کاشی سرامیکی پوشش داده شده با واکس تصفیه شده با فناوری نانو

کاشی سرامیکی پوشش داده شده با واکس تصفیه شده با فناوری نانو

 

محصول جدید، 5 آگوست 2008

چین - شرکت بازرگانی فوشان دلفین یک کاشی سرامیکی دبل شارژ را ارائه نموده است که با واکس توسعه داده شده با استفاده از فناوری نانو پوشش داده شده است و برای دیوارها و کفهای محیطهای داخلی و خارجی مناسب است. این فرآورده آمیخته ای از فلداسپار، کوارتز و کائولن است و در برابر سایش، خمش و دمای بالا مقاوم است. اندازه های 40×40، 60×60 و 80×80 در رنگهای زرد و خاکستری روشن، عاجی، بژ، قهوه ای تیره و قرمز موجودند.

 

* توضیح: مشکل واکس های اعمال شده بر روی کاشی های پرسلانی، مقاومت اندک آنها در برابر سایش و دماهای بالاست. اعمال واکس به منظور افزایش مقاومت سطح کاشی در برابر عوامل لکه گذار و در واقع افزایش مقاومت در برابر لکه پذیری (stainability) می باشد.

 

* معرفی کوتاه شرکت بازرگانی فوشان دلفین: در سال 2003 و با مسئولیت محدود تاسیس شد و کاشی های شیشه ای، سینک های حمام و چهار دیواری دوش را نیز تولید می کند.

 

New Product

Ceramic tile coated with nanotechnology-refined wax

 

 

  
Ceramic tile

China (mainland) – Foshan Dolphin Trading Co. Ltd has released a double-loaded ceramic tile coated with wax developed using nanotechnology.

Suitable for indoor and outdoor walls and floors, the product comes in a blend of feldspar, quartz and kaolin. It is resistant to abrasion, bending and extreme temperature. Sizes 40x40, 60x60 and 80x80cm are available in light yellow and gray, ivory, beige, dark brown and red.

Price and payment terms are provided on inquiry. The minimum order is one TEU, deliverable within 20 days.

Foshan Dolphin was established in 2003. It also offers glass tiles, bathroom sinks and shower enclosures. OEM orders are accepted.

The company’s main export markets are the US, Europe and South Korea. Major clients include Home Depot and Lowe’s.

کاشی سرامیکی پوشش داده شده با واکس تصفیه شده با فناوری نانو

کاشی سرامیکی پوشش داده شده با واکس تصفیه شده با فناوری نانو

 

محصول جدید، 5 آگوست 2008

چین - شرکت بازرگانی فوشان دلفین یک کاشی سرامیکی دبل شارژ را ارائه نموده است که با واکس توسعه داده شده با استفاده از فناوری نانو پوشش داده شده است و برای دیوارها و کفهای محیطهای داخلی و خارجی مناسب است. این فرآورده آمیخته ای از فلداسپار، کوارتز و کائولن است و در برابر سایش، خمش و دمای بالا مقاوم است. اندازه های 40×40، 60×60 و 80×80 در رنگهای زرد و خاکستری روشن، عاجی، بژ، قهوه ای تیره و قرمز موجودند.

 

* توضیح: مشکل واکس های اعمال شده بر روی کاشی های پرسلانی، مقاومت اندک آنها در برابر سایش و دماهای بالاست. اعمال واکس به منظور افزایش مقاومت سطح کاشی در برابر عوامل لکه گذار و در واقع افزایش مقاومت در برابر لکه پذیری (stainability) می باشد.

 

* معرفی کوتاه شرکت بازرگانی فوشان دلفین: در سال 2003 و با مسئولیت محدود تاسیس شد و کاشی های شیشه ای، سینک های حمام و چهار دیواری دوش را نیز تولید می کند.

 

New Product

Ceramic tile coated with nanotechnology-refined wax

 

 

  
Ceramic tile

China (mainland) – Foshan Dolphin Trading Co. Ltd has released a double-loaded ceramic tile coated with wax developed using nanotechnology.

Suitable for indoor and outdoor walls and floors, the product comes in a blend of feldspar, quartz and kaolin. It is resistant to abrasion, bending and extreme temperature. Sizes 40x40, 60x60 and 80x80cm are available in light yellow and gray, ivory, beige, dark brown and red.

Price and payment terms are provided on inquiry. The minimum order is one TEU, deliverable within 20 days.

Foshan Dolphin was established in 2003. It also offers glass tiles, bathroom sinks and shower enclosures. OEM orders are accepted.

The company’s main export markets are the US, Europe and South Korea. Major clients include Home Depot and Lowe’s.

کاشی سرامیکی پوشش داده شده با واکس تصفیه شده با فناوری نانو

کاشی سرامیکی پوشش داده شده با واکس تصفیه شده با فناوری نانو

 

محصول جدید، 5 آگوست 2008

چین - شرکت بازرگانی فوشان دلفین یک کاشی سرامیکی دبل شارژ را ارائه نموده است که با واکس توسعه داده شده با استفاده از فناوری نانو پوشش داده شده است و برای دیوارها و کفهای محیطهای داخلی و خارجی مناسب است. این فرآورده آمیخته ای از فلداسپار، کوارتز و کائولن است و در برابر سایش، خمش و دمای بالا مقاوم است. اندازه های 40×40، 60×60 و 80×80 در رنگهای زرد و خاکستری روشن، عاجی، بژ، قهوه ای تیره و قرمز موجودند.

 

* توضیح: مشکل واکس های اعمال شده بر روی کاشی های پرسلانی، مقاومت اندک آنها در برابر سایش و دماهای بالاست. اعمال واکس به منظور افزایش مقاومت سطح کاشی در برابر عوامل لکه گذار و در واقع افزایش مقاومت در برابر لکه پذیری (stainability) می باشد.

 

* معرفی کوتاه شرکت بازرگانی فوشان دلفین: در سال 2003 و با مسئولیت محدود تاسیس شد و کاشی های شیشه ای، سینک های حمام و چهار دیواری دوش را نیز تولید می کند.

 

New Product

Ceramic tile coated with nanotechnology-refined wax

 

 

  
Ceramic tile

China (mainland) – Foshan Dolphin Trading Co. Ltd has released a double-loaded ceramic tile coated with wax developed using nanotechnology.

Suitable for indoor and outdoor walls and floors, the product comes in a blend of feldspar, quartz and kaolin. It is resistant to abrasion, bending and extreme temperature. Sizes 40x40, 60x60 and 80x80cm are available in light yellow and gray, ivory, beige, dark brown and red.

Price and payment terms are provided on inquiry. The minimum order is one TEU, deliverable within 20 days.

Foshan Dolphin was established in 2003. It also offers glass tiles, bathroom sinks and shower enclosures. OEM orders are accepted.

The company’s main export markets are the US, Europe and South Korea. Major clients include Home Depot and Lowe’s.

پیزوالکتریسیته

گزارش فنی اقتصادی

پیزوالکتریسیته توسط پیروژاک کوری در سال ۱۸۹۲ کشف گردید و از واژه یونانی Piezin به معنی “فشار” مشتق می شود. اعمال فشار به برخی کریستال ها مانند کوارتز یا برخی سرامیک ها الکتریسیته تولید می کند. فشار یا تنش مکانیکی وارد شده به برخی کریستال ها باعث جابه جایی دو قطبی های ایجاد شده و پدید آمدن میدان الکتریکی می شود. آرایش یون های مثبت و منفی، تعیین کننده ایجاد یا عدم ایجاد اثر پیزوالکتریسیته است. به همین دلیل اثر پیزوالکتریسیته یا ایجاد جریان الکتریسیته القایی توسط وارد کردن فشار، در مواد کریستالی ا?نیزوتروپ رخ می دهد؛ یعنی در آن دسته از کریستالهایی که مرکز تقارن ندارند. زیرا در کریستال های متقارن هیچ ترکیبی از تنش های یکنواخت نمی تواند سبب جدا شدن بارهای الکتریکی شود.

اگر یک ماده به عنوان مثال یک سرامیک، پیزوالکتریک باشد، وقتی تحت تاثیر فشار قرار می گیرد در سطح آن بار الکتریکی تولید می شود؛ یا وقتی در میدان الکتریکی قرار می گیرد تغییر شکل مکانیکی می یابد. میزان بار الکتریکی یا تغییر شکل مکانیکی به ترکیب ماده بستگی دارد. در ساختمان این سرامیک ها موادی نظیر: اکسید سرب، تیتانیا، زیرکونیا و غیره وجود دارند که بسته به نوع کاربرد این مواد با نسبت های مختلف با هم مخلوط می شوند. با تغییر ترکیب و ابعاد قطعات می توان پیزوسرامیک ها را برای کاربردهای مختلف طراحی کرد.

کاربردها

موادی که فشار را به انرژی الکتریکی و انرژی الکتریکی را به انرژی حرکتی تبدیل می کنند در موارد مختلفی از جمله در مبدل های پیزوالکتریک استفاده  می شوند. حسگرهای (Sensor) کوچک، کم خرج، حساس و کارآمد با رشد قابل توجهی امروزه در صنعت خودرو اهمیت یافته اند. مدل های جدید خودرو بین ۱۸ تا ۳۰ سنسور دارند که شامل سنسورهای فشار برای کنترل میزان فشار وارده به صندلی ها، سنسورهای دما برای کنترل میزان گرما و شرایط جوی، سنسورهای جریان برای ورودی هوای خودرو و سنسورهای شتاب برای سیستم ضد قفل ترمزی(ABS) می باشند. در صنایع پیشرفته نیز به طور وسیعی از این سنسورها استفاده می شود؛ مثلاً صنایع نفت، غذایی و آشامیدنی و دارویی همگی از این سنسورها برای کنترل سطح جریان سیال (flow and level monitoring) استفاده می کنند. سنسور های جریان سیال و سطح و مبد ل­های دوپلر، تخلیه اتوماتیک مخازن نفت و خطوط لوله را کنترل می کنند.

 

صنایع دیگر از سنسورها برای تست های غیر مخرب استفاده می کنند؛ مانند تست های غیر مخرب تیر های فولادی، خطوط راه آهن و بدنه هواپیما. در بخش مراقبت های پزشکی نیز از پیزوسرامیک ها در مبدل تصویرگرهای تشخیصی و مونیتور های fetal heart استفاده می شود که هزینه پایین و ایمنی بالا نشان کارایی این فراورده است. کاربرد های دیگر، شامل تفنگ­های لیزری برای درمان آب مروارید چشم، چاقوهای کوچک جراحی و کالبدشکافی، مته ها و پاک کننده‌های دندانی، پمپ­های IV و پمپ های قلب می شود. مبدل های کوچک که در مجاری خون جهت ثبت تغییرات متناوب ضربان قلب بیمار قرار داده می شوند نیز از سنسور های پیزوالکتریک ساخته می شوند.

 

تولیدکنندگان فراورده های مصرفی نیز از استفاده کنندگان سنسورها هستند. در ماشین های لباسشویی از سه سنسور برای کنترل میزان بار و میزان سطح آب و کنترل چرخش استفاده می شود. سنسور های پیروالکتریکی (تولید بار الکتریکی در سطح یک بلور در اثر گرما را پیروالکتریسیته گویند که تمامی مواد پیروالکتریک، پیزوالکتریک نیز هستند) در فرهای مایکروویو شرایط غذا را کنترل می کنند و در یخچال ها از سنسورهای برفک استفاده می شود. به علاوه از آنها در ترانسفورماتورهای اولتراسونیک در مرطوب کننده ها، اتمایزرها، فندک های اجاق گاز، زنگ خطر آژیرهای خطر، دستگاه ناقل صدا در گیتارهای اکوستیک و ضبط صوت های دارای دیسک فشرده نیز استفاده می شود.

یک استفاده مهم سرامیک پیزوالکتریک در ایجاد و دریافت کردن امواج صوتی است. گستره کاربرد این مواد از ابزارها و تجهیزات اولتراسونیکی برای عمق یابی در دریا و پیدا کردن محل تجمع ماهی ها تا تجهیزات ردیاب زیردریایی ها می باشد. مثلاً دردماغه زیردریایی(Trident) از ۵ تن مواد پیزوسرامیک که همگی به صورت دیسک هایی با قطر ۴ اینچ و ضخامت ۰٫۲۵ اینچ هستند استفاده شده است که این تکنولوژی، زیردریایی را به حرکت سریع، آرام و بی صدا در میان آب قادر می سازد. کاربردهای دیگر اثر پیزوالکترسیته در برشکاری و جوشکاری و عیب یابی در داخل قطعات فلزی صنعتی است. جدیدترین کاربردهای این مواد در پرینترهای ink-jet است. از مواد فعال کننده نویز تا ایستگاه های فضایی (مثلRaytheon)، پیزوسرامیک ها اجزا کلیدی مورد نیاز برای ساخت قطعات پیشرفته و سیستم های کارآمد را تشکیل خواهند داد.

 

فرآیند تولید

فرآیند ساخت پیزوسرامیک ها شامل ۱۶ مرحله است که با وزن کردن، مخلوط کردن و آسیاب کردن موادی مانند زیرکونیا، اکسید سرب، تیتانیا، نیوبیا و اکسید استرانسیم و غیره شروع می شوند. سپس مواد مخلوط شده کلسینه شده و واکنش انجام می دهند تا ترکیب تیتانات-زیرکونات سرب تشکیل شود. ترکیب تیتانات-زیرکونات سرب تشکیل شده که دارای مقداری رطوبت است به اندازه ذرات خیلی ریز آسیاب می شود. سپس چسب ها و روانسازها افزوده می شوند و ماده به دست آمده در اسپری درایر خشک می شود تا یک پودر آماده برای تراکم حاصل شود.

