گرم می‌شوند که اصطلاحا پیش‌گرمایش نامیده می‌شود. این حرارت همراه با گاز خروجی اتاقک پخت و از طریق دریچه‌هایی که قبلا تعبیه شده‌است حرکت می‌کند و به اتاق‌های مجاور وارد می‌شود و محصولات موجود در آن‌ها را پیش‌گرم می‌کند. زمانی که در یک اتاق، عملیات پخت در جریان است، در اتاقک مقابل (دورترین اتاق)، عملیات تخلیه و بارگیری در جریان است. این کار با استفاده از دری که اتاقک به بیرون کوره دارد انجام می‌شود. ضمن بار گیری، هوای خنک نیز وارد کوره می‌شود که به وسیلهٔ آتش موجود در اتاقک پخت و از طریق دریچه‌های تعبیه شده بین اتاق‌ها مکیده می‌شود. بنابراین هوا از اتاق‌هایی که عملیات پخت قبلا در آنها صورت گرفته‌است حرکت می‌کند و باعث خنک شدن محصولات پخته‌شده می‌شود. به این ترتیب در حلقهٔ کورهٔ هوفمن دو جریان هوا وجود دارد؛

هوایی که در نیم‌دایرهٔ اول، از اتاق پخت به سمت بیرون جریان دارد و اتاق‌های بعدی را پیش‌گرم می‌کند.
هوایی که در نیم‌دایرهٔ مقابل، از بیرون به سمت اتاقک پخت جریان دارد و اتاق‌های قبلی را خنک می‌کند.

با اتمام عملیات پخت در اتاق پخت، در اتاق روبرویی حلقهٔ هوفمن نیز عملیات بارگیری تمام می‌شود و درب آن به بیرون بسته می‌شود. در این مرحله، مشعل‌ها از سقف اتاق پخت به سقف اتاق بعدی منتقل می‌شوند و درب اتاق روبرویی این اتاق (اتاق پخت جدید) برای تخلیه و بارگیری گشوده خواهد شد.


انواع کورهٔ هوفمان

کوره‌های هوفمان در چند مدل مختلف ساخته می‌شود:

کورهٔ حلقوی
کورهٔ زیگ‌زاگ (zig-zag)
کورهٔ بوکس (Bocks)
کورهٔ هاریزن (Harrizon)

اما معمولا به کورهٔ حلقوی، کورهٔ هوفمن اطلاق می‌شود

ساختار کورهٔ تونلی

ساختار کورهٔ تونلی

کورهٔ تونلی یک تونل دراز و باریک است که کف آن ریل‌گذاری شده‌است و محصولات، با عبور از درون آن در معرض حرارت قرار می‌گیرند و پخته یا  می‌شوند. محصولات برای عبور از کورهٔ تونلی می‌بایست بر روی واگن‌های مخصوصی چیده شوند. کورهٔ تونلی شامل سه مرحلهٔ پیش‌گرمایش، پخت و خنک‌کن می‌باشد. در ساده‌ترین نوع کورهٔ تونلی، مشعل‌های موجود در منطقهٔ پخت باعث گرم شدن هوای کوره می‌شود. این هوا با حرکت به سمت ورودی تونل (پیش‌گرمایش) آرام آرام حرارت خود را به واگن‌های این منطقه منتقل می‌کند و در نهایت از دودکش خارج می‌شود. از سوی دیگر هوای تازه از خروجی تونل وارد می‌شود و در مواجهه با واگن‌هایی که مرحلهٔ پخت را پشت سر گذاشته‌اند، آنها را آرام‌آرام خنک می‌کند و دمایش به تدریج افزایش می‌یابد تا به منطقهٔ پخت برسد

و اکسیژن لازم برای احتراق مشعل‌های این منطقه را فراهم نماید. البته قسمتی از هوای گرم شده به بیرون از کوره هدایت می‌شود تا در خشک‌کن و بعضا برای تنظیم دمای هوای سالن تولید مورد استفاده قرار بگیرد. معمولاً ۶۰درصد از طول کوره به منطقهٔ پخت، ۲۰درصد به منطقهٔ پیش‌گرمایش و ۲۰درصد به منطقهٔ خنک‌کن اختصاص دارد. 
دمای مناطق مختلف کوره از طریق  و سیستم‌های کنترل اندازه‌گیری و تنظیم می‌شود. همچنین  کوره نیز از نظر اکسیدی، احیایی یا خنثی بودن قابل کنترل است

مزایای کورهٔ تونلی

مزایای کورهٔ تونلی
استفاده از کورهٔ تونلی در مقایسه با سایر انواع کوره‌ها دارای مزایایی است که برخی از آنها را می‌توان بدین شرح برشمرد:

1.کنترل مناسب‌تر دمای کوره و یکنواختی حرارت

2.افزایش کیفیت تولید

3.تشابه کیفی محصولات

4.افزایش سرعت تولید

5.کاهش نیروی انسانی

6.کاهش مصرف انرژی

7.کاهش آثار زیان‌بار زیست‌محیطی

انواع کورهٔ هوفمان

انواع کورهٔ هوفمان
کوره‌های هوفمان در چند مدل مختلف ساخته می‌شود:
  • کورهٔ حلقوی
  • کورهٔ زیگ‌زاگ (zig-zag)
  • کورهٔ بوکس (Bocks)
  • کورهٔ هاریزن (Harrizon)
اما معمولاً به کورهٔ حلقوی، کورهٔ هوفمن اطلاق می‌شود

چگونگی پخت محصولات در کورهٔ هوفمن

چگونگی پخت محصولات در کورهٔ هوفمن


کورهٔ هوفمن، تونل طویلی است که به شکل حلقه یا بیضی ساخته می‌شود و با استفاده از دیواره‌ها یا تیغه‌هایی به اتاقک‌هایی تقسیم می‌شود. اتاقک‌های کورهٔ هوفمن از کانال دریچه‌ها یا درهایی که در تیغه‌های جداکنندهٔ اتاق‌ها تعبیه شده‌است، با یکدیگر در ارتباط هستند. هر یک از اتاق‌ها نیز یک درب خروجی به بیرون دارند که برای بارگیری و تخلیهٔ کوره مورد استفاده قرار می‌گیرند. به این درها خمیره یا قمیره می‌گویند. اندازهٔ کورهٔ هوفمن با استفاده از این درها بیان می‌شود؛ مثلاً یک کورهٔ ۳۲ قمیره‌ای، کوره‌ای است با ۳۲ درب که هر درب به یک اتاقک برای چیدن آجرها (یا سایر محصولات) مرتبط است محل استقرار سوخت‌پاش‌ها نیز در سقف قرار دارد.
در کورهٔ هوفمن، محصولات قبل از آنکه مستقیما توسط آتش پخته شوند، با حرارت سایر اتاقک‌ها گرم می‌شوند که اصطلاحا پیش گرمایش نامیده می‌شود. این حرارت همراه با گاز خروجی اتاقک پخت و از طریق دریچه‌هایی که قبلا تعبیه شده‌است حرکت می‌کند و به اتاق‌های مجاور وارد می‌شود و محصولات موجود در آن‌ها را پیش‌گرم می‌کند. زمانی که در یک اتاق، عملیات پخت در جریان است، در اتاقک مقابل (دورترین اتاق)، عملیات تخلیه و بارگیری در جریان است. این کار با استفاده از دری که اتاقک به بیرون کوره دارد انجام می‌شود. ضمن بار گیری، هوای خنک نیز وارد کوره می‌شود که به وسیلهٔ آتش موجود در اتاقک پخت و از طریق دریچه‌های تعبیه شده بین اتاق‌ها مکیده می‌شود. بنابراین هوا از اتاق‌هایی که عملیات پخت قبلا در آنها صورت گرفته‌است حرکت می‌کند و باعث خنک شدن محصولات پخته‌شده می‌شود. به این ترتیب در حلقهٔ کورهٔ هوفمن دو جریان هوا وجود دارد؛
هوایی که در نیم‌دایرهٔ اول، از اتاق پخت به سمت بیرون جریان دارد و اتاق‌های بعدی را پیش‌گرم می‌کند. هوایی که در نیم‌دایرهٔ مقابل، از بیرون به سمت اتاقک پخت جریان دارد و اتاق‌های قبلی را خنک می‌کند. با اتمام عملیات پخت در اتاق پخت، در اتاق روبرویی حلقهٔ هوفمن نیز عملیات بارگیری تمام می‌شود و درب آن به بیرون بسته می‌شود. در این مرحله، مشعل‌ها از سقف اتاق پخت به سقف اتاق بعدی منتقل می‌شوند و درب اتاق روبرویی این اتاق (اتاق پخت جدید) برای تخلیه و بارگیری گشوده خواهد شد.

کوره فیوزینگ :

کوره فیوزینگ :
کوره های فیوزینگ معمولا حرارت از بالا هستند و المنت های اصلی آنها در قسمت سقف کوره نصب گردیده است که باعث توزیع یکنواخت حرارت می گردد. اما ذکر این نکته لازم است که در کناره های کوره نیز باید چندین المنت فرعی قرار داد تا لبه های تیز شیشه هنگام فیوزینگ کاملا گرد و نرم شود. عامل دیگری که در کوره ها مهم است دارا بودن تهویه ی حرارتی مناسب است که هنگام سرمایش به خوبی عمل کند.
کنترل دمای کوره نیز از عوامل مهم در فیوزینگ شیشه است.یک سری کوره ها قابلیت برنامه ریزی داشته و می توان به راحتی سیکل فیوزینگ را به آن داد و کوره به طور خودکار فیوزینگ را انجام می دهد.اما نوع دیگری وجود دارد که این قابلیت را ندارد و نمی توان به راحتی سیکل مورد نظر را انجام داد.در این کوره ها باید در طول فیوزینگ در کنار کوره بود و دما را کنترل کرد.
کفی کوره : طرح های شیشه فیوزینگ پس از برش و چیده شدن ، روی کفی کوره قرار می گیرند. جنس این کفی ها می تواند خاک رس ، مولایت و یا سیلیکون کارباید باشد . کفی سیلیکون کاربایدی مناسب تر است زیرا قابلیت توزیع یکنواخت دما را دارد و همچنین تخلخل های لازم برای چسبیدن آستر به ان را دارا می باشد.
آستر کف : لایه ای است که روی کفی کوره اعمال می شود تا شیشه ها هنگام فیوزینگ به آن نیز قابلیت های لازم را ندارد و به کف شیشه می چسبد و سطح مات ایجاد می کند.یک سری جداکننده ها در بازار موجود است که مخصوص کار در دماهای بالا است

انبارش روي پالتها

انبارش روي پالتها

 منبع: سايت رسمي شرکت SACMI ايتاليا

 

SACMI logo

 

 

 © استفاده از اين مطلب تنها با کسب اجازه از مترجم و ذکر نام «وبلاگ» و «مترجم» مقاله مجاز است.

  براي انبار کردن و خالي کردن کاشيهاي پخته روي پالتها از ماشينهاي با فنجان مکشي (suction cup machine) استفاده ميشود. وقتي شيفتهاي کاري مختلف در خطوط لعابزني و سورت وجود دارند و يا اين که مايليم سامانة انبارش کاشي پخته شده با ظرفيت بالا داشته باشيم، نياز به يک سامانة پالتي احساس ميشود؛ چرا که فشرده است و نياز به سرمايه گذاري نسبتاً کمي دارد.