بعد از آماده سازی مواد اولیه، فرایندی که برای شکل دادن سرامیک به کار گرفته می شود، استفاده از پرس خشک یا ایزواستاتیک با فشار اعمالی  بین ۶ تا ۱۰۰ تن است. اجزای شکل داده شده در دمای ۱۳۰۰ درجه فارنهایت در شرایط کنترل  شده اتمسفری پخت بیسکویت می  شوند تا چسب ها و  روان کننده های لازم برای عمل شکل دهی در این مرحله سوخته و خارج شود. قطعات بیسکویت در بوته های مخصوص “آلومینا بالا” قرار داده شده و برای پخت در دمای بالا در داخل کوره قرار داده می شوند. کوره الکتریکی تا حدود دمای ۲۳۰۰ درجه فانهایت گرم می شود و به مدت سه ساعت در این دما نگه داشته می شود (قطعات سرامیکی برای کنترل تبخیر احتمالی اکسید سرب در خلال فرایند پخت در دمای بالا در بوته­های آلومینا بالا قرار داده می شوند).

سپس سرامیک پخته شده با دقت زیادی به اندازه های معین ماشین کاری می شود. بعد از مرحله اندازه بندی، قطعات سرامیک متالیزه می شود؛ یعنی یک پوشش فلزی روی سطح آنها نشانده می شود. این کار به کمک تکنیک “silk screening” انجام می شود و از الکترودهای نقره، طلا، نیکل یا پلاتینیوم-پالادیوم استفاده می شود. الکترودهای متالیزه شده روی یک شبکه توری شکل که از سیم های فلزی نسوز تشکیل شده است قرار گرفته و به داخل کوره حمل می شوند و در دمایی در حدود ۷۰۰ درجه سانتی گراد پخته می شوند.

بعد از این مرحله، نوبت به عمل قطبی کردن قطعه های سرامیکی می رسد. در عمل قطبی کردن ولتاژ جریان مستقیم(DC) به سرامیکی که در یک روغن دی الکتریک گرم شده و مقاوم قرار دارد، اعمال می شود تا دوقطبی های آن در یک سمت جهت گیری کنند. قطعات سرامیکی قطبی شده اکنون پیزوالکتریک هستند. بعد از قطبی کردن، نوبت به کنترل کیفی خواص می رسد. قطعات جهت تضمین و تامین کردن خواص الکتریکی متناسب با نوع کاربردشان، آزمایش و بررسی می­شوند. قطعات آزموده شده آماده بسته بندی و ارسال و استفاده هستند.

مقیاس بازار

به علت کاربردهای وسیع پیزوسرامیک ها میزان عرضه آنها بسیار وسیع است. از نظر جهانی بازار این مواد تقریباً ۱۱ میلیارد دلار است و در ایالات متحده در حدود ۱٫۵ میلیارد دلار تخمین زده می شود. کارشناسان صنعت پیش بینی می کنند که بازار این مواد از رشدی به میزان ۲۰ تا ۲۵ درصد در سه تا پنج سال آینده برخوردار خواهد بود. به عنوان مثال تا پنج سال پیش صنعت خودرو مصرف‌کننده عمده ای برای پیزوسرامیک نبود اما امروز در خودروهای جدید بالغ بر ۳۰ قطعه پیزوسرامیکی استفاده می شود.

 

تحلیل:

اگر قبول کنیم تولید محصولات سرامیک های پیشرفته امری ضروری است (رجوع شود به سخنان دکتر مارقوسیان)، طبیعتاً باید با راهکارهای مشخص و با تعیین اولویت ها پا به عرصة این تکنولوژی گذاشت. با توجه به اینکه سرامیک های پیشرفته شامل چند شاخه است، ابتدا باید وارد شاخه هایی شد که علاوه بر قابل دستیابی بودن دانش فنی و سهولت در انتقال تکنولوژی از بازار بزرگی در آینده برخوردار باشند.

پیزوالکتریک ها همچنان که در متن آمده است حدود ۱۷ درصد بازار سرامیک های پیشرفته را به خود اختصاص داده اند ضمن اینکه دارای رشد بازار بسیار خوبی نیز می باشند. در حال حاضر به صورت محدود در صنایع الکترونیک شیراز این محصول تولید می شود که نشان دهندة وجود دانش فنی و فناوری تولید هر چند به صورت محدود در کشور است. بنابراین با توجه به زمینه های موجود و بازار رو به رشد این تکنولوژی، پرداختن به آن در کشور دارای اولویت به نظر می رسد.

ضرورت پرداختن و توجه به طرح و رنگ

ضرورت پرداختن و توجه به طرح و رنگ

عنوان مقاله : ضرورت پرداختن و توجه به طرح و رنگ در تولیدات چینی و سرامیک

 توسط : سید علی اکبر سیدی - عضو هیات علمی دانشگاه شیراز (دانشکده هنر ومعماری )

ارائه شده در اولین همایش ملی سرامیک میبد - زمستان ۸۶

چکیده:

طراحی قطعات یکی از اساسی ترین مراحل تولید سرامیکهاست. هیچ محصولی بدون یک طراحی عالمانه و خلاقانه که از ذوق و سلیقه هنرمندانه تهی باشد، موفق نخواهد بود. چرا که عموما قضاوت اولیه مشتریها نسبت به مر غوبیت کالا یا عدم آن بر اساس طرح و شکل آن است. یک شکل خوب می تواند با چشم نوازی نظر مشتری را به شئ جلب نماید. برای یک طراحی خوب اطلاعات زیادی لازم است. لذا یک طراح خوب باید عوامل مهم زیبایی شناسی را بداند وآنهارا در طرح خود بکار گیرد. زیبا ترین طرح ها از تناسبات خاصی بر خوردار هستند که به این تناسبات ( تناسبات طلایی یا نسبتهای زرین) اطلاق می گردد. این تناسبات از طبیعت اخذ شده و لذا با طبیعت و خواست انسانها، مطابقت دارد. در این مقاله تمامی اصول لازم برای طراحی قطعات سرامیکی  به وضوح تشریح شده و مثالهای عملی نیز ارایه گردیده است. لذا طراحان سرامیک می توانند با مراجعه به دستور العملهای ارایه شده شیوه های خود را بهبود بخشند ونتیجه آنرا در کار و تولید خود ملاحظه نمایند.

دانلود کامل مقاله

سرامیک،تکنولوژی قرن آینده

سرامیک،تکنولوژی قرن آینده

 در این مقاله به بررسی مفهوم سرامیك و بعضی كاربردهای آن پرداخته می شود. نخست به معرفی برخی مفاهیم اولیه می پردازیم.

چینی به اشیایی گفته می شود كه در درجه حرارت بالا تهیه می شوند و دارای شفافیت خاصی هستند و سفال به اجسامی گفته می شود كه در درجه حرارت های پایین تر ساخته می شوند و شفاف نیستند.

عموما سرامیك ها دارای سختی های متفاوتی می باشند، معمولا شكننده هستند و در مقابل حرارت و فرسایش به خوبی مقاوم هستند. این مواد از خاك نسوز یا مواد معدنی دیگر بخصوص از اكسیدهای فلزی همراه با چند اكسید غیر فلزی ساخته می شوند كه عنصر غیر فلزی معمولا اكسیژن است. در نهایت می توان سرامیك را هنر طراحی و ساخت اشیاء از خاك نسوز تعریف كرد. این تعریف را می توان به طور عام  برای تمام مواردی كه از خاك رس تهیه می شوند مثل پوشش های سرامیكی ، ساینده ها و همچنین شیشه های سرامیكی الكترونیكی به كار برد.

این نكته واضح است كه انقلاب صنعتی به جز در سایه ی استفاده از كوره ها،ماشین های حرارتی پیشرفته و مواد سرامیكی كه برای عایق بندی حرارتی انواع مختلف كوره ها و ماشین ها استفاده می شوند ممكن نیست.

در قرن حاظر با تكامل تكنولوژی الكترونیكی ، مواد دی الكتریك كه دارای اهمیت بسیاری هستند نیز این مسیر تكاملی را طی نمودند.در كنار آن خصوصیات مغناطیسی و اپتیكی جدیدی برای سرامیك شناسایی شد و به عنوان قسمتی از تكنولوژی جدید الترونیك و الكترواپتیك تكامل یافت.

در دنیای الكترونیك اختراع ترانزیستور و لیزر ، موج گونه ی جدیدی از قطعات را عرضه نمود ، ولی نقش مفید انها را محدودیت هایی كه مواد مورد استفاده  داشتند كم می نمود.

در حالی كه سرامیك های نوین كه در میكرو الكترونیك ، سیستمهای لیزر، قطعات ارتباطی و شبكه ی اجزای مغناطیسی مورد استفاده قرار می گیرند نمونه ای از ایفای این نقش را نشان می دهد.

استفاده از سرامیك به عنوان دی الكتریك هایی كه دارای ثابت دی الكتریك بالایی می باشند ، ساخت فاز نهایی با ظرفیت بسیار بالاتر را ممكن ساخته است كه بعد از كشف ابر رسانا ها اهمیت سرامیك به اوج خود رسید. برای آنكه بتوان به علت بعضی از رفتار های این مواد پی برد روش های متنوعی وجود دارد. یكی از این روش ها بررسی ریز ساختار سرامیك ها می باشد. این خصوصیت نه تنها توسط تركیب ، نوع و تعداد فازهای موجود  در تركیب مشخص می شودبلكه توسط قرار گیری ، چارچوب و ترتیب فازها نیز مشخص می گردد.

در نهایت توزیع فازها و یا زیر ساختار ها به روش ساخت سرامیك، مواد خام مورد استفاده،روابط تعادل فازی و همچنین تغیرات در فازها و رشد دانه ها و عملیات سینترنیك وابسته است.

 یك سرامیك فرو الكتریك از تعداد زیادی كریستال های كوچك تشكیل شده است كه محور های كریستالوگرافی آنها در سرامیك به طور اتفاقی جهت دار شده است. از طرف دیگر هادی های سرامیكی در دماهای بالاتر از 1500 درجه سانتیگراد نیز كارایی دارند.در حالی كه اكثر فلزات در این دما قادر به كار نیستند. البته بعضی از فلزات مانند تنگستن و مولیبدیم نیز در دمای 1500 درجه كار می كنند  ولی به علت واكنش با محیط از تنگستن در فضای آزاد نمی توان استفاده كرد.

امروزه  سرامیك ها تقریبا در همه جا یافت می شوند، از بدنه موتور اتومبیل های مدرن و پوشش حرارتی سفینه های فضایی تا قلب كامپیوتر ها و از داخل آشپزخانه ها تا سد سازی ، شیشه گری و سرامیك های الكترونیكی همه مواردی از كاربردهای سرامیك هستند.

به طور خلاصه بعضی از كاربرد های آن به شرح زیر می باشد:

  •  در علوم فضایی به عنوان مبدل ها و سنسورها در ماهواره ها، موشك ها و هواپیماها
  •  در اتومبیل ها به عنوان سیستم آژیر و استارت
  •  در وسایل دفایی به عنوان تونار(مسافت یاب صوتی دریایی) و آشكار سازها
  •  در پزشكی باری آشكار سازی قلب جنین,جرم گیری دندان و MRI
  •  در مخابرات به عنوان صافی های مبدل انرژی،سنسورها،خازن های چند لایه و  مشددها
  •  در وسایل ارتباطی به عنوان خازن هایی برای منابع تغذیه،رادار و سرامیك های مایكروویو برای آنتن ها.

آيندة سراميك از ديدگاه رئيس انجمن سراميك آمريكا

آيندة سراميك از ديدگاه رئيس انجمن سراميك آمريكا

آيندة سراميك از ديدگاه رئيس انجمن سراميك آمريكا

شناخت آيندة تكنولوژي, يكي از مباحث مهم در مديريت كلان تكنولوژي است كه كمك زيادي به برنامه‌ريزي­هاي آينده مي­كند. دكتر هاوس­من رئيس انجمن سراميك آمريكا، در متن زير به ترسيم آيندة تكنولوژي سراميك پرداخته است:

آينده سراميك چيست؟


به راستي اين پرسشي است كه همگان مي­پرسند. چه كسي 50 سال پيش مي­توانست تاثير كامپيوتر­ها را پيش‌بيني كند؟ كامپيوتر­هاي شخصي بر نحوه تجارت، طريقه ارتباطات و زندگي شخصي ما تاثير گذاشته­اند؛ بر فرآيند توليد در تمامي مسير آن، از مواد اوليه و فرمولاسيون گرفته تا خشك­كن­هاي پيچيده و كنترل كوره و همچنين بر روش­ها و تكنيك­هاي علمي مورد استفاده اثر دارند. در تحقيقات نيز كامپيوتر­ها به همراه اينترنت روش­هاي جديد و جالبي براي دستيابي و پردازش اطلاعات به وجود آورد­­­ه­اند.

ما مي­توانيم مطمئن باشيم كه آينده تكنولوژي مواد مهيج خواهد بود و در تكنولوژي سراميك، پيشرفت­هاي همه‌جانبه­اي صورت خواهد گرفت. اين پيشرفت­ها مي­توانند در زمينه بهبود مواد اوليه و روش­هاي جديد و بهبوديافته پردازش آن­ها و تكنيك­هاي تعيين ويژگي­ها و آزمايشات باشند. اين به معناي دستيابي به مواد سراميكي جديد با خواص و كاربردهاي منحصر به فرد مي­باشد؛ خواصي كه در حال حاضر ناممكن به نظر مي­رسند.

در زير زمينه­هايي آورده شده­اند كه ما مطمئنيم در آينده نزديك راجع به پيشرفت­هاي آن­ها بسيار خواهيم شنيد.

1- نانوتكنولوژي و سراميك

به نظر مي­رسد كه نانوتكنولوژي در سراميك­هاي پيشرفته آينده نقش داشته باشد. در طي دو دهة اخير، نانومواد باعث انفجاري در زمينه­هاي علمي و صنعتي شده­ است و اين قابليت را دارد كه انقلاب ديگري در مواد ايجاد ­كند. توجه به نانومواد به دليل ويژگي­هاي منحصر به فردي است كه با اين مواد مي­توان به ­آن­ها دست يافت و همچنين كاربردهاي جالبي كه از اين ويژگي­ها به دست مي­آيند. تقويت خواص الكتريكي، مغناطيسي و نوري در مورد اين مواد گزارش شده است.

اين ويژگي­هاي بهبوديافته در مقايسه با ويژگي­هاي مواد سنتي، دري را به روي كاربردهاي بسياري مي­گشايند. برخي از كاربردهاي فعلي اين مواد در ساينده­ها، كاتاليست­ها، پوشش­ها، ضبط­كننده­هاي مغناطيسي، غشا­ها، ضدآفتاب­ها، چسب­ها، عوامل كنتراست MRI و تقويت كننده‌ها و پركننده‌ها در مواد كامپوزيتي مي­باشد.

به احتمال زياد نانومواد كاربردهايي در بيومواد، ابزار برش، حسگرهاي گاز، پيل­هاي سوختي اكسيد جامد، سراميك­هاي ساختاري، لايه­هاي ضخيم، پوشش­هاي ضدسايش و فيلم­هاي عملگر شفاف خواهند داشت.

توجه اخير به اين زمينه، در گردهمايي سالانه انجمن سراميك آمريكا در سال 2001 مشهود بود كه در آن سمپوزيوم، 79 مقاله به اين تكنولوژي اختصاص داده شده بود. به دليل كارآيي­هاي نانوتكنولوژي، مؤسسه علوم ملي و انجمن تكنولوژي آمريكا، سال گذشته مؤسسه نانوتكنولوژي ملي را تأسيس كردند. اين مؤسسه 495 ميليون دلار از بودجه سال 2001 را به خود اختصاص داد.

شركت­هاي بسياري در حال تلاش هستند تا محصولات نانوساختاري را به طور تجاري به بازارهاي جديد عرضه كنند. در حال حاضر كشور­هاي آمريكا ، ژاپن و آلمان براي تجاري كردن نانوتكنولوژي فعاليت مي­كنند. همچنين 50 شركت­ آمريكايي نيز در حال تلاش براي توسعه و توليد مواد نانوساختاري هستند.

2- بيوسراميك­ها

بيوسراميك­ها كاربردهاي بسياري در بدن از جمله لگن، شانه، زانو، تعمير استخوان­هاي آسيب ديده، درمان­ بيماري­ها و كاشت­هاي دنداني خواهند داشت. اروپا كه سيستم قانوني دولت آن كمتر محافظه­كار است، تحقيقات كلينيكي بيشتري در اين زمينه در مقايسه با آمريكا انجام داده است. در كشور آمريكا توجه بسياري به بيوسراميك­ها در دهة اخير شده است. به عنوان نمونه FDA اخيراً يك كاشت زانويي با پوشش سراميكي را به جاي كاشت­هاي زانويي كبالت- كرومي معرفي كرده است.

در يك پيشرفت جديد ديگر، مطالعات كلينيكي بر روي زانوي سراميكي ديگري انجام گرفته­ است كه اين زانو مي­تواند كاملاً جايگزين زانوي انسان شود. اين زانوي سراميكي از اكسيد زيركونيم ساخته شده است. انگيزه ساخت زانوي سراميكي، به دليل سايش پليمر­ها به هنگامي است كه فلزات سنتي مورد استفاده در زانوي مصنوعي با پلي‌اتيلن تيبيال، مفصل­دار مي­شوند. با شبيه­سازي­هاي آزمايشگاهي نشان داده شده است كه زانوي زيركونيايي، 25 درصد سايش كمتري از زانوهاي فلز/ پلي اتيلن دارد.

در حال حاضر ميكروسفرهاي شيشه­اي راديو اكتيو در كانادا و هنگ­كنگ براي درمان سرطان كبد استفاده مي­شوند. اين روش مزاياي بسيار مهمي به پزشكان در مبارزه با سرطان مي­دهد، به اين صورت كه تشعشع را مستقيماً به درون تومور مي­رسانند. اين نوع تشعشع بين پنج تا هفت مرتبه قوي­تر از تشعشاتي است كه از بيرون تابانده مي­شوند و هيچ نوع اثرات جانبي يا ناراحتي ندارد. اين روش به زودي در آمريكا ، اروپا و چين نيز پذيرفته خواهد شد. كاربرد اين ميكروسفرهاي شيشه­اي براي درمان سرطان كبد و تومورهاي مغزي نيز مورد مطالعه است و نوع تضعيف شده آن براي درمان آرتريت روماتوييد مورد ارزيابي قرار دارد.

3- پيل­هاي سوختي و سراميك

پيل­هاي سوختي، تكنولوژي تميز با آلودگي پايين و راندمان بالا براي توليد الكتروشيميايي الكتريسته از سوخت هيدروكربني مي­باشند. اخيراً پيل­هاي سوختي توجه بسيار زيادي را در جامعه فني به خود جلب كرده­اند. همچنين تمايل بسياري به سرمايه­گذاري روي آن­ها وجود دارد. گزارش شده است كه در سال 2000، پيل­هاي سوختي از لحاظ شهرت در مرتبه دوم قرار داشته­اند.

كارآيي پيل­هاي سوختي در پايگاه­هاي توليد نيروي (برق)، حمل و نقل و توليد برق ارتش مي­باشد. دو پيل سوختي مختلف كه بررسي شده­اند، پيل­هاي سوختي سراميكي دما بالا (كه به پيل­هاي سوختي اكسيد جامد يا SOFC معروفند) و پيل­هاي سوختي الكتروليت پليمري (PEM) مي­باشند. اگر چه PEM ها معمولاً بهترين كانديد براي كاربردهاي خودروسازي هستند، SOFCها نسبت بهPEMها برتري­­هايي دارند. از جمله برتري‌هاي آنها، قابليت استفاده از مونوكسيدكربن به همراه هيدرژن به عنوان سوخت است. همچنين به دليل دماي كاركرد بالاتر sofcها (C 10000-800)، سوخت­هاي هيدروكربني مي­توانند بر روي پيل يا درون آن اصلاح شوند، بدون اينكه لازم باشد از اصلاح كننده­هاي جداگانه استفاده كنيم. SOFCها نياز به كاتاليست­هاي گرانقيمت از جنس فلزات نجيب ندارند. مزاياي ديگر SOFCها راندمان بالا (60 درصد در كاربردهاي ثابت و 40 درصد در كاربردهاي متحرك)، قابليت اطمينان، تشكيل واحد و ميزان خروج بسيار پايين Nox و Sox مي­باشد.

دو طراحي فعلي براي SOFCها، دو نوع تيوپي و صفحه­اي مي­باشند كه تحت تحقيق و بررسي قرار دارند. طرح صفحه­اي برتري­هايي مانند دانسيته و قدرت بالاتر، دانسيته نيروي حجمي بالاتر و هزينه پايين­تر توليد دارد. عيب طرح صفحه­اي، نياز آن به آب­بندي­هاي دما بالا است. موارد ديگري كه هنوز براي استفاده گسترده SOFC ها بايد با آنها مقابله كنيم، هزينه توليد، زمان شروع به كار، سيكل‌پذيري حرارتي و مقاومت در برابر شوك حرارتي مي­باشند.

4- كاربردهاي ميكروالكترونيكي سراميك­ها

در آينده، سراميك­ها باز هم در كاربردهاي ميكروالكترونيكي نقش خواهند داشت. مزاياي پايه­هاي سراميكي درون اتصالي مانند ثبات خواص الكتريكي، نشر حرارتي بالا، قدرت تكنيك بالا، خطوط هدايت كاملاً واضح و قابليت سوار كردن اجزاي كنش­پذير، آنها را براي استفاده در قطعات الكترونيكي ايده­آل مي­سازد. برخي از كاربردهاي اين مواد در تلفن­هاي همراه، پيجرها، سيستم­هاي ترمز ضد قفل شونده، كنترل‌كننده­هاي موتور خودرو، باتري قلب و دوربين­هاي ديجيتالي مي­باشد.

در حال حاضر تكنولوژي پايه­هاي سراميكي درون‌اتصالي گوناگون به صورت زير تقسيم بندي شده است:

- پايه­ها

- تكنولوژي فيلم­هاي ضخيم

- سراميك­هاي هم پخت شده دما بالا و دما پايين (HTCC، LTCC)

- تكنولوژي فيلم­هاي نازك

- انواع تكنولوژي­هاي اعمال مس روي سراميك.

در كاربردهاي ديجيتالي، هنگامي كه اندازه تراشه­ها كوچكتر مي­شود، با سرعت­هاي بيشتري عمل مي­كنند و نشر حرارتي بيشتري دارند. اين تكنولوژي با استفاده از موادي با ثابت دي­الكتريك كمتر پاسخ داده است و قابليت نشر حرارتي را بهبود مي­بخشد. نياز به بهبود عمليات آنالوگ و توجه به نيازمندي­هاي كاربردهاي بي سيم/ فركانس راديويي ما را به سمت مواد عايق بهبود يافته با اتلاف دي­الكتريك پايين(Qبالا) هدايت كرده است.

تكنولوژي­هاي پايه­هاي سراميكي درون‌اتصالي، زمان رسيدن به بازار را كاهش مي­دهد كه از اهميت شديدي برخوردار است. در آينده، افزايش بيشتر كارآيي و تراكم بيشتر اجزا نيز مورد نياز خواهد بود. اين امر توسط پيشرفت قدرت تفكيك و ساختارهاي چندلايه­اي درون‌اتصالي با آرايش سري يا موازي به دست مي­آيد. هنگامي كه بيشتر تكنولوژي درون‌اتصالي مناسب در مرحله تعريف شده باشد، اين كارايي افزايش يافته و باعث كاهش هزينه­ها مي­گردد.

5- كامپوزيت­هاي زمينه سراميكي

ناحيه ديگر كاربرد آتي سراميك­ها، در كامپوزيت­هاي سراميكي (CMC) مي­باشد. صنعت نياز شديدي به موادي دارد كه سبك، محكم و مقاوم در برابر خوردگي مكانيكي باشند و قابليت عملكرد در محيط­هاي دما بالا را داشته باشند. دفتر تكنولوژي­هاي صنعتي وزارت انرژي آمريكا، برنامه­اي را آغاز كرده است كه برنامه كامپوزيت­هاي داراي فيبرهاي سراميكي پيوسته(CFCC) ناميده مي­شود. هدف از انجام اين كار مشترك ميان صنعت، آزمايشگاه­هاي ملي، دانشگاه­ها و دولت، ارتقاي روش­هاي پردازش مواد كامپوزيتي سراميكي قابل اعتماد و ارزان مي­باشد.

كارايي اين مواد در مشعل­هاي تشعشعي متخلخل، فيلترهاي گاز داغ، مشعل­هاي تشعشعي تيوپي شكل و جداره­هاي توربين­هاي گازي احتراقي مورد بررسي قرار گرفته است. CFCCهاي به كار رفته در اين كاربردها مزاياي مهمي در زمينه انرژي، محيط زيست و اقتصاد فراهم خواهند كرد.

خيلي­ها عقيده دارند كه CMCها علاوه بر كاربردهاي صنعتي، در نسل بعدي سفينه­هاي فضايي و وسايل نقليه فضايي نيز بسيار ضروري خواهند بود. مواد مصرفي فعلي در محيط­هاي احتراقي معمولاً فلزات شديداً سرمايش يافته يا فلزات ديرگداز مي­باشند. CMCها، جايگزين سبكي براي خيلي از مواد مصرفي امروزي مي­باشند. برخي موانعي كه بايد براي كاربرد گسترده CMCها بر آن غلبه كنيم، هزينه الياف (معمولاً الياف غير اكسيدي) و هزينه توليد مي­باشند (توليد سريع­تر و هزينه كمتر).

6- ابر رسانا‌هاي دما بالا

اگر چه از هنگام كشف ابر رسانا‌هاي دما بالا(HTS) در سال 1986، پيشرفت در اين زمينه رشد آهسته­تري نسبت به قبل داشته است. در پنج سال اخير رشدي در زمينه بهبود خواص اين مواد ديده شده و توسعه آنها گزارش شده است. بر طبق يك احتمال انتظار مي­رود كه بازار HTS در سال 2002 به 62 ميليون دلار برسد.

HTS مي­تواند سرعت ارتباطات را ترقي بخشد. با كنار هم قرار دادن تكنولوژي ديجيتال ابر رسانا­ها و فيبر نوري، ظرفيت و كارآيي آينده شبكه­ها با سرعت فوق‌العاده بالا از طريق الكترونيك­هاي نيمه­هادي سرمايش­يافته افزايش خواهد يافت و ارتباطات بلادرنگ و كاربردهاي چندرسانا­اي امكان پذير خواهند شد.