 

پالتهاي با اندازة بزرگ روي صفحة (پلتـفرم) متحرکي که کاشيهاي چهارگوش را در لايه هاي متوالي مرتب ميکند، بارگذاري ميشوند تا به ظرفيت انبارش تقريبي 350 مترمربع نيز دست يابند. سامانة چـينشِ کاشيِ ويژه اي پيشنهاد شده است که اجازه ميدهد تا لايه هاي بسيار دقيقي ايجاد شوند و مهم نيست که طبقه هاي بارگذاري شده چه قدر بلند باشند.

 

براي افزايش توانائي چـينش کاشي در هنگام جابجائي، سطوح مقابل به هم ميتوانند به هم برسند، به طوري که لايه ها به يکديگر گره بخورند. اگر جابجائي کاشيهاي با سطح «بافت دار» يا «نامنظم» مد نظر باشد، يک سامانة جابجائي محصول با سطح مکنده به جاي فنجانهاي مکنده پيشنهاد ميشود.

 

 

ماشين با سطح مکنده

 

 ماشين و پالت در ابعادِ بزرگ، خروجي بسيار بالائي را در تعداد چرخه هاي محدود ميسر ميسازند. پالتهاي پـُر و خالي شده با بـَرَنده (حامل)هاي خودکار جابجا ميشوند و اجازة به کار گيري يک سامانة انبارش با مديريت رايانه اي را ميدهند.

 

 

ماشين پالت چين در ترکيب با LGV

 

 

منبع:

www.sacmi.com

 

پخت کوزه

پخت کوزه

برای پختن محصولات كوزه گر و كاشیساز انواع زیادی كوره (تنور ـ بریز ـ شاخور ـ قورن ـ داش ـ دم و داشت) وجود دارد . اندازه و ساختمان این كوره ها بستگی دارد به اندازه و سرشت سفالها . بزرگترین این كوره ها برای پختن (طبخ كردن) كَوَلهای چاه كن و كارهای سفالی سفالگر فتیله ساز است . هیزم را به كوره می اندازند و شعلهٔ آتش از زیر تاق كوره از در آتش وارد اتاق می شود و از یك رشته زنبورك های تاق كوره گذشته به اتاق كوره می رسد . شعله ها خوب پخش شده و از سفالها گذشته و به سوی اتاق بالا رفته آنگاه به اطراف به سوی پنج یا شش سوراخ دودكشی بر می گردند و از آنجا خارج می شود . سوخت این كوره چار (خار) و به ویژه درمنه است ولی امروز نفت جای آن را گرفته است.
ساده ترین نوع كوره ها در گیلان موجود است . اتاقی به شكل كندو كه بلندی آن ۱.۷۵ و قطر آن ۲.۷۵ متر است این كوره را تشكیل می دهد ، در ورودی به پهنای ۰.۷۵متر در زیر و سوراخی به قطر ۳۰ سانتیمتر در بالای ا تاق قرار دارد . این كوره برای دیگهای سادهٔ دست ساز به نام گمج به كار می رفت . پس از اینكه كوره را می چیدند در ورودی را تیغه می كردند و از سه چهار دریچه ای كه در سطح زمین بود دائماً شاخهٔ چوب در آن می نهادند ، تا آتش و شعله پیوسته باشد . چون اینگونه سوخت در گیلان فراوان است كارآیی كم كوره زیاد اهمیت ندارد .
در شهرضا كه یكی از مراكز سفالسازی نزدیك اصفهان است كوره ها جور دیگری است . در آنجا دو اتاقك پخت دایره ای به نام فلكه كه هر كدام ۳ متر قطر و ۳.۷۵ متر بلندی دارند در كنار هم ساخته می شود . هر كدام از این اتاقها ، زیر كوره ای دارد و گازهای سوخته از آتش خانه (چال) كه در بیرون كوره است از میان سوراخ بزرگی كه در كف اتاق است گذشته وارد اتاق پخت می شود .
بام هر اتاق گنبدی است و سوراخی (حلقه ای) در وسط آنست كه قطرش ۷۰ سانتیمتر است . ویژگی عجیب این كوره اتاق بزرگی است كه روی دو اتاق پخت است و یك تاق بلندی در بالای آنهاست . این اتاق بالایی كه سر كوره ها نامیده می شود اتاق خشك كن است . گازهای سوخته شده كه از اتاق پخت بر می خیزد از میان سفالهای چیده شده گذاشته و سرانجام از طریق دودكشی كه در اتاق خشك كن است به خارج می رود .
وقتی كه یكی از كوره ها را می چینند شاگرد ظرفهای خشك شده را از اتاق سر كوره و از میان سوراخ تاق اتاق پخت به استاد خود كه در اتاق پخت است می دهد . تهی كردن كوره آسان است جلو هر اتاق پخت را كه به هنگام آتش كردن ، تیغه كرده بودند باز كرده و كالاهای پخته شده را از آنجا به خارج می برند . هر اتـاق به نوبت آتش می شود و پخت ۴۸ سـاعت طـول می كشد ، در صورتی كه در این مدت اتاق دوم خشك شده است . پیش از اینكه یكی از اتاقها آتش شود لوحهٔ بزرگ پخته شده گلی روی سوراخی كه در سقف اتاق دیگر است قرار می دهند تا اینكه سفالهایی كه در آن هست خنك شود و آتش اتاق دیگر به آن اثر نكند .
در بیدخت خراسان كورهٔ تقریباً امروزی با هواكش زیر وجود دارد . كورهٔ این شهرستان اتاق چهارگوشی است با تاق ضربی كه چاه آتشخانه در پهلوی آن قرار دارد . آتش در پایین كوره سوخته و هوای لازم را از هواكش زیر زمینی می گیرد . هیزم و بوته را از در شاخگاه كه در دیوار كوره است توی چال می ریزند . دیوارهای روبروی آتشگاه در حدود ۱۲ سوراخ در كف دارد كه به چندین دودكش (موری) كه در دیوار آن ساخته شده منتهی می شود . یعنی گازهای سوخته شده نخست از سفالهای چیده شده گذشته به سوی تاق ضربی می رود و سپس به ناچار به سوی كف اتاق می آیند تا از دودكشها بتوانند خارج شوند . سرعت گازهای سوخته شده در اثر این كار كم می شود و حرارت قابلی بدست می آید .
اما عادیترین كورهٔ سفالسازان همانند كورهٔ آجرپزهاست منتها خیلی كوچكتر . كوره های سفالهای ظریفتر در كنارهٔ اتاق سوخت خود ، سوراخ هوا (در هوا) دارند تا سوخت بهتر انجام گیرد و آن را بتوان تحت نظارت و نظم در آورد یعنی بسته به موقعیت و نیازمندی سفالها بشود هوای اكسید كننده و یا هوای احیا كننده ایجاد كرد.
ابوالقاسم كاشی می نویسد كه در زمان وی كوره ها دارای طبقه بندی متعددی بودند كه از گذاشتن و لوحه های سفالی بر روی میخهای گلی ایجاد شده بودند . كوزه گران امروزی نیز برای پختن سفالهای مرغوبتر ، آنها را روی این طاقچه ها قرار می دهند . این كوره ها به جای بوته هایی كه كوره آجرسازی مصرف می كند ، چوب ، به ویژه چوب بادام وحشی و بید به كار می بردند . ابوالقاسم اضافه می كند كه پوست هیزم را می كندند كه دود نكند و این كار را سفالسازان اصفهان نیز قبل از اینكه كوره ها را نفتی كنند انجام می دادند

حال به بررسي اجمالي كوره هاي رولري مي پردازيم

A : ساختار

كوره رولر داراي  يك ساختار فولادي است كه تكيه گاه كف ، ديواره ها وسقف آن از مواد مختلفي مانند مواد   ديرگداز  ،  عايق  و سراميك  ساخته شده اند كه با  ابعاد ، ميزان عايق بودن  و مقاومت بالا در مقابل شوك هاي حرارتي توصيف مي شود. تمامي اين مشخصات اجراي منحني پخت و سرعت گرم شدن وسرد شدن كوره را تسهيل مي كند.

B: سيستم محرك وگرداننده رولر

حمل بدنه كاشي ها در كوره توسط مجموعه اي از موتور و رولر ها صورت مي پذيرد كه جنس لوله ها در بعضي قسمت ها فولادي و در بعضي قسمت ها سراميكي است و ويژه گي آنها  براي  تمامي  دما هاي  پيش بيني شده  مناسب است.

 

 اين سيستم داراي قسمت هاي مجزايي است كه به موتور هاي مستقلي كه سرعت آنها به صورت  مستقل قابل تنظيم  است  مجهز ميباشد  و اين سيستم  بهره برداري  بهينه از منحني  پخت را امكان پذير  ميسازد  و به ما امكان مي دهد  هرگاه  احتمال  برخورد كاشي ها  به هم وجود داشته باشد ميتوان بين رديف ها فاصله ايجاد كرد و باعث حركت منظم كاشي ها شد. براي انجام دقيق اين عمل سرعت قابل تنظيم موتور توسط كامپيوتر كوره كنترل مي شود.

C : سيستم احتراق

اين قسمت شامل مشعل هايي  است كه  با  گاز  (يا نفت سفيد و گازوييل ) و  دمش  هوا  كار  ميكند . اين مشعل ها به صورت  دسته هاي مستقل با  وسايل كنترلي اتوماتيك  و دستي در  قسمت  بالا و زير رولر ها  قرار دارند . در تنظيم  هر چه بهتر اين مشعل ها كنترل  فشار هوا  (با منومتر ) اهميت زيادي دارد  همانند سيستم محرك  و گرداننده  رولر  كنترل  دماي  حاصل از  مشعل ها  با  كامپيوتر  انجام مي شود.

D  : بخش هاي مختلف كوره

كوره  به  شش  بخش  تقسيم مي شود .

1 – پيش كوره (per kiln )

اين بخش توسط مواد سراميكي  عايق  شده و براي دماهاي  پايين (200 تا 400) مناسب است . اين قسمت  مشعل ندارد  و بوسيله  ساكشن هواي گرم كه توسط فن هاي  مكنده از قسمت هاي بعدي به اين قسمت منتقل مي شود گرم  ميگردد. اين مكنده ها در ابتدا و انتها و بالا و  زير رولر هاي  پيش كوره هستند. نقش اصلي اين بخش حذف كامل رطوبت  پس از دراير و يا لعاب زدن است . اين عمل  به منظور جلوگيري از شكستن و ترك  خوردن كاشي  در حال پخت در اثر تبخير  بسيار شديد  آب  در  بخش بعدي  ميباشد.

2 – پيش گرم  (per heating)

اين بخش داراي نوعي عايق با دماي نسبتاً بالاست به همين دليل از مواد  دير گداز  و مقاوم  در برابر حرارت و قطعات سراميكي استفاده شده است . با توجه به منحني هاي پخت اين بخش تا حدود 900 درجه گرم ميشود و در اين  بخش  دما  طوري تنظيم مي شود كه آب تركيبي آزاد  شده ، كوارتز  تغيير شكل دهد ، احتراق مواد آلي به صورت كامل صورت  پذيرد  و كربنات ها  تجزيه  شوند. در اين بخش ماشين آلات احتراق  طوري ساخته شده اند كه بتوان تغييرات را در گستره وسيعي انجام داد .

 

 

3 – پخت (firing )

اين بخش از دمايي شروع مي شود كه كه حدود 900 درجه است (بسته به نوع كاشي تا 1200درجه ) و عايق مربوط به خود را دارد. در اين بخش  براي كنترل  دقيق تر  مشعل ها  آنها را  به  دسته هاي كوچكتر تقسيم ميكنند تا اعمال  منحني پخت كه در اين ناحيه پيچيده تر است  ممكن  شود. اگر دماي اين بخش درست تنظيم نشود با مشكلاتي مانند مسطح نبودن ، ناهموار بودن ، ناهماهنگي ابعاد ويكدست نبودن ميزان شيشه اي شدن لعاب مواجه خواهيم بود.

4 –  سريع سرد كردن (rapid cooling )

دما در اين ناحيه  بين  دماي  پخت  تا تقريبا 600 درجه را شامل مي شود . هوا در اين قسمت توسط مجموعه اي تنظيم مي شود كه شامل يك  servomotor  با شير  پروانه اي خود كنترل  است كه توسط ترموكوپل هاي موجود در كوره تنظيم مي شود  .

5 – خنك كردن عادي (natural cooling )

اين ناحيه  نيز با توجه به اينكه دما در آن از حدود 600  به 500  كاهش مي يابد از حساسيت زيادي برخوردار است و بايد شيب كاهش  دما در اين بخش ملايم باشد چون بايد فرآيند تغيير شكل كوارتز بدون ترك خوردن بدنه رخ دهد.

6 – سرد شدن نهايي ( final cooling )

 دما در اين ناحيه زير 500 درجه است . در اين بخش هوا ي محيط به قسمت بالا و پايين بدنه ميدمد تا دماي آن در خروجي به زير 100 درجه برسد . 

عيوب:

تقريباً  كليه  عيوب  پس از پخت  نمايان مي گردد. اما  فقط تعدادي از آنها  مربوط به كوره هستند البته  طبقه بندي  عيوب  بر اساس منشا آن كار سختي است چون علت ايجاد يك  عيب ممكن است يك  عامل نباشد. اما ميتوان عيوب اصلي كه در هر فرآيند  مشخص مي شود  را  با  ديگر  فرآيند ها  مورد  مقايسه  قرار داد .

 

 

1 - ترك هاي پيش گرم

به صورت شكستگي هاي نا برابر از لبه به سمت مركز وجود دارند .

-         طول آنها 3 تا 4 سانتيمتر است.

-         تعداد آنها هميشه بيش از يكي است.

-         دليل آن  بالا بودن دماي منطقه پيش گرم است .

2 -مغز سياه (black core ) :

 در اثر احتراق  ناقص  مواد آلي  در داخل  بدنه  مشاهده  مي شود .

-         در بدنه هاي سفيد به رنگ هاي زرد – سبز  و خاكستري ديده ميشود.

-         در بدنه هاي قرمز به رنگ هاي زرد – سياه  و خاكستري ديده ميشود.

اين عيب  ممكن است  باعت  تغيير شكل  و اندازه كاشي شود و سوراخها  و ترك هايي  در لعاب پديد آورد و در لعاب ايجاد سايه  نمايد .

به طور كلي همه عواملي كه باعث جلوگيري از خروج گاز ها از بدنه ميشوند ،  مانند رطوبت ، دانه بندي ‌، فشار پرس ،  ضخامت زياد  نقطه  ذوب  لعاب  و بدنه  باعث  ايجاد  اين  عيب شوند .

براي رفع اين عيب بايد كاشي در دماي  پيش گرم كه  قبلاً  به آن اشاره شد بيشتر  بماند تا احتراق مواد آلي كامل گردد . در  اثر عيب  مغز سياه  سه  وضعيت  به شكل هاي  زير متصور  است.

شكل 1   

دليل : اگر وجود عيب در يك   طرف كاشي باشد نشان  از مشكل  در  پر كردن  قالب  در حين  پرس است كه  بيانگر عدم كنترل تراكم (penetrometer)  در نقاط مختلف كاشي  در پرس  است  و اگر  عيب در           تمامي  پيرامون  كاشي  باشد  بيان مي كند كه سرعت  ضربه  پرس  بالا  بوده  است.

 

 

 

 

شكل  2  

دليل :  فشار پرس بالاست  يا اينكه لعاب در دماي پايين تر ذوب شده  و مانع از خروج گاز ها از بدنه شده است و احتراق ناقص مانده . كه بايد مقداري هوا از قسمت روي كاشي به لعاب داده شود تا دير تر ذوب گردد.

شكل 3 

دليل :  وجود ناخالصي  ويا  وجود  لخته هاي  رطوبتي  پودر در بدنه  باعث چنين  عيبي  مي شود اين عيب در كوره حل  نمي شود و بايد الك هاي  پرس  و ماشين آلات  آن  قسمت  مورد  بازديد  قرار گيرد .

3 - عيوب شكل هندسي

طي فرآيند پخت  بدليل عدم تنظيم مناسب مراحل مختلف ممكن است كاشي ها دچار دفرمگي با اشكال مختلف هندسي شوند كه توضيح هر تعدادي از عيوب با شكل در زير مي آيد.

شكل 1

با شرط اينكه  فراواني عيب در همه  محل ها يكسان  باشد و در  واحد زمان خيلي تغيير نكند ،هر گاه كاشي به ميزان  بالاي  شيشه اي  شدن  برسد  اين مشكل مشاهده مي شود كه بايد روي  پارامتر هاي  زير كار  شود.

1-    اندازه ذرات  پودر(كنترل مش )

2-    دانسيته قسمت هاي  پرس شده -  رطوبت و فشار پرس

3-    گرما در قسمت پيش گرم

4-     شيب حرارتي در نواحي بحراني

 

 

 

شكل 2

 

 

با شرط  اينكه  فراواني  عيب  در همه محل ها يكسان باشد و در واحد زمان خيلي تغيير نكند ،اين  عيب  در قطعات  كناري  كوره كمتر مشاهده  مي گردد و  مربوط  به  ناحيه  پخت است .

براي رفع اين مشكل با در نظر گرفتن سايز متوسط به صورت زير عمل مي كنيم.

1-    اگر  ابعاد صحيح  بود دما در قسمت  بالاي سطح  رولرها را  (5 تا 10 درجه يا كمي بيشتر) كاهش داده و  در قسمت  پايين  زياد  مي كنيم .

2-     اگر ابعاد بزرگتر بود   دما را 5  تا 10 درجه  و يا كمي بيشتر در زير سطح  رولر ها  افزايش مي دهيم .

3-    اگر ابعاد كوچكتر بود  دما را به ميزان 5  تا 10  درجه در بالاي سطح رولر ها كاهش مي دهيم .

شكل 3

با شرط اينكه  فراواني عيب  در همه محل ها يكسان باشد و  در واحد زمان خيلي تغيير نكند ، نشان ميدهد دما در قسمت  بالا و  زير سطح  رولر ها يكسان  نيست پس  با توجه به سايز متوسط ابعاد كاشي هاي خروجي از كوره تنظيم هاي زير  را  انجام مي دهيم .

 

 

1-    اگر ابعاد صحيح بود دما را درپايين 5 تا 10درجه كاهش و به همان اندازه در بالا افزايش مي دهيم.

2-    اگر ابعاد بزرگتر بود دما را 5 تا 10درجه و ياكمي بيشتر در بالاي سطح رولر ها افزايش مي دهيم.

3-    اگر ابعاد كوچكتر بود  دما را به ميزان 5 تا 10 درجه در زير سطح رولر ها كاهش مي دهيم.

شكل 4

با شرط اينكه فراواني عيب درهمه محل ها يكسان باشد و در واحد زمان خيلي تغيير نكند ،نشان ميدهد دما در قسمت بالا و زير سطح  رولر ها يكسان نيست پس با توجه به سايز متوسط  ابعاد كاشي هاي خروجي از كوره ،    تنظيم هاي زير را انجام مي دهيم .

1-    اگر ابعاد صحيح بود دما را در بالا  5  تا  10  درجه كاهش و به همان  اندازه  در پايين  كاهش مي دهيم

2-    اگر ابعاد بزرگتر بود   دما را 5 تا 10درجه  و يا كمي بيشتر  در زير  سطح  رولر ها  افزايش مي دهيم

3-    اگر ابعاد كوچكتر بود  دما را به ميزان 5 تا 10 درجه در بالاي سطح رولر ها كاهش مي دهيم

شكل 5

با شرط اينكه فراواني عيب در همه محل ها يكسان باشد و در واحد زمان خيلي تغيير نكند ، بخشي از كوره در مورد اين شكل اهميت دارد كه دما در آنجا 800 تا  900 درجه  و50 تا 100 درجه است .

بايد دماي بالاي سطح رولر ها را افزايش و پايين را كاهش داد .

 

 

 

شكل 6

با شرط اينكه فراواني عيب درهمه محل ها يكسان باشد و در واحد زمان خيلي تغيير نكند  اين عيب ممكن است مربوط باشد به :

1-    كاشي  در ناحيه سريع سرد شدن (rapid cooling ) كه در رديف هاي دنبال هم قرار دارد به يكديگر  فشار مي آورد  . (سرعت را افزايش دهيم )

2-    اين شكل حالت شديد تر شكل يك است (از راهكار مربوط استفاده كنيم ) بايد توجه داشت كه هميشه رد گيري كردن  دماها به منظور توجيه اين پديده كفايت نمي كند  مخصوصاً زماني كه اين پديده ها به دنبال توقفات كمابيش  طولاني  اتفاق مي افتد  و همچنين كنترل فشار گاز و هوا براي مشعل ها را بايد مد نظر قرار داد.

 

اشكال زير معمولا داراي فراواني يكساني نيستند ولي به صورت پيوسته وجود دارند تغيير شكل اين عيوب بستگي زيادي به نحوه شارژ كوره دارد (فرستادن كاشي به داخل كوره ) از  قبيل اينكه فاصله بين كاشي ها و خالي بودن  رديف ها  و تميز بودن  رولر ها و...

بنا بر اين مشكل را ميتوان با انتخاب تمهيدات  لازم  براي اصلاح شكل هندسي شارژ  و همچنين نگهداري دقيق رولر ها  حل نمود و ناحيه بحراني براي اين عيوب بخش firing   و rapid cooling  است

حال به بررسي اجمالي كوره هاي رولري مي پردازيم

A : ساختار

كوره رولر داراي  يك ساختار فولادي است كه تكيه گاه كف ، ديواره ها وسقف آن از مواد مختلفي مانند مواد   ديرگداز  ،  عايق  و سراميك  ساخته شده اند كه با  ابعاد ، ميزان عايق بودن  و مقاومت بالا در مقابل شوك هاي حرارتي توصيف مي شود. تمامي اين مشخصات اجراي منحني پخت و سرعت گرم شدن وسرد شدن كوره را تسهيل مي كند.

B: سيستم محرك وگرداننده رولر

حمل بدنه كاشي ها در كوره توسط مجموعه اي از موتور و رولر ها صورت مي پذيرد كه جنس لوله ها در بعضي قسمت ها فولادي و در بعضي قسمت ها سراميكي است و ويژه گي آنها  براي  تمامي  دما هاي  پيش بيني شده  مناسب است.

 

 اين سيستم داراي قسمت هاي مجزايي است كه به موتور هاي مستقلي كه سرعت آنها به صورت  مستقل قابل تنظيم  است  مجهز ميباشد  و اين سيستم  بهره برداري  بهينه از منحني  پخت را امكان پذير  ميسازد  و به ما امكان مي دهد  هرگاه  احتمال  برخورد كاشي ها  به هم وجود داشته باشد ميتوان بين رديف ها فاصله ايجاد كرد و باعث حركت منظم كاشي ها شد. براي انجام دقيق اين عمل سرعت قابل تنظيم موتور توسط كامپيوتر كوره كنترل مي شود.