نياز به الكتريسيته، پيوسته افزايش خواهد يافت و انتظار مي­رود كه تا سال 2030 دو برابر شود. احتمالاً استفاده از مواد HTS به منظور افزايش راندمان و هزينه­هاي كمتر حياتي خواهد شد؛ چون سيم­هاي HTS، الكتريسيته را تقريباً بدون هيچ گونه اتلافي عبور مي­دهند. در صنعت برق مي­توان از چنين سيم­­هايي براي توليد سيم­پيچ­ها، هادي­ها، ماشين­ها و وسايل برقي با راندمان بسيار بالا استفاده كرد. استفاده از HTS در اين كاربردها مي­تواند ميلياردها دلار در هزينه انرژي صرفه­جويي كند و با كاهش ميزان سوخت در توليد الكتريسته به محيط زيست كمك كند. در آينده مدارهايي كه از مواد ابر رساناي دما بالا استفاده مي­كنند، سرعت پردازش كامپيوترها را ترقي داده و اتلاف مقاومتي را در كنترل‌كننده­هاي موتور كاهش مي­دهند.

محققين دانشگاه Aoyama Gakuin توكيوي ژاپن اخيراً كشف كرده­اند كه بوريد منيزيم در دماي k 39 ابررسانا است. با وجود اينكه اين دما در HTS دماي پاييني است، از دمايي كه بيشتر در تركيبات نسبتاً ساده و موجود مشاهده شده بيشتر است و تقريباً دو برابر هر مادة ابررساناي فلزي است. بايد ديد كه مواد جديدي كه كشف خواهند شد، چه موادي خواهند بود و دماي بحراني آنها به چه حدي مي­رسد.

7- زمينه­هاي ديگر كاربرد سراميك

تكنولوژي­­هاي ديگري كه سراميك­ها در آينده در آنها نقش خواهند داشت، دستگاه­هاي ميكروالكترومكانيكي(MEMS), سيستم­هاي هوشمند با استفاده از مواد سراميكي( يعني پيزو سراميك­ها) و الگوسازي­هاي اوليه سريع خواهند بود. در زمينه MEMS, سراميك­هاي چگالي پايين با استحكام مكانيكي بالا، خنثايي شيميايي، مقاومت در برابر خوردگي مكانيكي و ضريب اصطكاك كم بسيار مناسب هستند.

اگر بخواهيم بيشتر راجع به آينده فكر كنيم، احتمال وجود كامپيوترهاي سريعتري مي­رود كه بر پايه سيستم دوتايي صفر و يك نيستند. اين كامپيوترها در سطح اتمي عمل خواهند كرد و به جاي المان­هاي نيمه­هادي، داراي نقاط كوانتومي به عنوان واحد مدارشان خواهند بود.

در زمينه آموزش علم سراميك و مهندسي آن، نمي­توان آينده را به راحتي پيش­بيني كرد، به خصوص هنگامي كه به روند تكامل آن از صد سال پيش مي­نگريم. اميدواريم كه مهندسي سراميك تنها در برنامه­ريزي­هاي موادي ادغام نشود. هنگامي كه مي­بينيم مواد سراميكي چه نقشي دارند و در آينده چگونه نقش خواهند داشت، بدون شك از دست دادن مهندسي سراميك موجب زيان صنعت و جامعه خواهد بود. امروزه آموزش مكاتبه­اي در حال اجرا است و بي­شك در آينده در هر نظامي نقش خواهد داشت. واحدهاي درسي بسياري از مدارس حرفه­اي و دانشگاه­ها از طريق اينترنت قابل دسترسي هستند. حتي مؤسسه تكنولوژي ماساچوست اعلام كرده است كه اين مدرسه مواد درسي لازم براي همه واحدهاي درسي را به طور رايگان از طريق اينترنت ارايه خواهد كرد. اين يك برنامه ده‌ساله است و اين موسسه سالي 7.5 تا 10 ميليون دلار خرج خواهد كرد تا به اين هدف دست يابد. به طور يقين، اين روند شتاب پيدا خواهد كرد.

انجمن سراميك آمريكا مفتخر است كه در بسياري از پيشرفت­هاي تكنولوژي سراميك به مدت بيش از 100 سال نقش داشته است. بخشي از شبكه جهاني اين انجمن به آينده سراميك­ها اختصاص داده شده است و برنامه­ريزي­هاي چندگانه­اي براي صنعت(مصرف كننده نهايي سراميك)، دانش­آموزان پيش دانشگاهي، جامعه و مطبوعات در دست اجرا دارد

متن تحلیلی در مورد سرامیک های پیشرفته

متن تحلیلی در مورد سرامیک های پیشرفته

سراميک­هاي پيشرفته نسل جديدي از سراميک­ها هستند که داراي خواص بهتري نسبت به سراميک­هاي سنتي بوده و کاربردهاي زيادي را به خود اختصاص داده‌اند. متن زير خلاصة گزارش موسسة SCUP درمورد سراميک‌هاي پيشرفته است:

سراميک­ها موادي غيرآلي و غيرفلزي هستند که مقاومت خوبي در دماي بالا از خود نشان مي‌دهند. در ابتدا مواد اولية سراميکي بصورت پودر هستند سپس در شکل‌هاي مختلف به اجسام صلب تبديل مي­شوند. سراميک­ها مي‌توانند بصورت آمورف (بي‌شکل)، تک‌فاز، چندفاز، تک‌کريستال و پلي‌کريستال وجود داشته باشند و خواص اين مواد بستگي به ساختار اتمي آنها دارد. محصولاتي مثل آجرها، کاشي، چيني (بصورت ظروف غذا و چيني بهداشتي)، نسوزها، ساينده‌ها، شيشه‌آلات (شيشه‌هاي تخت، ظروف شيشه‌اي) و لعاب‌هاي چيني جزو سراميک­هاي سنتي هستند و در گروه سراميک­هاي پيشرفته قرار نمي‌گيرند.

سراميک­هاي پيشرفته داراي خواص فيزيکي، الکترونيکي و مکانيکي خاصي هستند که آنها را نسبت به سراميک­هاي سنتي برتري بخشيده است. سراميک­هاي پيشرفته در پنجاه سال گذشته توسعة خوبي يافته‌اند. بازار سراميک­هاي پيشرفته که قسمت عمدة آن در آمريکا، اروپاي غربي و ژاپن قرار دارد، در سال 2000 بالغ بر 20.2 ميليارد دلار بوده است. البته خلق کاربردهاي جديدي براي اين مواد باعث ايجاد يک رشد 4 درصدي براي بازار اين مواد تا سال 2005 خواهد شد.

سراميک‌هاي الکترونيکي

عمده‌ترين استفادة سراميک­هاي پيشرفته در صنايع الکترونيک است که حدود 66 درصد کل مصرف سراميک­هاي پيشرفته را به خود اختصاص مي­دهند. مهم‌ترين مواد سراميکي براي کاربردهاي الکترونيکي، اکسيدهاي خالص يا مخلوطي از اکسيدها هستند که شامل آلومينا، زيرکونيا، سيليسيا، فريت­ها، تيتانات باريم اصلاح‌شده و تيتانات و زيرکونات سرب مي‌باشند. فيبرها، محافظ‌ها در مدارهاي الکتريکي و الکترونيکي، خازن­ها، تبديل‌کننده‌ها، القاگرها، ابزارهاي پيزوالکتريکي و سنسورهاي فيزيکي و شيميايي عمده‌ترين موارد استفا‌دة سراميک­هاي الکترونيکي هستند. ميزان بازار جهاني سراميک­هاي الکترونيکي در نيمة پاياني سال 2000، حدود 13.3 ميليارد دلار بوده است. مواد مورد مصرف در مدارهاي IC  مجتمع، محافظ‌هاي الکترونيکي و خازن­ها تقريباً 67 درصد بازار سراميک­هاي الکترونيکي را بخود اختصاص داده‌اند. بازار محصولات سراميکي الکترونيکي اگر چه نسبتاً بزرگ است ولي نرخ رشد آنها از نرخ رشد دو رقمي که در چند دهة گذشته از خود نشان داده‌اند بيشتر نيست.

سراميک­هاي ساختاري

استفاده از سراميک­ها در کاربردهاي ساختاري کمتر از 19 درصد کل بازار است. سراميک­هاي ساختاري بعنوان اجزاء تحمل‌کنندة تنش يا پوشش قسمت­هايي که تحت تنش هستند شناخته مي‌شوند. علاوه بر اين، مقاومت سراميک­ها در برابر خوردگي، سايش و دماي بالا، اين مواد را براي کاربرد در تجهيزات صنعتي زيادي مناسب ساخته است. افزايش بازده و کاهش مصرف انرژي، محرک تحقيقات بر روي سراميک­هاي ساختاري پيشرفته است. در سال 2005 شاهد بازار جهاني 4.5 ميليارد دلاري براي سراميک­هاي ساختاري خواهيم بود و رشد خوبي در بازار اجزاي مقاوم به سايش، ياطاقان‌ها، درزگيرها، تجهيزات فرآيندها و پوشش­هاي سراميکي محقق مي‌شود. بيشترين مواد اوليه مورد استفاده در سراميک­هاي ساختاري انواع گوناگون اکسيدآلومينيوم، زيرکونيا، کاربيد سيليسيم و نيتريد سيليسيم مي‌باشد.

پودرها و افزودني­ها

در حوزة سراميک­هاي سنتي، پودرها مواد غيرآلي هستند که در فرآيندهاي مختلف بصورت بلوک يا قطعة نهايي شکل مي‌گيرند و افزودني­ها مواد غيرآلي هستند که استفاده از پودرها را در فرآيندهاي مختلف آسان مي‌کنند و در قطعة نهايي باقي نمي‌مانند. اين تعريف‌ها صحت خود را تا حد زيادي در مورد سراميک‌هاي پيشرفته که از تکنولوژي‌هاي پيچيدة شيميايي بهره‌ مي‌برند، از دست داده‌اند.

پودرهاي سراميکي پيشرفته و افزودني‌ها بعنوان مواد خام براي سراميک­هاي ساختاري و سراميک­هاي الکترونيکي مورد استفاده قرار مي‌گيرند. پودرهاي سراميکي پيشرفته بازاري بالغ بر 2.7 ميليارد دلار را به خود اختصاص داده‌اند که رشد متوسطي معادل 2 درصد براي آنها تا سال 2005 پيش‌بيني شده است. پوردهاي اکسيدي 85 درصد از اين بازار را از نظر ارزش و 95 درصد را از نظر وزن به خود اختصاص داده‌اند. بقية بازار مربوط به غيراکسيدي‌هايي نظير کاربيد سيليسيم، نيتريد سيليسيم، نيتريد آلومينيوم و تيتانيوم دي‌برايد است. پودرهاي آلومينيومي با کارايي بالا، پودرهاي زيرکونيا که در بيوسراميک­ها استفاده مي‌شوند و کاربردهاي مربوط به سيستم‌هاي مخلوط چند اکسيدي مثل شيشه‌سراميک­ها و سراميک­هاي با ضريب انبساطي پايين، رشد متوسط بالاتري را از خود نشان خواهند داد. رشد بازار افزودني‌ها کمي بيشتر از پودرها خواهد بود که علت آن رواج افزودني‌هاي با کارايي بالا و افزودني‌هاي قوي در روش‌هاي توليد از قبيل شکل دادن گرم و سرد و قالب‌گيري تزريقي است.

ماخذ:

http://scup.sric.sri.com/Public/Reports/ADVAN000/Abstract.html

 

کاربرد بیومتریال سرامیکی درمهندسی پزشکی

کاربرد بیومتریال سرامیکی درمهندسی پزشکی
بسم الله الرحمن الرحیم                  هست کلید در گنج حکیم

کاربرد بیومتریال سرامیکی درمهندسی پزشکی

در طی چند دهه اخیر،بیوسرامیک ها با داشتن ویژگی هایی چون زیست سازگاری ،غیرسمی بودن وپایداری در محیط فیزیولوژیک بدن ،تحول چشمگیری در دنیای پزشکی به وجود آورده اند.استفاده از این مواد به منظور ترمیم و یا جایگزین بافت های آسیب دیده نظیر مفصل،ران ،زانو،کتف و دیگر کاربردهای ارتوپدی و نیز در جایگزینی دریچه های معیوب قلب و یا ایمپلنت های دندانی موجب شده است تا بیو سرامیک ها طیف گسترده ای از متریال مورد استفاده در پزشکی  را در برگیرد.

بیوسرامیک هابه واسطه ویژگی های خاص مکانیکی و فیزیکی در کاربردهایی چون ایمپلنت های بافت سخت ،بر پلیمرها و فلزات برتری دارند.به عنوان مثال در دندانپزشکی نوعی از سرامیک هابا ترکیب فلوروآپاتیت و ذرات ریز شیشه زیستی به عنوان ماده جایگزین دندان کاربرد دارند و ویژگی های نوری و مکانیکی این مواد باعث می شود تا علاوه بر اینکه زیبایی و شفافیت دندان طبیعی به نظر برسد، نسبت به سایر مواد،مقاومت به سایش بیشتری در برابرتنش های ناشی از سایر دندان ها نشان دهد .