C : سيستم احتراق

اين قسمت شامل مشعل هايي  است كه  با  گاز  (يا نفت سفيد و گازوييل ) و  دمش  هوا  كار  ميكند . اين مشعل ها به صورت  دسته هاي مستقل با  وسايل كنترلي اتوماتيك  و دستي در  قسمت  بالا و زير رولر ها  قرار دارند . در تنظيم  هر چه بهتر اين مشعل ها كنترل  فشار هوا  (با منومتر ) اهميت زيادي دارد  همانند سيستم محرك  و گرداننده  رولر  كنترل  دماي  حاصل از  مشعل ها  با  كامپيوتر  انجام مي شود.

D  : بخش هاي مختلف كوره

كوره  به  شش  بخش  تقسيم مي شود .

1 – پيش كوره (per kiln )

اين بخش توسط مواد سراميكي  عايق  شده و براي دماهاي  پايين (200 تا 400) مناسب است . اين قسمت  مشعل ندارد  و بوسيله  ساكشن هواي گرم كه توسط فن هاي  مكنده از قسمت هاي بعدي به اين قسمت منتقل مي شود گرم  ميگردد. اين مكنده ها در ابتدا و انتها و بالا و  زير رولر هاي  پيش كوره هستند. نقش اصلي اين بخش حذف كامل رطوبت  پس از دراير و يا لعاب زدن است . اين عمل  به منظور جلوگيري از شكستن و ترك  خوردن كاشي  در حال پخت در اثر تبخير  بسيار شديد  آب  در  بخش بعدي  ميباشد.

2 – پيش گرم  (per heating)

اين بخش داراي نوعي عايق با دماي نسبتاً بالاست به همين دليل از مواد  دير گداز  و مقاوم  در برابر حرارت و قطعات سراميكي استفاده شده است . با توجه به منحني هاي پخت اين بخش تا حدود 900 درجه گرم ميشود و در اين  بخش  دما  طوري تنظيم مي شود كه آب تركيبي آزاد  شده ، كوارتز  تغيير شكل دهد ، احتراق مواد آلي به صورت كامل صورت  پذيرد  و كربنات ها  تجزيه  شوند. در اين بخش ماشين آلات احتراق  طوري ساخته شده اند كه بتوان تغييرات را در گستره وسيعي انجام داد .

 

 

3 – پخت (firing )

اين بخش از دمايي شروع مي شود كه كه حدود 900 درجه است (بسته به نوع كاشي تا 1200درجه ) و عايق مربوط به خود را دارد. در اين بخش  براي كنترل  دقيق تر  مشعل ها  آنها را  به  دسته هاي كوچكتر تقسيم ميكنند تا اعمال  منحني پخت كه در اين ناحيه پيچيده تر است  ممكن  شود. اگر دماي اين بخش درست تنظيم نشود با مشكلاتي مانند مسطح نبودن ، ناهموار بودن ، ناهماهنگي ابعاد ويكدست نبودن ميزان شيشه اي شدن لعاب مواجه خواهيم بود.

4 –  سريع سرد كردن (rapid cooling )

دما در اين ناحيه  بين  دماي  پخت  تا تقريبا 600 درجه را شامل مي شود . هوا در اين قسمت توسط مجموعه اي تنظيم مي شود كه شامل يك  servomotor  با شير  پروانه اي خود كنترل  است كه توسط ترموكوپل هاي موجود در كوره تنظيم مي شود  .

5 – خنك كردن عادي (natural cooling )

اين ناحيه  نيز با توجه به اينكه دما در آن از حدود 600  به 500  كاهش مي يابد از حساسيت زيادي برخوردار است و بايد شيب كاهش  دما در اين بخش ملايم باشد چون بايد فرآيند تغيير شكل كوارتز بدون ترك خوردن بدنه رخ دهد.

6 – سرد شدن نهايي ( final cooling )

 دما در اين ناحيه زير 500 درجه است . در اين بخش هوا ي محيط به قسمت بالا و پايين بدنه ميدمد تا دماي آن در خروجي به زير 100 درجه برسد . 

عيوب:

تقريباً  كليه  عيوب  پس از پخت  نمايان مي گردد. اما  فقط تعدادي از آنها  مربوط به كوره هستند البته  طبقه بندي  عيوب  بر اساس منشا آن كار سختي است چون علت ايجاد يك  عيب ممكن است يك  عامل نباشد. اما ميتوان عيوب اصلي كه در هر فرآيند  مشخص مي شود  را  با  ديگر  فرآيند ها  مورد  مقايسه  قرار داد .

 

 

1 - ترك هاي پيش گرم

به صورت شكستگي هاي نا برابر از لبه به سمت مركز وجود دارند .

-         طول آنها 3 تا 4 سانتيمتر است.

-         تعداد آنها هميشه بيش از يكي است.

-         دليل آن  بالا بودن دماي منطقه پيش گرم است .

2 -مغز سياه (black core ) :

 در اثر احتراق  ناقص  مواد آلي  در داخل  بدنه  مشاهده  مي شود .

-         در بدنه هاي سفيد به رنگ هاي زرد – سبز  و خاكستري ديده ميشود.

-         در بدنه هاي قرمز به رنگ هاي زرد – سياه  و خاكستري ديده ميشود.

اين عيب  ممكن است  باعت  تغيير شكل  و اندازه كاشي شود و سوراخها  و ترك هايي  در لعاب پديد آورد و در لعاب ايجاد سايه  نمايد .

به طور كلي همه عواملي كه باعث جلوگيري از خروج گاز ها از بدنه ميشوند ،  مانند رطوبت ، دانه بندي ‌، فشار پرس ،  ضخامت زياد  نقطه  ذوب  لعاب  و بدنه  باعث  ايجاد  اين  عيب شوند .

براي رفع اين عيب بايد كاشي در دماي  پيش گرم كه  قبلاً  به آن اشاره شد بيشتر  بماند تا احتراق مواد آلي كامل گردد . در  اثر عيب  مغز سياه  سه  وضعيت  به شكل هاي  زير متصور  است.

شكل 1   

دليل : اگر وجود عيب در يك   طرف كاشي باشد نشان  از مشكل  در  پر كردن  قالب  در حين  پرس است كه  بيانگر عدم كنترل تراكم (penetrometer)  در نقاط مختلف كاشي  در پرس  است  و اگر  عيب در           تمامي  پيرامون  كاشي  باشد  بيان مي كند كه سرعت  ضربه  پرس  بالا  بوده  است.

 

 

 

 

شكل  2  

دليل :  فشار پرس بالاست  يا اينكه لعاب در دماي پايين تر ذوب شده  و مانع از خروج گاز ها از بدنه شده است و احتراق ناقص مانده . كه بايد مقداري هوا از قسمت روي كاشي به لعاب داده شود تا دير تر ذوب گردد.

شكل 3 

دليل :  وجود ناخالصي  ويا  وجود  لخته هاي  رطوبتي  پودر در بدنه  باعث چنين  عيبي  مي شود اين عيب در كوره حل  نمي شود و بايد الك هاي  پرس  و ماشين آلات  آن  قسمت  مورد  بازديد  قرار گيرد .

3 - عيوب شكل هندسي

طي فرآيند پخت  بدليل عدم تنظيم مناسب مراحل مختلف ممكن است كاشي ها دچار دفرمگي با اشكال مختلف هندسي شوند كه توضيح هر تعدادي از عيوب با شكل در زير مي آيد.

شكل 1

با شرط اينكه  فراواني عيب در همه  محل ها يكسان  باشد و در  واحد زمان خيلي تغيير نكند ،هر گاه كاشي به ميزان  بالاي  شيشه اي  شدن  برسد  اين مشكل مشاهده مي شود كه بايد روي  پارامتر هاي  زير كار  شود.

1-    اندازه ذرات  پودر(كنترل مش )

2-    دانسيته قسمت هاي  پرس شده -  رطوبت و فشار پرس

3-    گرما در قسمت پيش گرم

4-     شيب حرارتي در نواحي بحراني

 

 

 

شكل 2

 

 

با شرط  اينكه  فراواني  عيب  در همه محل ها يكسان باشد و در واحد زمان خيلي تغيير نكند ،اين  عيب  در قطعات  كناري  كوره كمتر مشاهده  مي گردد و  مربوط  به  ناحيه  پخت است .

براي رفع اين مشكل با در نظر گرفتن سايز متوسط به صورت زير عمل مي كنيم.

1-    اگر  ابعاد صحيح  بود دما در قسمت  بالاي سطح  رولرها را  (5 تا 10 درجه يا كمي بيشتر) كاهش داده و  در قسمت  پايين  زياد  مي كنيم .

2-     اگر ابعاد بزرگتر بود   دما را 5  تا 10 درجه  و يا كمي بيشتر در زير سطح  رولر ها  افزايش مي دهيم .

3-    اگر ابعاد كوچكتر بود  دما را به ميزان 5  تا 10  درجه در بالاي سطح رولر ها كاهش مي دهيم .

شكل 3

با شرط اينكه  فراواني عيب  در همه محل ها يكسان باشد و  در واحد زمان خيلي تغيير نكند ، نشان ميدهد دما در قسمت  بالا و  زير سطح  رولر ها يكسان  نيست پس  با توجه به سايز متوسط ابعاد كاشي هاي خروجي از كوره تنظيم هاي زير  را  انجام مي دهيم .

 

 

1-    اگر ابعاد صحيح بود دما را درپايين 5 تا 10درجه كاهش و به همان اندازه در بالا افزايش مي دهيم.

2-    اگر ابعاد بزرگتر بود دما را 5 تا 10درجه و ياكمي بيشتر در بالاي سطح رولر ها افزايش مي دهيم.

3-    اگر ابعاد كوچكتر بود  دما را به ميزان 5 تا 10 درجه در زير سطح رولر ها كاهش مي دهيم.

شكل 4

با شرط اينكه فراواني عيب درهمه محل ها يكسان باشد و در واحد زمان خيلي تغيير نكند ،نشان ميدهد دما در قسمت بالا و زير سطح  رولر ها يكسان نيست پس با توجه به سايز متوسط  ابعاد كاشي هاي خروجي از كوره ،    تنظيم هاي زير را انجام مي دهيم .

1-    اگر ابعاد صحيح بود دما را در بالا  5  تا  10  درجه كاهش و به همان  اندازه  در پايين  كاهش مي دهيم

2-    اگر ابعاد بزرگتر بود   دما را 5 تا 10درجه  و يا كمي بيشتر  در زير  سطح  رولر ها  افزايش مي دهيم

3-    اگر ابعاد كوچكتر بود  دما را به ميزان 5 تا 10 درجه در بالاي سطح رولر ها كاهش مي دهيم

شكل 5

با شرط اينكه فراواني عيب در همه محل ها يكسان باشد و در واحد زمان خيلي تغيير نكند ، بخشي از كوره در مورد اين شكل اهميت دارد كه دما در آنجا 800 تا  900 درجه  و50 تا 100 درجه است .

بايد دماي بالاي سطح رولر ها را افزايش و پايين را كاهش داد .

 

 

 

شكل 6

با شرط اينكه فراواني عيب درهمه محل ها يكسان باشد و در واحد زمان خيلي تغيير نكند  اين عيب ممكن است مربوط باشد به :

1-    كاشي  در ناحيه سريع سرد شدن (rapid cooling ) كه در رديف هاي دنبال هم قرار دارد به يكديگر  فشار مي آورد  . (سرعت را افزايش دهيم )

2-    اين شكل حالت شديد تر شكل يك است (از راهكار مربوط استفاده كنيم ) بايد توجه داشت كه هميشه رد گيري كردن  دماها به منظور توجيه اين پديده كفايت نمي كند  مخصوصاً زماني كه اين پديده ها به دنبال توقفات كمابيش  طولاني  اتفاق مي افتد  و همچنين كنترل فشار گاز و هوا براي مشعل ها را بايد مد نظر قرار داد.

 

اشكال زير معمولا داراي فراواني يكساني نيستند ولي به صورت پيوسته وجود دارند تغيير شكل اين عيوب بستگي زيادي به نحوه شارژ كوره دارد (فرستادن كاشي به داخل كوره ) از  قبيل اينكه فاصله بين كاشي ها و خالي بودن  رديف ها  و تميز بودن  رولر ها و...

بنا بر اين مشكل را ميتوان با انتخاب تمهيدات  لازم  براي اصلاح شكل هندسي شارژ  و همچنين نگهداري دقيق رولر ها  حل نمود و ناحيه بحراني براي اين عيوب بخش firing   و rapid cooling  است

Firing

Firing

پینهول


پینهول

مقوله پين هول در كاشي سالهاست كه از نقطه نظرات مختلف مورد بحث قرار گرفته و نتايج مفيد و موثري نيز در خصوص ماهيت و نحوه ايجاد آن بخصوص در بخش لعاب بدست آمده است. در اين مقاله بررسي هاي عملي در خصوص عوامل موثر در بروز پينهول از نقطه نظر اثرات بدنه كاشي و نيز شرايط فرايند توليد كاشي مورد بحث قرار گرفته است.
روش تحقيق و نتايج

 

1-       اثر تك خاكها بر روي پين هول لعاب:

براي بررسي اين اثر تعدادي بيسكوئيت 5*10 سانتي متر را با پرس آزمايشگاهي از خاكهاي مصرفي در توليد بدنه و نيز خاكهاي مشابه تهيه گرديد و پس از پخت در كوره بيسكوئيت و اعمال لعاب؛ در كوره لعاب خط توليد پخت گرديد.نتايج نشان ميدهد كه خاكهاي آباده بيشترين تاثير را در پينهول لعاب بعد از پخت دارا مي باشد. لازم به ياداوري مي باشد كه هرچند در خاكهاي آباده نمكهاي محلول از نوع سولفاتها وجود دارد ولي نتايج آزمايشات بعدي نشان ميدهد كه عامل ايجاد پينهول در خاكهاي آباده عمدتاً ناشي از نمكهاي محلول نمي باشد، بلكه وجود مواد آلي در اين گونه خاكها يكي از عوامل موثر در ايجاد پينهول مي باشد. منحني D.T.A اين خاك بيانگر وجود مقدار زيادي مواد آلي مي باشد. از طرفي وجو مقدار زيادي پيريت در اين خاكها در كنار مواد آلي مي تواند نقش موثري را در ايجاد پين هول ايفا نمايد بويژه اگر منحني و اتمسفر پخت بيسكوئيت متناسب با ماهيت اينگونه خاكها نباشد. ولي با وجود اين باي بررسي نقش نمكهاي محلول  در ايجاد پينهول آزمايشات زير صورت گرفت.

2-       جدا كردن نمكهاي نا محلول از خاكهاي مصرفي:

در آزمايشي كه به همين منظور ترتيب داده شد با افزودن مقاديري كربنات باريم بيش از حد معمول(5%) به دوغاب بدنه شرايط رسوب سولفاتها فراهم آورده شد و پس از تهيه بدنه از دوغاب فوق، آن را در كوره پخته و سپس لعاب را بر روي آن اعمال نموده و در نهايت در كوره پخت داده شد. نتايج حاصله تغييرات مشخصي را در ميزان پينهول در مقايسه با نمونه هاي مرجع تهيه شده با همان شرايط (البته بدون استفاده از كربنات باريم ) نشان نداد.

در آزمايشي ديگر با استفاده از يك سمباده نرم سطح چند بيسكوئيت را سايش داده شد و لايه اي از روي آن برداشته شد و پس از تميز كردن سطح بيسكوئيت ها با پارچه هاي خشك و مرطوب، همراه با نمونه هاي مرجع آنها را لعاب داده و در كوره خط لعاب پخت داده شد. كاشي هاي مربوط به نمونه هاي سائيده شده داراي پينهول بيشتر و تا حدودي عميق تر نسبت به پينهول نمونه مرجع بودند كه اين مطلب به باقيماندن مقداري ذرات سائيده شده در روي بيسكوئيت قبل از اعمال لعاب نسبت داده شد ولي با اين حال در نمونه هاي ديگري كه كاملاً تميز و صيقلي شدهبودند نيز اين مشكل مشاهده مي شد.

در آزمايشي ديگر خاكهاي پينهول زا را جهت جداشدن نمكهاي محلول از آنها، ابتدا بطور مجزا در آب شسته شد و پس از جدا كردن آب جمع شده بر روي آنها، جهت تهيه بدنه مورد استفاده قرار گرفتند. اين آزمايش بر روي خاكهاي آباده انجام گرفت. شستشوي خاك همراه با آب فراوان در جارميل آزمايشگاهي صورت پذيرفت. آناليز آب جدا شده پس از شستشو نشان داد كه ميزان يون سديم از 23 به 29 و يون پتاسيم از 3/91 به 7/8 (p.p.m) افزايش يافته است. افزايش يونهاي فوق در آب جدا شده بيانگر وجود مقداري نمك محلول در خاكهاي مصرفي مي باشد. ولي بر اساس بررسي هاي بعمل آمده بر روي سطح لعاب خورده در اين بدنه ها مشخص شد كه تفاوت عمده اي از نقطه نظر ميزان پينهول بين نمونه هاي تهيه گرديده با خاكهاي شستشو داده شده و نمونه مرع نمي باشد لذا اين آزمايشات نشان داد كه نمكهاي محلول در خاكهاي مصرفي در افزايش پينهول نقش عمده اي ندارد.

3-        بررسي اثر كائولن هاي مختلف جهت مصرف در لعاب بر روي پينهول:

جهت بررسي اين مورد كائولن هاي متفاوتي بر روي يك فريت مرجع آزمايش گرديد (با فرمول تركيبي 7% كائولن و 93% فريت اپك 84-21-120 لعابيران) و مطابق شكل 3 كائولن هاي مختلف بر حسب ميزان پينهول منتجه در لعاب، دسته بندي گرديدند.

همانگونه كه در شكل نشان داده شده است كائولن زدليتز كمترين ميزان پينهول را در لعاب ايجاد مي نمايد. براي بررسي علل اين مسئله سعي بر آن شد تا عوامل مولد پينهول در يكي ديگر از كائولن هاي مصرفي كارخانه (W.B.B) مورد بررسي قرار گيرد تا از اين طريق بتوان به علت تفاوت نقش كائولن ها در ايجاد پينهول پي برد. با بررسي هاي اوليه مشخص گرديد كه تركيب W.B.B با زدليتز بخصوص از نقطه نظر كانيهاي موجود و ناخالصي ها متفاوت است. بخصوص درصد ميكاي كائولن W.B.B بيشتر مي باشد. براي بررسي بيشتر آزمايشات زير صورت گرفت:

4-        بررسي اثر ناخالصي هاي كائولن W.B.B:

جهت بررسي دقيق تر كائولن W.B.B (كائولن مصرفي كارخانه) آزمايشاتي بر روي اين كائولن انجام گرفت.

اين آزمايشات شامل: 1- تلاش در جهت كاهش ميكاي موجود در كائولن. 2- جداكردن ناخالصي هاي موجود در كائولن مي باشد. جهت جدا كردن ميكا روشهاي مختلفي تست گرديد كه موثرترين روش استفاده از ريز ترين الك موجود و عبور دادن كائولن از اين توري بود (توريT100) در اين حالت دانه هاي بسيار ريز و ورقه اي و درخشان ميكا به همراه انواع ناخالصي هاي ديگر بر روي توري باقي مي ماند. منحني D.T.A از اين مواد نشانگر از وجود مقادير زيادي مواد آلي در بين ناخالصي ها بود كه خود ميتوانست تا حدودي منشا پينهول باشد اين مسئله با جمع آوري مقدار زيادي از اين  ناخالصي ها (حدود 2 گرم) بوسيله عبوردادن چند كيلو گرم كائولن W.B.B از توري و استفاده از آن در لعاب تائيد گرديد.

علاوه بر آن به منظور تحقيق از اثر مخرب ميكا در لعاب آزمايش ديگري ترتيب داده شد كه نتايج آن در شكل 4 آورده شده است. بايست توجه داشت كه اندازه دانه هاي ميكاي مصرفي در اين آزمايشات در مقايسه با ميكاي جداشده از كائولن W.B.B بزرگتر بود و لذا به شدت در ميزان پينهول تاثير گذاشته بود.

5-        اثر ضخامت لعاب اعمالي بر روي ميزان پينهول:

در اين آزمايش وزن هاي مختلفي از لعاب بر روي چندين بيسكوئيت بر روي خطوط لعاب توليد اعمال گرديد. همانطور كه در شكل 5 آورده شده نشان ميدهد كه كاهش ضخامت لعاب باعث افزايش ميزان پينهول مي گردد.

6-        اثر زمان نگهداري دوغاب:

آزمايشات مربوط به فاكتور فوق در چند مرحله انجام پذيرفت. در مرحله اول اين آزمايشات در خط توليد و با استفاده از يك همزن كنار خط لعاب صورت گرفت ولي بدليل شرايط تاثيرگذار در نتيجه آزمايشات و متاثر شدن ميزان پينهول از عواملي نظير شرايط مختلف پخت در روزهاي متفاوت و استفاده از بيسكوئيت هاي توليدي مربوط به روزهاي مختلف و نيز شرايط باند در طول مدت 9 روز انجام آزمايشات نتيجه گيري مفيدي حاصل نشد.

در سري آزمايشات بعدي بطور دقيق تر جزئيات وضعيت دوغاب و تغيير آن در اثر گذشت زمان بررسي گرديد. براي اين منظور بطور متوالي طي 15 روز تغييرات PH و نيز ميزان يونهاي Ca,Na,K موجود در دوغاب يك لعاب مرجع اندازه گيري و تعيين گرديد. نتايج حاصله به اين نكته اشاره دارد كه ميزان يونهاي  Na,Kبا گذشت زمان تغيير زيادي نمي كند، اما ميزان يون Ca  در دوغاب لعاب با افزايش زمان بيشتر مي شود و در همين راستا PH را نيز تحت تاثير قرار مي دهد. از طرفي يكسري آزمايشات ديگر نشان داد كه با باز بودن درب حوضچه هاي موجود در كنار خطوط لعاب باعث تشديد اين وضعيت شده چرا كه با تبخير آب ميزان نمكهاي موجود در آب افزايش مي يابد.

همانگونه كه در ابتدا گفته شد در برخي از خاكها ي مصرفي كارخانه مقادير زيادي مواد آلي به همراه پيريت مي باشد. براي خروج اينگونه مواد  و همچنين تجزيه و اكسيداسيون پيريت دو عامل مهم يعني زمان و اتمسفر اكسيدي نقش بسيار مهمي را ايفا مي كنند. براي بررسي نقش اين دو فاكتور آزمايشات شماره 8 و 8 انجام گرديد.