از دیگر محاسن این مواد آن است که هنگامی که در بدن فرد به عنوان ایمپلنت و یا حتی پوشش سطحی یک ایمپلنت فلزی به کار می روند،می توانند رشد استخوان ها را شبیه سازی کنند ،ساختمان بافت را ارتقاء دهندو نیز از سیستم ایمنی بدن دفاع نمایند .

بیوسرامیک ها در جراحی ها به عنوان پوشش ایمپلنت های گوناگون کاربرد دارند،زیرا پوشش سرامیکی ،سطحی سخت تر از فولاد ضد زنگ به وجود می آورد و با بالابردن امکان لغزش،موجب کاهش سایش ایمپلنت می شود.از مهمترین گونه های این مواد می توان به بیوسرامیک هایکلسیم فسفاتی (CaP)   اشاره کرد که در شکل های مختلف (قطعه ،دانه ،سیمان، اجزای کامپوزیت و ...)با منشأ متفاوت (طبیعی،بیولوژیکی و سنتتیک) و ترکیبات گوناگون به صورت تجاری و برای کاربردهای پزشکی و دندانپزشکی در دسترس قراردارند.ترکیبات کلسیم فسفات درطبیعت و سیستم های زیستی (ماهی ها ، مرجان ها،استخوان گاو و ...)به فراوانی یافت می شوند و در سیستم های بیولوژیک نقش برجسته ای ایفا می کنند.به عنوان مثال کربنات هیدروکسی آپاتیت (CHA) با ساختارهای کریستالی و غلظتهای متفاوت ،فازهای معدنی دندان (مینا ، عاج ،سمنتوم و ...) و استخوانها را تشکیل می دهد.همچنین انواع ترکیبات کلسیم فسفاتی در هنگام کلسیم دار شدن های غیر طبیعی و پاتولوژیک در فرد ظاهر می شوند که سنگ های کلیه ، آهکی شدن و رسوب کلسیم در بافت های نرم (قلب ، رگ و ریه ) از این نمونه اند.بنابراین نگاه به بیوسرامیک های کلسیم فسفاتی به عنوان یک متریال بالقوه در کاربردهای گوناگون ضروری است.

با توجه به آماری که در هشتمین نشست بین المللی سرامیک ها در پزشکی اعلام شد مقالات مرتبط با حوزه کلسیم فسفات و خصوصاً هیدروکسی آپاتیت 40 تا 70 درصد کل مقالات را شامل می شود که روز به روز در حال گسترش است. اکنون مختصری به چگونگی کاربرد بیو سرامیک های کلسیم فسفاتی می پردازیم .

موفقیت های کلینیکی زمانی حاصل می شود که به طور همزمان به دو فاکتور پایداری فصل مشترک بافت و ایمپلنت ، و تطابق رفتار مکانیکی ایمپلنت با بافت جایگزین شده دست یابیم .کلسیم فسفات هایی که منافذ ریز دارند،برای پوشش ایمپلنت ها ی فلزی استفاده می شود و نیز به عنوان متریال پر کننده در فضایی که تحت بار نیست ،قرار می گیرد تا رشد استخوان از درون آنها صورت گیرد. رویش درونی بافت از میان منافذ ،توسعه ی ناحیه بین بافت و ایمپلنت  و درنتیجه افزایش مقاومت در برابر حرکات ایمپلنت در بافت را به دنبال دارد . در استخوان طبیعی ،پروتئین ها جذب طبقه کلسیم فسفاتی می شوند ، به همین ترتیب بیومتریال کاشته شده نیز با سلول های استخوانی فعل و انفعالاتی خواهد داشت.همچنین بیومتریالهایی با قابلیت جذب مجدد(Resorbable) طراحی می شوندتا با گذشت زمان رفته رفته تنزل یافته و با بافت میزبان جایگزین شوند ،کلسیم فسفات های متخلخل مانند تری کلسیم فسفات به عنوان مواد قابل جذب در مواردی که به استحکام مکانیکی بالا نیاز نیست مانند ترمیم استخوان فک و سر استفاده می شود.در سطح ایمپلنت ،مواد بیواکتیو یک لایه فعال بیولوژیکی تشکیل می دهند که در نتیجه  در شکل پیوند بین بافت های طبیعی و بیو مواد تأثیر می گذارد . مواد بیواکتیو شامل شیشه یا شیشه –سرامیک ها که منشأ اکسید سیلیسیم آپاتیتی دارند ویا به عنوان مثال هیدروکسی آپاتیت سنتیک متراکم و کامپوزیت های پلی اتیلن – هیدروکسی آپاتیتی در کاربردهای ارتوپدی (پیوند استخوان ،پروتزها ،

فضاسازی بین مهره و ...)استفاده می شوند .حال به بررسی فاکتورهای طراحی و ساخت یک نمونه (به عنوان مثال استخوان مصنوعی )می پردازیم .انتخاب دقیق و مناسب متریال مورد استفاده به عنوان مهم ترین بخش طراحی حائز اهمیت است .همچنین برای طراحی می توان از نرم افزار های خاصی بهره برد.این نرم افزار های برای طراحی بهینه شکل ایمپلنت و نیز برای شبیه سازی رفتار مکانیکی ایمپلنت با بافت الگو به کار می روند .یک تکنیک ریاضی ریاضی هم به نام آنالیز المان  محدود برای تعیین توزیع فشار روی ایمپلنت با بافت الگو به کار می رود.

نمونه های اولیه قبل از ساخت نهایی تحت آزمایشات گوناگون نظیر تست های کلینیکی قرار می گیرند .بخش اعظمی از مواد خام اولیه را پودر های سرامیکی با ترکیب ویژه وخلوص بالا تشکیل می دهند.افزودنی هایی نظیر چسب ، روانساز و سایر مواد شیمیایی برای کمک به پروسه ی شکل دهی  به مواد خام اضافه می شوند.پودر اولیه همچنین ممکن است به کمک زینترینگ احتیاج داشته باشد.زینترینگ به مواد سرامیکی کمک می کند تا در در طول زینترینگ و در بعضی مواقع در دماهای پایین تر از آن به درستی متراکم شوند.

پس از تشخیص نوع بیو متریال مورد استفاده ماده مورد نظر وارد پروسه ی ساخت می شود.استخوان مصنوعی را می توان با استفاده از دو روش ساخت :مرحله آماده سازی سنتی سرامیک و روش شیمیایی سل ژل . در روش سل ژل می توان از سوسپانسیون با ذرات بسیار ریز و یا محلولی با پرگرسرهای شیمیایی استفاده کرد. از آنجا که روش سنتی آماده سازی متداول تر است به بررسی جزئیات آن می پردازیم .

مرحله اول ،آماده سازی ماده خام است.این ماده به طور مستقیم قابل استفاده نیست وباید پودر سرامیک سنتیک تهیه شود.معمولاً با طی مراحل سنگ شکنی و آسیاب به سایزدلخواه پودر نمی رسیم و می توان از روش های مکانیکی و یا شیمیایی خاصی استفاده کرد. در روش مکانیکی ،پودر سرامیکی و افزودنی ها به دقت وزن می شوند و سپس در انواع ماشین های مخلوط کن توسط رول های دورانی مخلوط می شوند.به عنوان مثال بال میل از یک استوانه چرخشی پر از مخلوط و یک واسطه کروی (گلوله) برای پراکندن مواد و کاهش سایز ذرات استفاده می کنند.یک سابنده نیز شامل مهره های ریز و یک همزن چرخشی برای انجام رساندن این پروسه مورد استفاده قرار می گیرد.

بعد از مرحله اختلاط و رسیدن به سایز مناسب پودر،مواد سرامیکی با استحکام و پلاستیسیته بالا آماده شکل دهی می باشند.روش های گوناگونی می تواند برای این منظور استفاده شود ؛ از جمله قالب گیری تزریقی ، گرم یا سرد کردن و یا پرس کردن در قالب گیری تزریقیمخلوط در سیلندر گرمایی بارگزاری می شود .در این هنگام از سختی آن کاسته شده و مخلوط نرم می شود.یک پیستون فولادین به مخلوط گرم نیرو وارد کرده و آن را به فرم قالب فلزی سرد شده تبدیل می کند.گرم و سردکردن ها موجب تجمع مواد در یک سیلندر با فشار بالا شده و سپس مواد با شکلی خاص به بیرون فرستاده می شود.پرس کردن نیز با فشردن در قالب فولادین صورت می گیرد و یا مواد در یک قالب لاستیکی ، تحت فشار بالا و یکنواخت گاز یا آب قرار می گیرند.

روش دیگر پرس ،که پرس گرم نامیده می شود شامل فرم دهی وگرمایش با استفاده از قالب گرمایی است.پس از شکل دهی ، استخوان سرامیکی واردمرحله خشک کردن می شود و باید تحت چندین عملیات حرارتی قرار گیرد.ابتدا خشک کردن مواد برای از بین رفتن رطوبت ،با استفاده از کوره یا محفظه خشک کن انجام می گیرد و سپس یک کوره برای حرارت دادن موتد در دماهای بالا جهت حذف مواد آلی و متراکم کردن ماده به کار می رود.چرخه گرمایش به وضعیت ماده وابسته است و باید سرعت گرم کردن به طور مناسب طراحی شود تا مانع شکست نمونه شود.بعد از این مرحله ممکن است به یک یا دو مرحله پایانی نیاز باشد که با توجه به کاربرد

نمونه مشخص می شود.برای رسیدن به ابعاد و ظاهر دلخواه از سنباده و پولیش نیز استفاده می شود.سنباده یا پولیش کردن مواد سخت تر معمولاً نیاز به ابزار الماس دارد.مته کاری نیز در کاربردهایی که نیاز به شکل دهی خاص منافذ باشد ، لازم است.اگر اتصال به دو یا چند جزء دیگر نیاز باشد،از روش لحیم کاری و یا چسب زدن نیز بسته به جنس نمونه استفاده می شود.در تمام پروسه ساخت ،کنترل کیفیت هر مرحله برای افزایش کارایی محصول مهم است.در صورتی که تمامی مراحل طراحی و ساخت با موفقیت گذرانده شود،ایمپلنت سرامیکی آماده است تا در بدن بیمار کاشته شود.بدین ترتیب بیومتریال سرامیکی جایگزین بافت آسیب دیده فرد می شود.

توسعه لعاب‌هاي سراميكي با ويژگي‌هاي ضد باكتريايي

توسعه لعاب‌هاي سراميكي با ويژگي‌هاي ضد باكتريايي

پيشرفت صنعت در سالهاي اخير امكان تركيب مواد را حداقل در يك بعد و در ابعاد نانومتري (1تا 100 نانومتر) فراهم ساخته است كه باعث بروز و مشاهده ويژگيها و عملكرد متفاوت مواد جديد نسبت به حالت اصلي آنها در ابعاد ميكرومتري ميشود. مواد در ابعاد نانومتري داراي محدوده گسترده‌اي از كاربردها مي‌باشند و به طور ويژه در علوم الكترونيك، مواد، ارتباطات و مخابرات و سامانه‌هاي زيستي داراي مصارف ويژه مي‌باشند. براساس پيش‌بيني آناليزهاي اقتصادي، حجم تجارت تكنولوژي نانو تا سال 2015 داراي سرمايه در گردشي بين 750 ميليون تا 2 ميليارد يورو در سال خواهد بود. هرچند به دليل عدم استفاده از فناوري نانو در بخش سراميك فوايد وكاربردهاي آن براي اين صنعت به طور دقيق مشخص نشده است اما به طور مثال خصوصيات ضد ميكروبي كه ذرات نانو با جنس مشخص در تركيب با سراميك‌ها ميتوانند ايجاد نمايند از جمله ويژگي‌هاي اين فناوري در صنعت سراميك محسوب مي‌شود.
ظهور نسل جديدي از مواد، به محصولات سراميكي اين امكان را مي‌دهد تا قابليت‌هاي ضد باكتريايي و ضد قارچي بدست آورند به نحوي كه قادر خواهند بود تا از رشد ميكروارگانيسم‌هاي بيماري‌زا جلوگيري نموده و يا آن‌ها را نابود نمايند و از اين طريق شرايط بهداشتي محيط را ارتقاء دهند.
صنعت سراميك مي‌تواند با نوآوري در ساخت و افزايش كيفيت، سبب بالا بردن ارزش افزوده در توليد گرديده و قدرت رقابت اين محصولات را در بازار بالا ببرد.


 

 

عضو  مقدمه :
بهداشت عمومي، ‌از موضوعات مورد توجه در جوامع امروزي مي‌باشد. اخبار وجود آلودگي‌هاي گوناگون توسط ميكروارگانيسم‌هاي بيماري‌زا در مناطق بحراني مانند بيمارستان‌ها، كشتارگاه‌ها، رستوران‌ها، فضاهاي صنعتي و غيره به طور هشدار دهنده‌اي در حال افزايش بوده و سبب ايجاد نگراني در سطح جامعه شده و تقاضا براي محصولات و مواد ضدميكروب، به طور روز افزون در حال افزايش مي‌باشد. از جمله اين مواد انواع شيشه، پلاستيك، رنگ‌ها، لعاب‌ها و غيره مي‌باشد كه به تازگي با ويژگي‌هاي ضد باكتريايي وارد بازار شده‌اند. در ميان يون‌هاي فلزي كه داراي خصوصيات ضدميكروبي مي‌باشند عنصر نقره در شكل يون نقره به واسطه اثر آن در از بين بردن طيف وسيعي از ميكروارگانيسم‌ها مشهور مي‌باشد و به همين دليل در بخش سراميك در گذشته تلاش‌هايي جهت توليد محصولات با ويژگي‌هاي ضدميكروبي كه به طور عمده از عنصر يون نقره بهره گرفته‌اند، انجام شده است. تحقيقات جديد نشان مي‌دهد كه اجزاء نقره در ابعاد نانومتري (1 تا 100 نانومتر) خصوصيات ضد باكتريايي را نشان مي‌دهند، بر طبق بررسي‌ها مقدار مساوي از ذرات نقره در ابعاد نانو در قياس با نيترات نقره، داراي فعاليت ضدميكروبي قوي‌تر و فعال‌تري مي‌باشد. نتايج اين تحقيق در كنار توجه به ويژگي ضرر اندك اين ذرات براي سلامتي انسان، نانوذرات نقره را به عنوان عوامل ضد باكتري موثر و سودمند معرفي مي‌نمايد. تحقيق پيش‌رو براي نخستين بار يك آزمايش سيستماتيك و اصولي را از عملكرد ذرات نقره در اندازه نانو در محصولات سراميكي معرفي مي‌نمايد.


عضو  مواد مورد استفاده و روش آزمايش :
2-1- مواد مورد استفاده: در انجام اين آزمايش مواد زير مورد استفاده قرار گرفتند: كلوئيد نقره با عيار 73 درصد و كائولن حاوي نقره كه داراي 22 درصد نقره مي‌باشد. كلوئيد نقره شامل اجزاء نقره با ابعاد نانو و يك پروتئين به عنوان پايداركننده مي‌باشد كه براي آماده‌سازي سوسپانسيون‌هاي آب‌دار نانو ذرات نقره مورد استفاده قرار گرفتند. اين آزمايش از طريق جابجايي ذرات الكترون (با رعايت وجود نانو ذرات نقره با ابعاد كمتر از 20 نانومتر) انجام شد. در كائولن حاوي نقره كاني كائولن به عنوان شكل فرعي و زير لايه‌اي عمل نموده و اين درحالي‌است كه نانو ذرات نقره از طريق فرآيند جذب سطحي در بخش‌هاي سطحي ماده قرار گرفته و ته‌نشين شده‌اند.


عضو  كاشي‌هاي فتوكاتاليست: محدوديت‌ها و كاربردها
قطعاً شما تمايل داريد كه سطح كاشي‌هاي مورد استفاده در منازل و يا محيط كار و حتي بيمارستان‌ها تميز باشد. اما مي‌دانيد كه فرآيند تميز كردن سطح كاشي‌ها، علاوه بر سخت بودن، بسيار زمان‌بر و پرهزينه بوده و بايد با استفاده از محلول‌هاي شيميايي ضدعفوني و پاك‌كننده اين كار صورت گيرد. حتماً تجربه استفاده از وايتكس، انواع جرم‌گير و محصولات مشابه براي زدودن ذرات آلوده سطح كاشي‌ها را داشته‌ايد و ديده‌ايد كه استفاده از اين مواد براي سيستم تنفسي بدن نيز خطرناك است. خدا نكند كه اشتباهاً دو ماده واكنش دهنده از محصولات جرم‌گير را با هم مخلوط كرده باشيد و گاز متصاعد شده از آن را تنفس كرده باشيد. آيا راه‌حل ديگري در اين ميان وجود دارد؟ يكي از راه‌حل‌هاي موجود كه امروزه محققين و صنعتگران براي رفع اين مشكل به آن روي آورده‌اند اتسفاده از كاشي‌هاي فتوكاتاليست است. كاشي‌هاي فتوكاتاليست در حقيقت كاشي‌هاي ضدميكروب، خودتميزكننده و تجزيه‌كننده آلودگي سطح كاشي با استفاده اندكي از نور خورشيد، اكسيژن و مقداري رطوبت محيط هستند. نتيجه كار محيط تميزتر، سطح بدون آلودگي و هزينه كم‌تر نظافت است.

كاشي‌هاي فتوكاتليست چيستند؟
در ابتدا بد نيست كه كمي به دانشي كه پشت اين قضيه وجود دارد نيم نگاهي نموده باشيم. تعريف پديده "فتوكاتاليست" بدين ترتيب است كه فلز نيمه‌هادي راديكال‌هاي آزاد را با كمك آب موجود در محيط، اكسيژن هوا و نور ماورا بنفش خورشيد توليد باردار نموده بدون اينكه خود فلز آسيب ببيند. اين راديكال‌هاي آزاد باردار به عنوان يك عامل محرك بيولوژيكي و شيميايي عمل مي‌نمايند. مواد زيادي هستند كه خاصيت فتوكاتاليستي دارند. دي‌اكسيد تيتانيوم به عنوان يكي از اصلي‌ترين مواد مناسب براي استفاده در فرآيند فتوكاتاليست شناخته شده است. دي‌اكسيد تيتانيوم يا TiO2 در سه شكل كريستالي در طبيعت وجود دارد و از اين ميان ساختار "آناتاز" به عنوان يكي از موثرترين مواد فتوكاتاليست زير نوز ماورا بنفش عمل مي‌نمايد. بعد از اينكه در دهه 1970 اين خاصيت شناخته شد TiO2 به عنوان عامل واكنش فتوكاتاليست مورد تحقيق و بررسي قرار گرفت. كاشي‌هاي سراميكي با لايه‌اي نازك از دي‌اكسيد تيتانيوم در سطح‌‌شان امروزه در بازار با خاصيت بي‌نظير و يكتاي خودتميزشوندگي شناخته شده‌اند.


عضو  خصوصيات كاشي‌هاي فتوكاتاليست
يكي از خصوصيات مهم TiO2 به عنوان ماده فتوكاتاليست اين است كه اين ماده براي انسان سمي نمي‌باشد و قدرت اكسيدكنندگي بالاي اين ماده در هنگامي كه در مواجهه با نور ماورا بنفش كه با طول موج كم‌تر از 385 نانومتر است قرار مي‌گيرد بسيار حايز اهميت است. با راديكال‌هاي هيدروكسيل و يون‌هاي سوپراكسيد، فتوكاتاليست‌هاي TiO2 مي‌توانند مواد ارگانيك را با استفاده از واكنش‌هاي اكسيداسيون متوالي به دي‌اكسيدكربن تبديل نمايند. TiO2 هم‌چنين خاصيت تركنندگي سطح را به وسيله افزايش زاويه بين آب و پوشش TiO2 بهبود مي‌بخشد. اين خاصيت دي‌اكسيد تيتانيوم و ساير مواد فتوكاتاليست مي‌تواند سه مزيت براي اين مواد ايجاد نمايد:

نقش ضد ميكروبي:
بسياري از ميكروارگانيسم‌ها شامل باكتري‌ها، ويروس‌ها، قارچ‌ها و ... مي‌تواند توسط اين پوشش از بين بروند. پوشش ديواره سلولي اين موجودات، به وسيله فتوكاتاليست‌ها تجزيه شده و در نتيجه ميكروارگانسيم مذكور كشته مي‌شود‌ و سپس خاصيت تركنندگي سطح باعث مي‌شود كه تركيبات باقي مانده در سطح نيز شسته شوند.

رفع بوي بد:
راديكال‌هاي آزاد اين قابليت را دارند كه تركيبات بخار شدني ارگانيك روي سطح را كه منجر به ايجاد بوي بد مي‌شوند را با شكستن پيوندهاي مولكولي بين‌‌شان از بين ببرد. برخي از تركيبات بدبو نظير فرمالدييد، بنزين و تعداد زيادي از هيدروكربن‌هاي ديگر شامل اين موضوع مي‌شود. هم‌چنين فتوكاتاليست‌ها، عناصر آلوده‌كننده ارگانيك را نيز از بين مي‌برند.

تصفيه هوا
مواد فتوكاتاليست هم‌چنين باعث ايجاد خلوص در هوا، با از بين بردن مواد سمي موجود در هوا از قبيل تركيبات اكسيد نيتروژن (NOx) مي‌شود. NOx منجر به ايجاد بيماري‌هاي فراوان تنفسي در انسان مي‌‌شود و هم‌چنين به همراه اكسيد سولفور كه سمي است با باران‌هاي اسيدي مي‌توانند به محيط زيست نيز آسيب برسانند.

كاربرد كاشي‌هاي فتوكاتاليست در كجاست؟
خاصيت خودتميزكنندگي كاشي‌هاي فتوكاتاليست منجر به استفاده از اين كاشي‌ها در محيط‌هاي مختلفي هم‌چون آشپزخانه، بيمارستان‌ها، ساختمان‌هاي شهري و ... مي‌گردد. علاوه بر مزيت‌هاي سه‌گانه گفته شده استفاده از كاشي‌هاي فتوكاتاليست منجر به كاهش استفاده از مواد شيميايي و بهداشتي شده كه باعث كاهش آلودگي محيط زيست و در نتيجه ايجاد نشدن مواد آلي و غيرآلي آلوده كننده براي توليد اين مواد خواهد شد. اين كاشي‌ها براي مناطق آلوده شهري بسيار مناسب هستند. با نصب اين كاشي‌ها در محيط بيروني ساختمان علاوه بر جلوه زيباي سطحي، محيط زيست از نظر گازهاي سمي تصفيه شده و هم‌چنين نماي بيرون ساختمان همواره تميز باقي مي‌ماند.

محدويت‌هاي TiO2 چيست؟
عملكرد صحيح اكسيد تيتانيوم وابسته به همساني لايه TiO2 در سطح كاشي دارد و اگر بين لايه‌هاي TiO2 فاصله نباشد عملكرد اين لايه بسيار بهتر خواهد شد. اين لايه در تمامي محدوده‌هاي دمايي كاربرد دارد اما در دماهاي زير 10 درجه سانتيگراد فعاليت آن كم‌تر ملموس است. هم‌چنين در محيط‌هاي بسيار خشك نيز اين فاكتور كه نياز به رطوبت محيط دارد فعاليت‌ كم‌تري خواهد داشت. بنابراين در روزهاي خشك و سرد فعاليت فتوكاتاليستي محدود خواهد شد. باران مي‌تواند به فعاليت بهتر سيستم كمك كند و فقدان باران در محيط از تميزشدن سطح مي‌كاهد. با توجه به اينكه خاصيت فتوكاتاليستي به‌طور خود بخود از بين نمي‌رود، بنابراين شاهد از بين رفتن خودبخودي اين خاصيت در سطح كاشي نيستيم اما فعاليت آن مجدداً با شستشوي عناصري كه منجر به محدوديت كاركرد اين خاصيت مي‌شود برقرار مي‌گردد.
امروزه آزمايشات زيادي براي افزايش خاصيت فتوكاتاليستي با استفاده از فعاليت مواد نيمه هادي براي افزايش خاصيت آنتي باكتريالي كاشي‌ها در تمامي دنيا در حال انجام است و در آينده قطعاً شاهد نوآوري‌هاي بيشتري در اين خصوص خواهيم بود.
منبع نشريه tilemagonline

نانو رنگدانه‌هاي سراميكي

نانو رنگدانه‌هاي سراميكي

اخيرا استفاده از نانو رنگدانه‌هاي سراميكي(Pigment) در دكور كاشي‌هاي سراميكي (Inkjet Printing) رايج شده است در اين مقاله مكانيزم رنگ‌زني و عملكرد نانوپيگمنت‌هاي CoFe2O4,CoAl2O4,Au(TI,Cr,Sb)O2 با استفاده از XRD,DRS و كالريمتري بررسي شده است. اگرچه ميكروپيگمنت‌هاي رايج مورد استفاده در صنعت سراميك داراي شدت رنگ بالايي هستند مي‌توان از نانوپيگمنت‌ها برخلاف اندازه بسيار كوچك‌شان (زير 50 نانومتر) نيز شدت رنگ قابل قبولي گرفت. اما بايد توجه داشت كه نانوپيگمنت‌ها داراي محدوديت‌هاي دمايي بوده و امكان استفاده دما بالا از آنها به دليل رشد افراطي دانه‌ها وجود ندارد.