7-        بررسي اثر منحني پخت بيسكوئيت در ميزان پينهول لعاب:

در بررسي انجام شده بر روي تاثير شرايط پخت بسكوئيت و لعاب بر ميزان پينهول آزمايشاتي جهت بررسي شرايط پخت بيسكوئيت و اثر آن بر پين هول ترتيب داده شد. به اين منظور منحني پخت، مربوط به كوره هاي تونلي پخت بيسكوئيت خط توليد، طي محاسباتي در كوره الكتريكي قابل برنامه ريزي آزمايشگاه شبيه سازي گرديد. نتايج آزمايشات همانطور كه در شكل 6 مشخص شده است نشان ميدهد كه بيسكوئيتهاي پخته شده در كوره الكتريكي در مقايسه با بيسكوئيت هاي پخته شده در كوره هاي بيسكوئيت خط توليد (بيسكوئيت ها همگي مربوط به توليد يك پرس) با همان منحني پخت، پس از اعمال و پخت لعاب داراي پينهول كمتري بود كه نشان از تاثير شرايط محيطي پخت در خط توليد دارد. علاوه بر آن در آزمايشات بعدي ضمن تغيير منحني پخت عادي در كوره الكتريكي، ميزان زمان توقف بيسكوئيت ها در دو محدوده دمائي (600-400) و  (900-750) درجه سانتيگراد به دو برابر مدت زمان معمولي افزايش داده شد و نتايج نشان داد كه نمونه هاي پخته شده در اين شرايط در مقايسه با نمونه هاي پخته شده در شرايط عادي (هر دو سري در كوره الكتريكي) پس از اعمال لعاب و پخت داراي پينهول كمتري بودند (شكلهاي  6A,6B)اين خود نشان از عدم كارايي مناسب منطقه پيش پخت در كوره توليد مي باشد.

همانگونه كه گفته شد افزايش زمان در منطقه پيش پخت ميتواند فرصت كافي را براي اكسيداسيون مواد آلي و تجزيه پيريت و خروج به موقع گازها فراهم سازد كه اين امر خود در كاهش پينهول نقش مهمي دارد.

 

لطفاً برای بهبود وبلاگ نظرات و پیشنهادات  و سوالات خود را در قسمت نظرهای وبلاگ یا ایمیل اینجانب ارائه دهید. متشکرم

پینهول


پینهول

مقوله پين هول در كاشي سالهاست كه از نقطه نظرات مختلف مورد بحث قرار گرفته و نتايج مفيد و موثري نيز در خصوص ماهيت و نحوه ايجاد آن بخصوص در بخش لعاب بدست آمده است. در اين مقاله بررسي هاي عملي در خصوص عوامل موثر در بروز پينهول از نقطه نظر اثرات بدنه كاشي و نيز شرايط فرايند توليد كاشي مورد بحث قرار گرفته است.
روش تحقيق و نتايج

 

1-       اثر تك خاكها بر روي پين هول لعاب:

براي بررسي اين اثر تعدادي بيسكوئيت 5*10 سانتي متر را با پرس آزمايشگاهي از خاكهاي مصرفي در توليد بدنه و نيز خاكهاي مشابه تهيه گرديد و پس از پخت در كوره بيسكوئيت و اعمال لعاب؛ در كوره لعاب خط توليد پخت گرديد.نتايج نشان ميدهد كه خاكهاي آباده بيشترين تاثير را در پينهول لعاب بعد از پخت دارا مي باشد. لازم به ياداوري مي باشد كه هرچند در خاكهاي آباده نمكهاي محلول از نوع سولفاتها وجود دارد ولي نتايج آزمايشات بعدي نشان ميدهد كه عامل ايجاد پينهول در خاكهاي آباده عمدتاً ناشي از نمكهاي محلول نمي باشد، بلكه وجود مواد آلي در اين گونه خاكها يكي از عوامل موثر در ايجاد پينهول مي باشد. منحني D.T.A اين خاك بيانگر وجود مقدار زيادي مواد آلي مي باشد. از طرفي وجو مقدار زيادي پيريت در اين خاكها در كنار مواد آلي مي تواند نقش موثري را در ايجاد پين هول ايفا نمايد بويژه اگر منحني و اتمسفر پخت بيسكوئيت متناسب با ماهيت اينگونه خاكها نباشد. ولي با وجود اين باي بررسي نقش نمكهاي محلول  در ايجاد پينهول آزمايشات زير صورت گرفت.

2-       جدا كردن نمكهاي نا محلول از خاكهاي مصرفي:

در آزمايشي كه به همين منظور ترتيب داده شد با افزودن مقاديري كربنات باريم بيش از حد معمول(5%) به دوغاب بدنه شرايط رسوب سولفاتها فراهم آورده شد و پس از تهيه بدنه از دوغاب فوق، آن را در كوره پخته و سپس لعاب را بر روي آن اعمال نموده و در نهايت در كوره پخت داده شد. نتايج حاصله تغييرات مشخصي را در ميزان پينهول در مقايسه با نمونه هاي مرجع تهيه شده با همان شرايط (البته بدون استفاده از كربنات باريم ) نشان نداد.

در آزمايشي ديگر با استفاده از يك سمباده نرم سطح چند بيسكوئيت را سايش داده شد و لايه اي از روي آن برداشته شد و پس از تميز كردن سطح بيسكوئيت ها با پارچه هاي خشك و مرطوب، همراه با نمونه هاي مرجع آنها را لعاب داده و در كوره خط لعاب پخت داده شد. كاشي هاي مربوط به نمونه هاي سائيده شده داراي پينهول بيشتر و تا حدودي عميق تر نسبت به پينهول نمونه مرجع بودند كه اين مطلب به باقيماندن مقداري ذرات سائيده شده در روي بيسكوئيت قبل از اعمال لعاب نسبت داده شد ولي با اين حال در نمونه هاي ديگري كه كاملاً تميز و صيقلي شدهبودند نيز اين مشكل مشاهده مي شد.

در آزمايشي ديگر خاكهاي پينهول زا را جهت جداشدن نمكهاي محلول از آنها، ابتدا بطور مجزا در آب شسته شد و پس از جدا كردن آب جمع شده بر روي آنها، جهت تهيه بدنه مورد استفاده قرار گرفتند. اين آزمايش بر روي خاكهاي آباده انجام گرفت. شستشوي خاك همراه با آب فراوان در جارميل آزمايشگاهي صورت پذيرفت. آناليز آب جدا شده پس از شستشو نشان داد كه ميزان يون سديم از 23 به 29 و يون پتاسيم از 3/91 به 7/8 (p.p.m) افزايش يافته است. افزايش يونهاي فوق در آب جدا شده بيانگر وجود مقداري نمك محلول در خاكهاي مصرفي مي باشد. ولي بر اساس بررسي هاي بعمل آمده بر روي سطح لعاب خورده در اين بدنه ها مشخص شد كه تفاوت عمده اي از نقطه نظر ميزان پينهول بين نمونه هاي تهيه گرديده با خاكهاي شستشو داده شده و نمونه مرع نمي باشد لذا اين آزمايشات نشان داد كه نمكهاي محلول در خاكهاي مصرفي در افزايش پينهول نقش عمده اي ندارد.

3-        بررسي اثر كائولن هاي مختلف جهت مصرف در لعاب بر روي پينهول:

جهت بررسي اين مورد كائولن هاي متفاوتي بر روي يك فريت مرجع آزمايش گرديد (با فرمول تركيبي 7% كائولن و 93% فريت اپك 84-21-120 لعابيران) و مطابق شكل 3 كائولن هاي مختلف بر حسب ميزان پينهول منتجه در لعاب، دسته بندي گرديدند.

همانگونه كه در شكل نشان داده شده است كائولن زدليتز كمترين ميزان پينهول را در لعاب ايجاد مي نمايد. براي بررسي علل اين مسئله سعي بر آن شد تا عوامل مولد پينهول در يكي ديگر از كائولن هاي مصرفي كارخانه (W.B.B) مورد بررسي قرار گيرد تا از اين طريق بتوان به علت تفاوت نقش كائولن ها در ايجاد پينهول پي برد. با بررسي هاي اوليه مشخص گرديد كه تركيب W.B.B با زدليتز بخصوص از نقطه نظر كانيهاي موجود و ناخالصي ها متفاوت است. بخصوص درصد ميكاي كائولن W.B.B بيشتر مي باشد. براي بررسي بيشتر آزمايشات زير صورت گرفت:

4-        بررسي اثر ناخالصي هاي كائولن W.B.B:

جهت بررسي دقيق تر كائولن W.B.B (كائولن مصرفي كارخانه) آزمايشاتي بر روي اين كائولن انجام گرفت.

اين آزمايشات شامل: 1- تلاش در جهت كاهش ميكاي موجود در كائولن. 2- جداكردن ناخالصي هاي موجود در كائولن مي باشد. جهت جدا كردن ميكا روشهاي مختلفي تست گرديد كه موثرترين روش استفاده از ريز ترين الك موجود و عبور دادن كائولن از اين توري بود (توريT100) در اين حالت دانه هاي بسيار ريز و ورقه اي و درخشان ميكا به همراه انواع ناخالصي هاي ديگر بر روي توري باقي مي ماند. منحني D.T.A از اين مواد نشانگر از وجود مقادير زيادي مواد آلي در بين ناخالصي ها بود كه خود ميتوانست تا حدودي منشا پينهول باشد اين مسئله با جمع آوري مقدار زيادي از اين  ناخالصي ها (حدود 2 گرم) بوسيله عبوردادن چند كيلو گرم كائولن W.B.B از توري و استفاده از آن در لعاب تائيد گرديد.

علاوه بر آن به منظور تحقيق از اثر مخرب ميكا در لعاب آزمايش ديگري ترتيب داده شد كه نتايج آن در شكل 4 آورده شده است. بايست توجه داشت كه اندازه دانه هاي ميكاي مصرفي در اين آزمايشات در مقايسه با ميكاي جداشده از كائولن W.B.B بزرگتر بود و لذا به شدت در ميزان پينهول تاثير گذاشته بود.

5-        اثر ضخامت لعاب اعمالي بر روي ميزان پينهول:

در اين آزمايش وزن هاي مختلفي از لعاب بر روي چندين بيسكوئيت بر روي خطوط لعاب توليد اعمال گرديد. همانطور كه در شكل 5 آورده شده نشان ميدهد كه كاهش ضخامت لعاب باعث افزايش ميزان پينهول مي گردد.

6-        اثر زمان نگهداري دوغاب:

آزمايشات مربوط به فاكتور فوق در چند مرحله انجام پذيرفت. در مرحله اول اين آزمايشات در خط توليد و با استفاده از يك همزن كنار خط لعاب صورت گرفت ولي بدليل شرايط تاثيرگذار در نتيجه آزمايشات و متاثر شدن ميزان پينهول از عواملي نظير شرايط مختلف پخت در روزهاي متفاوت و استفاده از بيسكوئيت هاي توليدي مربوط به روزهاي مختلف و نيز شرايط باند در طول مدت 9 روز انجام آزمايشات نتيجه گيري مفيدي حاصل نشد.