مقدمه:
نانوپيگمنت‌ها، مواد آلي يا غيرآلي با اندازه كمتر از 100 نانومتر هستند كه به‌طور شيميايي غير محلول بوده و از لحاظ فيزيكي نيز نسبت به پايه يا بايندرهاي كه همراه آنها مورد استفاده قرار مي‌گيرد خنثي مي‌باشد. امروزه يك رنج وسيع از مواد با اندازه دانه 100تا200 نانومتر در صنعت مورد استفاده قرار مي‌گيرند. به‌طور مثال پيگمنت‌هاي بر پايه ميكا با سايز دانه 20 نانومتر با اثر پيرلسنت در صنايع لوازم‌آرايشي، پلاستيك، پوشش‌ها و اتومبيل استفاده مي‌شود. كاربرد ديگر نانوپيگمنت‌ها، يك نوع جديد صفحه فسفري است كه در تيوب‌هاي كاتديك تلويزيون‌ها قرار داده شده و از نانو پيگمنت‌ها براي بهبود كنتراست و رنگ زمينه استفاده مي‌كند.
استفاده از نانو ذرات مي‌تواند عملكرد پيگمنت‌ها را بهبود بخشد. به‌طور مثال در پوشش‌هاي آلي، نانوپيگمنت‌ها مي‌توانند خواص مكانيكي و اصطكاكي مانند سختي، كرنش شكست، مقاومت كششي و مقاومت سايشي را با حفظ تافنس بهبود بخشند. خصوصيت ديگر نانوذرات، كوچك‌تر بودن آن نسبت به طول موج طيف مرئي است كه سبب عدم پراش و بازتاب در محدوده نور مرئي شده و در نتيجه مي‌توان نانوكامپوزيت ترانسپارنت ايجاد كرد. اين امر امكان توليد پوشش‌هاي ترانسپارنت با مقاومت بالا را مي‌دهد. اما بايد توجه داشت كه پودرها با اندازه دانه كوچك داراي سطح ويژه زيادي هستند و در نتيجه احتمال ايجاد آگلومره بسيار زياد مي‌شود. اما اين امر در مورد پيگمنت‌هاي سراميكي سبب ايجاد يك بازار مصرف زياد شده است زيرا به دليل سطح مخصوص زياد، پوشش سطحي آنها زياد بوده و با توجه به نقاط بازتابش فراوان، بازتابش را افزايش مي‌دهد.
علاوه‌بر آن استفاده از اين ذرات ريز در فرمولاسيون خمير چاپ، توزيع يكنواخت و هموژن همراه با بايندرها را نتيجه مي‌دهد كه سبب افزايش استحكام مكانيكي اين خمير چاپ‌ها بعد از خشك‌شدن مي‌شود. بعد از مخلوط شدن يكنواخت، پيگمنت‌هاي نانو سايز اثرات بهتري را در عمليات سايش و پوليش از خود نشان مي‌دهند.
اين مقاله دكورهاي سراميكي با استفاده از نانوذرات به خصوص در كاشي‌هاي پرسلاني را مورد بررسي قرار مي‌دهد. اين پيگمنت‌ها، افكت لوستر و هنري به لعاب مي‌دهد. بررسي‌هاي اخير درمورد لوستر‌هاي مدرن نشان مي‌دهد كه اين پيگمنت‌ها توسط نانوكريستال‌هاي مس و نقره شكل مي‌گيرد. هم‌چنين احتمال ايجاد آن توسط يك لايه نازك اكسيد‌تيتانيوم برروي يك پايه ترانسپارنت مانند مسكويت به جاي يك سطح پيرلسنت وجود دارد.
يكي از مهم‌ترين روش‌هاي دكورزني در سراميك استفاده از روتوكالرها است كه استفاده از نانوپيگمنت‌ها مي‌تواند مشكلات ناشي از استفاده ميكروپيگمنت‌ها مانند بسته شدن نازل‌ها و توزيع غير‌يكنواخت را كاهش‌دهد. علاوه‌بر آن كيفيت تصويري بهتري با استفاده از اين پيگمنت‌ها مي‌تواند ارائه شود. پيگمنت‌هاي سراميكي رايج با رنج اندازه بين 10-1 ميكرومتر مي‌باشد. اما نانوپيگمنت‌هاي سراميكي با رنج دانه 10 تا80 نانومتر اكنون مورد بررسي قرار گرفته‌اند و شدت رنگ خوبي در يك رنج گسترده در دماي پخت مي‌دهد.

كارهاي تجربي
چهار نوع سوسپانسيون نانوپيگمنت براي چاپ توسط روتوكالر با رنگ‌هاي زرد، مشكي، ارغواني و فيروزه‌اي تهيه شد. اين سوسپانسيون‌ها (جوهرهاي نانوسايز) به صورت اكسيدهاي سراميكي يا فلزات سنتز شده در يك حلال آلي تهيه مي‌شود. آناليز اين پيگمنت‌ها با استفاده از میکروسکوپ الکترونی SEM-FEG و (STEM (Transmission Electron Microscopy Supra40 و یا با استفاده از سیستم (DLS(Dynamic Light Scattering و Instrument.Malven UK و بررسي تركيب فازي با استفاده از پراش اشعه ايكس دما بالا (Xpert Pro, panalyticalAlmelo,The Netherland) انجام شد، تمامي جوهرهاي نانوسايز به صورت تست drop 0.05 تا 0.1 (ميلي‌گرم/سانتي‌متر مربع) بر روي بدنه‌هاي خام سراميكي و با كنترل ميزان نفوذ براي رسيدن به ميزان تجمع واقعي پيگمنت‌ها اعمال مي‌شود. پوشش‌هاي شيشه‌اي تجاري (F1,F2,F3,4) و لعاب‌هاي (S1,S2,S3) و يك بدنه پرسلاني استون‌ور با خواص شيميايي و فيزيكي متفاوت انتخاب مي‌شوند. اين نمونه‌ها در يك كوره الكتريكي با سيكل سريع (60MIN- Cold To Cold) در دماي حداكثر با رنج 800 تا1200 درجه سانتيگراد پخت مي‌شود. نمونه‌هاي پخته شده توسط پراش اشعه ايكس براي بررسي تغيير فاز و اندازه دانه‌ها مورد مطالعه قرار مي‌گيرد و سپس اندازه دانه‌ها با استفاده از معادله Scherrers محاسبه مي‌شود.
طيف جذبي نوري نمونه‌هاي پخته شده در رنج (300 تا 1100 نانومتر VV-VISIBLE-NIR با اسپكتروسكوپي بازتابشي نفوذي (DRS,λ35,Perkin Elmer,Wellesley,USA)ثبت شد. بازتابش (∞R) با استفاده از معادله Kubelka-Munk به جذب (k/S) تبديل مي‌شود:
k/S= 2(1-R∞).(2R∞)-1
پارامترهاي CIE lab از طريق اندازه‌گيري‌هاي انجام شده توسط يك اسپكتروفتومتر پرتابل با 65=D و زاويه جذب استاندارد10 درجه (MSXP400 Hunterlab Miniscan, white glazed tile refrence 31.5=x ,33.3=y) انجام گرفت.
براي مقايسه رنگزني نانوپيگمنت‌ها با پيگمنت‌هاي معمولي، چهار پيگمنت كه در مقياس ميكرومتريك زرد مشكي ارغواني و فيروزه‌اي هستند با لعاب S1 و پوشش شيشه‌اي F1 مخلوط مي‌شود. بايد دقت شود كه ميزان پيگمنت‌ها در همه يكسان باشد. اين نمونه‌ها در كوره الكتريكي پخت شده و تحت آناليز با دستگاه‌هاي كالريمتري، XRD,UV-VISIBLE-NIR قرار مي‌گيرند.

نتايج و بحث
نانوپيگمنت‌هاي ارغواني
طيف‌هاي قرمز توسط نانوذرات فلز طلا ايجاد مي‌شود. در حقيقت ذرات نانوفلزات مانند طلا، نقره و مس داراي جذب زياد بوده و نور مرئي را پراكنده ساخته و شدت رنگ را زياد مي‌كنند. اين خاصيت منحصربه‌فرد به دليل نوسان‌هاي تجمعي الكترون‌هاي هادي كه به نام سطح پلاسما شناخته مي‌شوند، مي‌باشد. رزونانس اين الكترون‌ها سبب ايجاد يك جذب پهن در طيف نور مرئي مي‌شود.
انرژي و شكل باند پلاسما براساس سايز و مورفولوژي نانوذرات تغيير مي‌كند و مي‌تواند براساس رزونانس انرژي و پهناي باند تخمين زده شود. طيف بازتابشي نفوذي سراميك‌هاي رنگ شده با پيگمنت‌هاي نانوطلا، يك باند پلاسمايي را نشان مي‌دهد كه از خصوصيات ذرات كروي است و داراي انرژي ثابت (1-Cm 19000 يا 1- ev 2.3)

تولید نانو سنگ طبیعی ساختمانی

تولید نانو سنگ طبیعی ساختمانی

ضدآب، ضد باکتری و قارچ بودن، ضد فرسایش، مقاومت در برابر ضربه و زلزله، ضد لک، خود تمیز شونده و ضد اسید و خوردگی از مزایایی است که فنآوری نانو می‌تواند در سنگهای فرآوری تولید شده ایجاد کند.


 

 نخستین بار در کشور از فنآوری نانو در تولید سنگ طبیعی ساختمانی در اصفهان استفاده شد. ضدآب، ضد باکتری و قارچ بودن، ضد فرسایش، مقاومت در برابر ضربه و زلزله، ضد لک، خود تمیز شونده و ضد اسید و خوردگی از مزایایی است که فنآوری نانو می‌تواند در سنگهای فرآوری تولید شده ایجاد کند.

 شیخ زین الدین رئیس شهرک علمی و تحقیقاتی اصفهان گفت: فنآوری نانو بر روی سنگهای طبیعی اعمال شده و می‌تواند در کارخانجات تولید سنگ استفاده شود. یکی از فعالان اقتصادی در صنعت سنگ با بیان اینکه 27درصد از ذخایر سنگ جهان در ایران قرار دارد گفت: با وجود این درصد بسیار کمی از صادرات سنگ دنیا در اختیار کشور ما قرار دارد.

معاجزی افزود: در گذشته در مصالح ساختمانی مانند کاشی، چوب، فولاد و بتن از فناوری نانو استفاده شده بود اما این فناوری بر روی سنگ پس از سه سال تحقیق و آزمایش و با 10 میلیارد ریال هزینه 100 درصد در کشور بومی سازی شد. او با اشاره به اینکه مقاومت در برابر سرما، گرما و یخ‌زدگی، سهولت در نظافت سطوح، نارسانای حرارت و برودت و در نتیجه صرفه‌جویی 50درصدی در مصرف انرژی ساختمان‌ها دیگر مزایای فنآوری نانو در سنگ است افزود: سنگها از کانیهای ریز و یا درشت بلور و یا هر دو تشکیل شده است که این ساختار نه چندان همگن از هم گسیختگی سنگ را سرعت می‌بخشد.

معاجزی با بیان اینکه 50درصد از کارخانجات سنگ کشور در استان اصفهان قرار دارد افزود: هم اکنون بیش از 2 هزار واحد سنگبری در اصفهان وجود دارد که ‌هزار و 700 مورد آن فعال است.

http://shasa.ir/newsdetail-123655-fa.html

سرامیک های نانو

سرامیک های نانو

سرامیک های نانو ، سرامیک هایی هستند که اندازه دانه ها یا اجزای سازنده ی آن ها در حد نانومتر است.
سرامیک های نانو ساختاری مستحکم تر و انعطاف پذیر تر از سرامیک های میکرو ساختار می باشند .
سرامیک های پیشرفته به دلیل ویژگی های منحصر به فردی که دارند در بسیاری از صنایع جزو اجزای مهم محسوب می شوند . به عنوان مثال در صنایع شیمیایی به دلیل مقاومت خوبی که در برابر اسیدها و سایر مواد خورنده دارند مورد توجه می باشند . در صنایع هوا- فضا مقاومت این مواد در مقابل حرارت اهمیت زیادی دارد . در صنایع الکترونیک و ارتباطات به دلیل خواص نوری و الکتریکی خوبی که دارند از اجزای مهم محسوب می شوند .
ابررساناهای نانوسرامیکی امروزه در برخی از کابل ها و میدان های الکتریکی به کار رفته اند . مغناطیس های فریتی نانوسرامیکی در ساخت تلفن های همراه کوچکتر و قدرتمندتر کاربرد وسیعی دارند.
امروزه در بیوتکنولوژی در مورد کاشت میکرونی در بدن تحقیق می شود که قرار است به عنوان یک راکتور در بدن انسان کار کند . در این زمنیه به حسگر های سرامیکی در مقیاس نانومتر احتیاج خواهد بود .
در تکنولوژی ساخت کامپیوترها نیز امکان وقوع تحولاتی در راستای استفاده از تراشه های نانوسرامیکی به جای تراشه های سیلیکونی امروزی وجود دارد.

+ نوشته شده در  چهارشنبه 1387/05/09ساعت 2:0 بعد از ظهر  توسط محسن ملاخلیلی میبدی 

دستیابی به دانش فنی اتصال سرامیک به فلز

دستیابی به دانش فنی اتصال سرامیک به فلز
پژوهشگران دانشگاه تربیت مدرس موفق به دانش فنی اتصال سرامیک به فلز برای استفاده در لامپ های مایکرویو و برخی تجهیزات الکترونیکی شدند.
به گزارش شبکه خبر، ایمان فروتن مجری طرح، اتصال سرامیک و فلز را از فرآیندهای پیچیده ای که کاربرد زیادی در صنایع گوناگون دارد ذکر کرد و گفت: در این پژوهش ابتدا سطح سرامیک کاملا تمیز و سپس با استفاده از مولیبدن یا منگنز رنگ آمیزی می شود.

وی افزود: این قطعه برای عملیات سینترینگ (پخت) وارد کوره ای تحت اتمسفر هیدروژن مرطوب شده و پس از آن آب کاری نیکل و دوباره عمل سینترینگ انجام می شود تا این که سرانجام قطعه 30 تا 35 میکرون متالیزه و 2 میکرون نیز آبکاری نیکل انجام می شود.

فروتن نتیجه نهایی کار را تشکیل 3 لایه با ضخامت 50 میکرون بین فلز و سرامیک که وظیفه اتصال را دارند ذکر کرد و گفت: یکی از کاربردهای مهم این قطعه در لامپ های مایکرو ویو را داراست اما از آن در ساخت برخی بردهای الکترونیکی (مانند بردهای مادر رایانه ها) نیز استفاده می شود.