در سري آزمايشات بعدي بطور دقيق تر جزئيات وضعيت دوغاب و تغيير آن در اثر گذشت زمان بررسي گرديد. براي اين منظور بطور متوالي طي 15 روز تغييرات PH و نيز ميزان يونهاي Ca,Na,K موجود در دوغاب يك لعاب مرجع اندازه گيري و تعيين گرديد. نتايج حاصله به اين نكته اشاره دارد كه ميزان يونهاي  Na,Kبا گذشت زمان تغيير زيادي نمي كند، اما ميزان يون Ca  در دوغاب لعاب با افزايش زمان بيشتر مي شود و در همين راستا PH را نيز تحت تاثير قرار مي دهد. از طرفي يكسري آزمايشات ديگر نشان داد كه با باز بودن درب حوضچه هاي موجود در كنار خطوط لعاب باعث تشديد اين وضعيت شده چرا كه با تبخير آب ميزان نمكهاي موجود در آب افزايش مي يابد.

همانگونه كه در ابتدا گفته شد در برخي از خاكها ي مصرفي كارخانه مقادير زيادي مواد آلي به همراه پيريت مي باشد. براي خروج اينگونه مواد  و همچنين تجزيه و اكسيداسيون پيريت دو عامل مهم يعني زمان و اتمسفر اكسيدي نقش بسيار مهمي را ايفا مي كنند. براي بررسي نقش اين دو فاكتور آزمايشات شماره 8 و 8 انجام گرديد.

7-        بررسي اثر منحني پخت بيسكوئيت در ميزان پينهول لعاب:

در بررسي انجام شده بر روي تاثير شرايط پخت بسكوئيت و لعاب بر ميزان پينهول آزمايشاتي جهت بررسي شرايط پخت بيسكوئيت و اثر آن بر پين هول ترتيب داده شد. به اين منظور منحني پخت، مربوط به كوره هاي تونلي پخت بيسكوئيت خط توليد، طي محاسباتي در كوره الكتريكي قابل برنامه ريزي آزمايشگاه شبيه سازي گرديد. نتايج آزمايشات همانطور كه در شكل 6 مشخص شده است نشان ميدهد كه بيسكوئيتهاي پخته شده در كوره الكتريكي در مقايسه با بيسكوئيت هاي پخته شده در كوره هاي بيسكوئيت خط توليد (بيسكوئيت ها همگي مربوط به توليد يك پرس) با همان منحني پخت، پس از اعمال و پخت لعاب داراي پينهول كمتري بود كه نشان از تاثير شرايط محيطي پخت در خط توليد دارد. علاوه بر آن در آزمايشات بعدي ضمن تغيير منحني پخت عادي در كوره الكتريكي، ميزان زمان توقف بيسكوئيت ها در دو محدوده دمائي (600-400) و  (900-750) درجه سانتيگراد به دو برابر مدت زمان معمولي افزايش داده شد و نتايج نشان داد كه نمونه هاي پخته شده در اين شرايط در مقايسه با نمونه هاي پخته شده در شرايط عادي (هر دو سري در كوره الكتريكي) پس از اعمال لعاب و پخت داراي پينهول كمتري بودند (شكلهاي  6A,6B)اين خود نشان از عدم كارايي مناسب منطقه پيش پخت در كوره توليد مي باشد.

همانگونه كه گفته شد افزايش زمان در منطقه پيش پخت ميتواند فرصت كافي را براي اكسيداسيون مواد آلي و تجزيه پيريت و خروج به موقع گازها فراهم سازد كه اين امر خود در كاهش پينهول نقش مهمي دارد.

 

لطفاً برای بهبود وبلاگ نظرات و پیشنهادات  و سوالات خود را در قسمت نظرهای وبلاگ یا ایمیل اینجانب ارائه دهید. متشکرم

کوره

کوره

كوره را به 3قسمت تقيم ميكنند:بخش گرمكن- بخش جهنم-بخش سردكن

گرمكن جايي است كه حرارت را كم كم زياد ميكنند.

بخش جهنم حرارت بسيار بالاست كه كاشي به حال مذاب در ميايد.

بخش سردكن حرارت را كم كرده .

در بخش جهنم(كلا در كوره)يك سري مشعل بالاست براي پخت لعاب و يك سري پايين براي پخت بدنه. اگرحرارت مشعلهاي بالايي زياد باشدلعاب ميجوشدولبه هاي كاشي به طرف بالا كشيده ميشودو قوس ايجاد ميشود.بالا بودن دماي مشعلهاي زيري منجر به پايين كشيدن لبه ها شده وسايز كاشي نيز كوچك ميشود.زبر بودن سطح كاشي در اثر پايين بودن دماي مشعل بالايي است.چون كاشي خام است.

شيرينكيج:كاشي كه از پرس يرون ميايد سايزش بيشتر از سايزي است كه از كوره بيرون ميايد مثلا در كاشي 33×33سايز خروجي از پرس 350است وقتي از كوره بيرون ميايد 333است.

براي اينكه ببينيم كاشي خارج شده از كوره قوس دارد يا نه از كوليس استفاده مي كنيم.آنرا روي كاشي گذاشته و به طور مستقيم نگاه مي كنيم اگر قوس داشته باشد مشخص ميكند.
از عيوب ديگر كاشي پايين بودن گوشه هاي كاشي است كه دليل آن پايين بودن دماي مشعل هاي پايين است

علت اينكه در مرحله پيش گرم كن مقداري از مشعلها در زير قرار دارد چيست؟

اگر مشعلها بالا باشد لعاب ذوب شده و تخلخلهاي بدنه بسته ميشود و گازها نمي توانند خارج شوند و عيب ماه گرفتگي(بلاك هول) بوجود مي آيد ولي در صورتي در زير قرار گيرد اين عيوب از بين ميرود.

خاكهاي سولفوردار كه معمولا مربوط به معادن گچ دار هستند ، چنانچه در مواد اوليه موجود باشند گازهاي سولفوري ناشي از تجزيه آنها در داخل كوره به تدريج سبب ريزش نسوزهاي كوره شده و به تدريج نرخ خرابي محصول و نسوز بالا مي رود و سبب ايجاد pinhole در محصول نيز خواهد كرد.

 با تغيير نسبت اكسيژن به سوخت، فشار نسبي كوره نيز تغيير مي كندو اصولا هر چقدر مكش در كوره بيشتر باشد حبابها را بيشتر به سمت بيرون مي كشد و به اين ترتيب pinhole ها كمتر و در نتيجه شاهد عيوب كمتري خواهيم بود.

 خاكهاي سولفوردار كه معمولا مربوط به معادن گچ دار هستند ، چنانچه در مواد اوليه موجود باشند گازهاي سولفوري ناشي از تجزيه آنها در داخل كوره به تدريج سبب ريزش نسوزهاي كوره شده و به تدريج نرخ خرابي محصول و نسوز بالا مي رود و سبب ايجاد pinhole در محصول نيز خواهد كرد.

. هر چه سولفور مصرفي كمتر در نتيجه عمر مفيد كوره كمتر خواهد بود زيرا در اثر تجزيه سولفور خوردگي نسوزهاي مصرفي در كوره را شاهد خواهيم بود. در كوره رولري دما در اگزوز پائين و يك افت دمايي داريم . به اين دليل احتمال كندانس شدن بخارات بيشتر و روي نسوزها نشسته و در آن موضع، ايجاد خوردگي مي كند. بيشتر در دهانه اگزوزها شاهد ريزش خواهيم بود و گرد سفيد رنگي كه نمكهاي سولفاتي است ريزش مي كند.

پس از گذشت مدتي از عمر كوره از سقف كوره قطرات سياه رنگي مي چكد كه بسته به غلظت سولفات، خوردگي آجرهاي كوره كمتر يا بيشتر خواهد بود. پس دومين اثر مخرب سولفاتها خوردگي نسوزهاي كوره است

پخت بيسكوييت

پخت بيسكوييت

فراورده هايي كه بايد بدون لعاب باشند فقط براي يكبار وارد كوره ميشوند ولي انواع لعابدار دو بار پخت ميشوند در پخت اول بدنه پخته ميشود .محصول اين مرحله بيسكويت نام دارد.پخت دوم پس از لعابكاري انجام وهدف ذوب و تثبيت لعاب در روي بدنه است كه پخت لعاب نام دارد.درجه پخت بيسكوييت از پخت لعاب كمتر است در حقيقت پخت نهايي بدنه و لعاب باهم انجام ميشود به همين دليل اتصال بين لايه لعاب و بدنه بسيار محكمتر و كاملتر است.از طرف ديگر به دليل وجود تخلخل زياد در بدنه در حالت بيسكوييت عمل لعاب زدن يا به عبارت دقيقتر عمل جذب لعاب توسط بيسكوييت راحتر صورت ميگيرد.

تهيه منو پروسا


تهيه منو پروسا

براي تهيه يك بدنه منوپروساي خوب نكاتي كه رعايت می کنیم كه عبارتند از:

- تركيب بدنه حتي الامكان بايد داراي كربنات حداقل باشد.

- تركيب لعاب، دماي Seeling

- رژيم پخت

- اختلاف دما بين زير و روي رولر

- اعمال انگوب

- اساسي ترين نكته اي كه در انتخاب رژيم پخت مناسب بايد لحاظ شود، دماي تجزيه كربناتها حدود 940-930 درجه است و بايستي حتما مدتي بدنه را دراين دما نگه داريم اين دما براي كربنات منيزيم هم مناسب است چرا كه در 870درجه تجزيه مي شود لذا 4/1 كل سيكل پخت را به اين دما اختصاص مي دهند تا تكميل تجزيه كربنات كلسيم انجام پزيرد.

- نقطه نرم شوندگي اغلب لعابها، با دماي پخت حدود 1100درجه، نزديكي 550-500 است اما لعابهاي منوپروسا طوري طراحي شده اند كه نقطه نرم شوندگي آنها در حدود 700درجه است.

- هر چه نقطه نرم شوندگي لعاب بالاتر باشد، دماي Seeling لعاب بالاتر خواهد بود.

رژيم پخت:

- دماي ورودي كوره حدود 300درجه است.

- از دماي 600-300درجه ظرف مدت 7دقيقه دما افزايش مي يابد.

- از دماي 600 تا 930درجه ظرف مدت 2 دقيقه افزايش مي يابد.

- در دماي 1100درجه بين 5-3 دقيقه آنرا نگه مي دارند.

- از دماي 1100الي 850درجه تقليل ناگهاني دما را ظرف مدت 5دقيقه جهت پيشگيري از مات شدت سطح لعاب كوره انجام مي شود.

- از دماي 850درجه تا خروجي كوره ظرف مدت 10 دقيقه دما را كاهش مي دهند. كل اين سيكل 45 دقيقه است كه s.t آن 5 دقيقه و S.T آن 1100درجه است.

گفتني است دماي هنگام خارج شدن از كوره حدود 300 درجه است. 11 دقيقه از 45 دقيقه در دماي 930درجه است.

از دماي 400الي 900 درجه دما را سريعاً افرايش مي دهيم. آيا استحاله هاي پلي مرفيك سيليس سبب بروز مشكل نخواهد شد؟

 

در بدنه هاي منوپروسا كوارتز زيادي وارد نمي كنيم همچنين چون بدنه ها متخلخل هستند شوك پذيري بدنه افزايش لذا استحاله هاي كوارتز كمتر موثر خواهد بود.

اختلاف دما زير و روي رولر

در مرحله پيش پخت قبل از رسيدن به جهنم، دماي زير رولرها را بالاتر از روي رولرها انتخاب مي كنند. اين اختلاف بسيار بيش از اختلاف دمايي است كه در كاشي هاي كف انتخاب مي شود(در سيستنم تك پخت سريع) و گاهاً به 200درجه مي رسد.

مي دانيد كه انتقال حرارت در دماهاي بالا وبخصوص دماهاي بالاتر از 800 درجه بيشتر از طريق تشعشع صورت مي گيرد. وقتي دماي زير رولرها را بالاتر انتخاب مي كنيم حرارت بيشتري زير كاشي تشعشع مي كند در نتيجه با توجه به كمبود حرارت روي كاشي كه لعابدار است، دماي بدنه بيشتر از دماي لعاب خواهد بود لذا اين تدبير منجر به آن مي شود كه قبل از داغتر شدن لعاب و ذوب شدن آن تجزيه اجزاء فرار بدنه تشكيل شود.

اعمال انگوب:

اصولاً به سه دليل عمده انگوب اعمال مي شود

1- پوشاندن رنگ بدنه

2- تطابق بيشتر ضريب انبساط حرارتي بدنه و لعاب

3- كاهش احتمال بروز عيبpinhole   

منظور ما در اينجا از اعمال انگوب، كمتر موارد 1 و 2 مي باشد و دليل عمده اعمال انگوب كاهش احتمال بروز عيبpinhole  است.

تذكر:

هر چه وزن ليتر دوغاب بالاتر باشد يعني ميزان درصد آب دوغاب كمتر انتخاب شود ميزان تخلخلهاي موجود در قشر لعاب پس از خشك شدن كمتر خواهد بود.

تخلخلهاي موجود در قشر لعاب بعداً تبديل به حباب داخل قشر مذاب لعاب در حين پخت خواهد شد و بعداً اين حبابها مي توانند بهpinhole  تبديل شوند.

در بدنه هاي منوپروسا اولين مشكل بروز عيبpinhole  است. هنگاميكه وزن ليتر دوغاب بالاتر باشد و ويسكوزيته لعاب افزايش يافته و دوغاب تيكسوتروپ مي شود- نحوه اعمال دوغاب لعاب- چون خواهاهن يك لعاب كاملاً صاف هستيم روش اعمال آن بل ديسك نيست بلكه شيوه اي مي باشد كه اگر ويسكوزيته زياد باشد لعاب مواج مي شود لذا بايستي رس را كم و T.P.P به‌آن بيفزائيم.

كم كردن ميزان رس از 8درصد به 5درصد و ميزان T.P.P حدودا%5/0 اضافه مي شود. با افزايش وزن ليتر احتمال دارد ضخامت لعاب بر بدنه ضخيم و كلفت شود براي جلوگيري از اين امرسرعت نوار نقاله را زياد مي كنيم

منحني پخت

منحني پخت

منحني پخت رابطة بين زمان و تغييرات درجه حرارت در هنگام پخت مي باشد عوامل مؤثر در آن:

1-خروج آب خلل و فرج و آب پيوندي

2-سوختن و خروج مواد آلي و كربن موجود در بدنه

3-تجزيه و سوختن و خروج نا خالصي هاي گوگرد

4-اكسيداسيون و احياي اجزاي بدنه

5-تغييرات آرام حجمي

6-تبديلات ناگهاني و شديد حجمي ناشي از تبديلات پلي مورفيك

7-حداكثر درجه حرارت مناسب براي پخت بدنه

8-ابعاد ذرات

9- نفوذ پذيري و امكان عبور گازها از بدنه

منحني پخت رابطة بين زمان و تغييرات درجه حرارت در هنگام پخت مي باشد عوامل مؤثر در آن:

1-خروج آب خلل و فرج و آب پيوندي

2-سوختن و خروج مواد آلي و كربن موجود در بدنه

3-تجزيه و سوختن و خروج نا خالصي هاي گوگرد

4-اكسيداسيون و احياي اجزاي بدنه

5-تغييرات آرام حجمي

6-تبديلات ناگهاني و شديد حجمي ناشي از تبديلات پلي مورفيك

7-حداكثر درجه حرارت مناسب براي پخت بدنه

8-ابعاد ذرات

9- نفوذ پذيري و امكان عبور گازها از بدنه

لعابزنی نمکی


لعابزنی نمکی

لعابزنی نمکی یک تکنیک تک پخت است که به موجب آن در دمای پخت رس، نمک معمولی به داخل محفظه کوره وارد میشود. سدیم با سیلیسی که روی سطح فرآورده موجود است، ترکیب می شود و لعابی را به وجـود می آورد. بسته به رس استـفاده شده، یک اثر کم و بـیش قوی پوست پرتـفالی (orange peel) ایحاد می گردد. این تکنیک در قرن پانزده تا شانزدهم در آلمان توسعه یافت و استون ور Rhineland یا Rhenishبا این روش ساخته شد. این لغت به سوختی که برای روشن کردن کوره استفاده می شود، اشاره نمی کند بلکه به وارد کردن نمک در انتهای پخت که اثری با نام " پوسته نمکی" (salt peel) را به دست می دهد، اشاره دارد.

 معمولا در کوره های بزرگ گازسوز یا چوب سوز انجام و نمک به صورت گرد در انتهای پخت به داخل اتاقک کوره وارد می شود. در نتیجه گرمای زیاد، نمک فرار می شود، سدیم با اکسید آلومینیوم و اکسید سیلیسیم در رس ترکیب می گردد و لعابی را روی هر سطح در معرض کار پدید می آورد. در اغلب موارد یک اثر « پوست پرتقالی» نوعی پدیدار می شود. از آنجا که نمک لعاب ایجاد می کند، پیش- اعمال (pre-application) لعاب ها ضرورت ندارد، اگرچه ممکن است تزئین زیر لعابی برای رسیدن به یک اثر قابل توجه انجام گیرد. باید فضای کافی بین اجزای منفرد در نظر گرفته شود به طوری که بخار نمک بتواند آزادانه گردش کند و تا آنجا که میسر است به قطعه کاری برسد.
+ ایجاد گشته در چهارشنبه دهم آذر 1389ساعت 22:10  بوسیله محمد دهقانی  |  یک دوستی گفته است
من محمد دهقانی با بیش از 6 سال کار در زمینه گرانیت و کاشی سعی دارم در این وبلاگ اطلاعات مورد نیاز برای انواع گروههای مرتبط با محصولات سرامیکی اعم از دانشجویان, مصرف کنندگان و کارکنان این بخش از صنعت را به صورت علمی و فنی و تجربی ارائه دهم.

روند توليد کاشي ديواري و کف


روند توليد کاشي ديواري و کف

در بدو توليد، مخلوط خاکها طبق فرمولاسيون ارائه شده از قسمت آزمايشگاه، آماده مي شود و اين مخلوط در سيلوها ذخيره مي شود. سپس عمل سايش تر يا خشک بر روي آنها انجام مي گيرد که عمدتاً سايش تر مي باشد ولي گاهي سايش خشک نيز مشاهده مي شود مانند کاشي هاي قرمز کف. عمل بالميلينگ آنقدر ادامه مي يابد تا آنجا که بعد از پايان کار چنانچه دوغاب را از الک 63 ميکرون عبور دهند حدوداً 8-5% ذرات دوغاب (نسبت به حالت خشک) روي الک باقي بماند.

بعد از سايش تر بسته به روش فرم دهي (پرس يا اکسترودر) مراحل مختلفي طي ميشود. اگر پرس داشته باشيم دوغاب اسپري دراير مي شود که با اين عمل دوغاب به ذرات ريزي تبديل مي شود. رطوبت گرانول ها بايد در حدود 7% باشد و در مرحله پرس مي تواند 6-4% باشد.

تمام کارخانجات ايران از سيستم پرس استفاده مي کنند. اگر سيستم به صورت اکسترودر باشد بعد از آسياب تر، عمل فيلتر پرس انجام مي گيرد و دوغاب به صورت کيک در مي ايد و به قسمت اکسترودر منتقل مي شود.

بعد از پرس خشک کن قرار دارد. اين عمل به دو صورت مي تواند انجام گيرد: خشک کن تونلي و خشک کن عمودي سريع. خشک کن تونلي در سيستم هاي دو پخت و سايز هاي کوچک مصرف مي شود و خشک کن عمودي نيز مي تواند در مورد سيستم هاي دو پخت استفاده گردد ولي عمدتاً در مورد تک پخت و سايزهاي بزرگ به کار مي رود و قطعات به صورت منفرد وارد و خارج مي شود.

خشک شدن در نوع تونلي 14 تا 48 ساعت و در نوع عمودي 45 تا 60 دقيقه طول مي کشد. دماي کاري در نوع تونلي 115-110 درجه و در نوع عمودي 220-180 درجه ميباشد.

بعد از اين مرحله اگر کوره دو پخت باشد پخت بيسکوئيت مطرح مي شود و اگر سيستم تک پخت باشد کاشي مستقيماً وارد خط لعاب مي شود. در مورد اول بعد از پخت ، آزمايش تقه صورت مي گيرد و کاشي هاي سالم جدا شده و لعاب مي زنند. اگر کاشي دکوردار و گل دار باشد بعد از مرحله لعاب زني عمليات چسب زني انجام مي شود و سپس عمل دکورزني (سيستم سيلک اسکرين يا اسپري رنگ) انجام مي گيرد و بعد از اعمال دکور، مرحله پخت لعاب قرار دارند.

در مورد کاشي هاي تک پخت مراحل اعمال چسب و دکور را نداريم زيرا در اين مرحله کاشي خام بوده و استحکام ندارد. اين چنين کاشي ها اگر دکور داشته باشد حتماً به صورت اسپري بوده است. و بعد از خشک شدن، لعاب خورده و پخته مي شود.

لعاب کاشي ها از کائولن، فريت، آب، رنگ و چسب C.M.C تشکيل شده است.

از کائولن به عنوان ماده تعليق کننده استفاده مي شود. فريت جزء اصلي تشکيل دهنده لعاب مي باشد که چيزي حدود 95-90% از لعاب را تشکيل مي دهد. اين مي تواند فرمهاي مختلفي (اپک و ترانسپارنت) داشته باشد. فريت از مواد مختلفي تشکيل شده است مثلاً از اسيد بوريک، بوراکس، فلدسپاتها، کائولن، اکسيد روي و کربنات کلسيم، کربنات سديم و نيترات يا کربنات پتاسيم(که البته امروزه مورد مصرف نمي باشد).

اگر لعاب اپک باشد زيرکن (سيليکات زيرکونيم) نيز دارد و اگر لعاب سربي باشد سرنج نيز دارد.

چسب C.M.C کار کائولن را به شکل مناسبي انجام مي دهد و اتصال و باند مناسب بين بدنه و لعاب را در طي خط توليد تامين مي کند و از طرفي روانساز مي باشد. مي دانيم که هر چه آب لعاب کمتر باشد محصول بهتري خواهيم داشت.

در مرحله دکورزني اگر سيستم سيلک اسکرين باشد فريت (اپک يا ترانسپارت) حلال (معمولاً از روغن اتيلن گليکول استفاده مي شود و از آب استفاده نمي شود و اين حلال عامل تعليق کننده است.) و رنگ را مخلوط کرده و روي لعاب خام کاشي اعمال مي کنند. بعد از مرحله پخت لعاب، مرحله درجه بندي مي باشد.

اين نکته ضروري است گفته شود که چون لعاب روي بدنه خام اعمال مي شود و ميدانيم که جذب آب بدنه خام زياد است پس در پخت سريع و در حين پخت ابتدا کاشي انحنا پيدا مي کند ولي اين انحناء بعداً جبران مي شود. به همين علت کاشي ديواري پخت سريع نمي شود زيرا ضخامتش کم است.

لطفاً نظر و پيشنهاد خود را در مورد اين مطلب فراموش نکنيد. متشکرم