پیش از این برای اتصال سرامیک فلز از روش های مختلف دیگری همچون جوشکار ذوبی اتصال شیشه ای اتصال مکانیکی و اتصال چسبی استفاده می شد که هر کدام برتری ها و مشکلات خاص خود را داشتند اما روش سینترینگ پودرهای فلزی با به کارگیری فناوری بالایی که در انجام آن بکار رفته است نقایص روش های دیگر را از بین برده و منجر به اتصالی مطمئن با استحکام بالا شده است.

این تحقیق در رساله کارشناسی ارشد در دانشگاه تربیت مدرس انجام شده است.

ساخت سرامیک های زیر کونیایی در پارک علم و فن آوری خراسان

ساخت سرامیک های زیر کونیایی در پارک علم و فن آوری خراسان
مدیر خدمات فنی و تخصصی پارک علم وفناوری خراسان گفت: ساخت سرامیک های زیرکونیایی با کاربرد وسیع در صنعت و امور تحقیقاتی برای نخستین بار در کشور در پارک علم و فن آوری این استان صورت گرفت.

مدیر خدمات فنی و تخصصی پارک علم وفناوری خراسان گفت: ساخت سرامیک های زیرکونیایی با کاربرد وسیع در صنعت و امور تحقیقاتی برای نخستین بار در کشور در پارک علم و فن آوری این استان صورت گرفت.

 به گزارش خبرنگار مهر در مشهد، اکبر امینی ظهر امروز در جمع خبرنگاران گفت: محور اصلی فعالیت های پایلوت سرامیک این پارک بر ساخت سرامیک های پیشرفته از جنس آلومینیومی و زیر کونیایی با خلوص 99 درصد است که مقاومت بسیار بالایی نسبت به حرارت، سایش و محیط های شیمیایی دارد.

وی افزود: سختی این نوع از سرامیک ها یک درجه کمتر از الماس است و عمده ترین کاربرد آنها در صنایع دفاع، هواپیما سازی، صنایع فولاد و مس و سازمان انرژی اتمی کشور است.

امینی با بیان اینکه تا کنون محصولات مورد نیاز کشور در این زمینه از خارج وارد می شد، تصریح کرد: گروه سرامیک این پارک با در اختیار داشتن تجهیزات منحصر به فرد از قبیل پرس ایزواستاتیک و کوره یک متر مربعی 1800 درجه توانسته گام های موثری در راستای تامین بخشی از نیازهای کشور بر دارد.

وی در پایان خاطر نشان کرد: تحقیق و پژوهش در خصوص ساخت سرامیک های جدید به خصوص سرامیک های نانو ساختار و سرامیک های ماشین کاری جز برنامه های آتی این مرکز است.

تکنیک درزگیری شکاف های سرامیک بدنه شاتل آزمایش می شود  

تکنیک درزگیری شکاف های سرامیک بدنه شاتل آزمایش می شود
ماموریت آتی شاتل دیسکاوری دربرگیرنده پیاده روی فضایی خواهد بود تا تکنیک تعمیر سرامیک های گرمایی آسیب دیده مورد آزمایش جدی قرار گیرد.

ماموریت آتی شاتل دیسکاوری دربرگیرنده پیاده روی فضایی خواهد بود تا تکنیک تعمیر سرامیک های گرمایی آسیب دیده مورد آزمایش جدی قرار گیرد.

 به گزارش خبرگزاری مهر، ناسا اعلام کرده است این آزمایش جدی در جریان ماموریت آتی شاتل دیسکاوری که در 23 اکتبر ( اول آبان) به فضا پرتاب می شود انجام خواهد شد.

این تکنیک که پس از فاجعه کلمبیا در سال 2003 ارایه شد دربرگیرنده استفاده از وسیله ای مشابه اسلحه درزگیر است. دانشمندان در این پیاده روی فضایی ماده پلاستیکی شکلی را با استفاده از این اسلحه به درون شکاف ها یا حفره های ایجاد شده در سرامیک های آسیب دیده بدنه شاتل تزریق می کنند.

ناسا امیدوار است که این ماده شرایطی را برای شاتل ایجاد کند که با استفاده از آن توانایی خود برای حفاظت از بدنه اش در برابر گرمای فوق العاده شدید به هنگام ورود مجدد به اتمسفر زمین را باز یابد.

بر اساس گزارش تکنولوژی ریویو، به صورت معمول این سرامیک ها به وسیله سطح شیشه ای سیاه رنگی پوشیده می شوند که گرمای فوق العاده شدید را پس می زنند. هنگامی که این پوشش خارجی آسیب ببیند و سیلکای سفیدرنگ در معرض گرما قرار گیرد، مقاومت بدنه شاتل نسبت ذوب شدن ضعیف می شود.

نبرد سربازان «نانو»

نبرد سربازان «نانو»
بـا تـوانـايـى مـافـوق بشرى

 
 

تبسم پيرزادى ‎/ بخش نخست
فناورى نانو يعنى بررسى مواد در ابعاد اتمى يا مولكولى. اين ساده ترين و عاميانه ترين تعريفى است كه مى توان از فناورى نانو ارائه داد. مى دانيم كه يك نانومتر ۱۰ به توان منفى ۹ يا يك ميليارديوم متر است. اين عدد يك هشتاد هزارم قطر موى انسان و يا ۱۰ برابر قطر يك اتم هيدروژن است.
* كاربردهاى نانوفناورى در صنايع بهداشتى و آرايشى
استفاده از مواد غيرآلى به عنوان جاذب اشعه خورشيد براى كاربرد در ضدآفتاب ها، انقلاب بزرگى در صنايع بهداشتى و دارويى به وجود آورده است. استفاده از نانو ذرات اكسيد روى براى كرم هاى ضدآفتاب و نيز به عنوان ضدالتهاب و نانو ذرات اكسيد تيتانيوم براى كاهش صدمات ناشى از آسيب روزافزون اشعه ماوراى بنفش بر روى پوست، گسترش پيدا كرده است. استفاده از نانو ذرات اكسيد تيتانيوم و سيليكون بر روى صورت موجب مى شود پوست صورت، ظاهرى صاف و بدون چروك به خود بگيرد. البته از اين نانو ذرات به عنوان درمان خشكى پوست هم استفاده مى شود. همچنين از نانو ذرات اكسيد تيتانيوم در شامپوهاى محافظ پوست، كرم صورت و پمادهاى بهداشتى ديگر استفاده مى شود. ساخت نانو ماشين هايى كه قادر هستند، فرم موى افراد را به نحو دلخواه آنها تغيير دهند، چين و چروك پوست را صاف كرده و چربى اضافى را جمع آورى كنند، هم قابل توجه است.
* محافظ پوست با قابليت نفوذ عميق
صنايع آرايشى و بهداشتى نقش مهمى در پيشبرد صنعت ذرات دارند. يكى از اهداف اين صنايع، پيدا كردن سيستم رسانش مواد فعال متنوع با قابليت نفوذ عميق است. يكى از بزرگترين شركت هاى توليدكننده مواد آرايشى در جهان، اولين محصول نانوفناورى خود را در سال ۱۹۹۸ معرفى كرد. اين محصول كرم ضدچروك است كه در آن از يك فرايند انحصارى نانوفناورى (تا ۲۰۰ نانومتر) به منظور وارد كردن ويتامين A به درون يك كپسول پليمرى استفاده شده است. به اين صورت كپسول مانند اسفنج، كرم را درون خود جذب و نگهدارى مى كند تا اين كه پوسته بيرونى آن در زير پوست حل شود. بنابراين نانوفناورى مى تواند مسيرى به سمت جوانى طولانى باشد. شركت نانوفيلم با استفاده از نانوفناورى، پوشش هاى پليمرى بسيار نازك ضدانعكاس و حفاظتى براى عينك ها ساخته است، به گونه اى كه شيشه آنها در مقابل خراشيدگى داراى مقاومت و ضدانعكاس است.
اين شركت ابتدا لايه هايى به ترتيب با ضخامت ۱۵۰ نانومتر و ۲۰ ميكرون را بر روى سطح لنزها قرار مى دهد و سپس از فرايند خودسامانى شيميايى براى قرار دادن پوشش پليمرى برروى سطح خارجى عدسى ها استفاده مى كند. ضخامت اين پوشش ۳ تا ۱۰ نانومتر است كه عدسى ها را ضدانعكاس مى كند.
اين پوشش علاوه بر ايجاد خاصيت ضدانعكاسى براى عدسى ها، چربى و لكه ها را از روى آن برطرف و عدسى ها را حساس تر مى كند.
* نانوجوراب
نه تنها ورزشكارها بلكه اغلب مردم از عرق پا رنج مى برند و نمى توانند آن را تحمل كنند.
به طور طبيعى هر پا داراى ۲۵۰ هزار غده عرقى است كه قادرند حدود ۵۰۰ميلى ليتر عرق در روز توليد كند. عرق پاى ورزشكاران ناشى از قارچ هايى است كه بين پنجه پا و چين و چروك پوست جمع مى شوند. به تازگى جوراب هايى از جنس كتان كه با استفاده از نانو ذرات نقره بهبود پيدا مى كنند از سوى شركت «سول فرش» وارد بازار شده است.
نانوذرات نقره از رشد باكترى ها و قارچ ها جلوگيرى كرده و به اين وسيله از چرب شدن و بدبو شدن پا جلوگيرى مى كند. جوراب هاى حاوى نانو ذرات نقره، باعث مهار رشد باكترى و قارچ ها مى شود و از بروز بوى بد پاها، مسائل مربوط به پاى ورزشكاران، عفونت ناخن پا و عفونت كف پا كه بيشتر در افراد ديابتى بروز مى كند، جلوگيرى مى كند.
* پارچه هاى ضدچروك و ضدلكه
شركت آمريكايى نانوتكس با اضافه كردن ساختارهاى مولكولى به الياف كتان، اليافى ساخته است كه مايعات و لكه ها بر روى آنها- حركت نموده و جذب نمى شوند. بنابراين چنانچه قهوه بر روى شلوار سفيد رنگى ريخته شود به طرز شگفت انگيزى بر روى آن حركت كرده و جذب نمى شوند. (مثل حركت قطرات آب بر روى پر)
نانوواكس تيم ملى اسكى كانادا از نوعى واكس نانو استفاده كرده است. البته به زودى هر اسكى بازى مى تواند از آن استفاده كند. نانوواكس سراكس يكى از اولين محصولات جهانى است كه با استفاده از نانوفناورى شيميايى، پوشش هوشمندى با خواص چند عملكردى ايجاد مى كند.ا ين واكس به وسيله شركت آلمانى نانوگيت توليدشده است كه سطحى بسيار ليز و سخت ايجاد مى كند. اين پوشش بسيار نازك، نسبت به پوشش هاى قبلى كه به سرعت خاصيت خود را از دست مى دادند، بسيار بادوام تر است. اين پوشش هوشمند با كاهش دما بسيار سفت مى شود و با كريستال هاى برف و پوست سازگارى بسيار خوبى دارد. محصولات نانواكس با فرمول هاى مختلفى براى انواع ورزش هاى زمستانى كه در شرايط مختلف انجام مى شوند، توليد شده اند.
شركت سوئيسى «نانواسفر» به تازگى در رقابت با شركت آلمانى محصولاتى توليد كرده است كه نه تنها در صنايع پوشاك سازى بلكه در بخش هاى پزشكى و لوازم خانگى مثل مبلمان هم كاربرد دارند. در واقع محصولات اين شركت هم ضدچربى است.
* نانوفناورى در وسايل پزشكى
به طور معمول اعضاى قابل كاشت در بدن، مانند دريچه هاى قلب، ساخت اندام هاى مورد نياز در ترميم هاى ارتوپدى ساخته شده از تيتانيوم و فولادهاى ضدزنگ با ساير اعضاى بدن سازگارى دارند، ولى متأسفانه ممكن است در طول عمر بيماران دچار خوردگى شده و كارآيى خود را از دست بدهند.
استفاده از نانوكريستال هاى اكسيد زيركونيوم، به عنوان يك عنصر بسيار سخت، غيرخورنده و مقاوم در مقابل واكنش هاى بدن جايگزين بسيار خوبى براى روش هاى متداول است. نانوكريستال هاى «سيليكون كربيد» به علت وزن كم، مقاومت بسيار عالى و سازگارى با اعضاى بدن براى ساخت دريچه هاى مصنوعى قلب در آينده به كار خواهد رفت. ساخت ربات هايى با كاربردهاى بسيار متفاوت در بدن در اندازه هاى كوچك بخش مهمى از كاربردهاى وسيع اينگونه مواد را شامل مى شود.
* كاربردهاى نانوفناورى در صنعت
سراميك ها بسيار سخت، شكننده و غيرقابل ماشينكارى بوده و كوچك شدن ذرات آنها در حد نانوكريستال ها باعث شكنندگى بيشتر آن مى شود. امروزه نانوكريستال هاى نيترات و يا كربيد سيليكون در ساخت قطعات ماشين آلات مختلف مانند فنرهاى بسيار مقاوم، بلبرينگ ها، سوپاپ هاى موتور، اجزاى كوره ها و به علت آن كه به آسانى قابل ساخت بوده و مقاوم در مقابل حرارت و واكنش هاى شيميايى مقاوم هستند، كاربرد وسيعى دارند. در صورتى كه اين مواد با استفاده از پرس فشرده شوند، مقاومت حرارتى بسيار زيادى را در مقايسه با ساير سراميك ها به دست مى آورند.
استفاده از پوشش هايى در اندازه نانو و يا چند اتم، امكانات ويژه اى را به وجود آورده است. به تازگى شيشه هايى ساخته شده كه با دى اكسيد تيتانيوم بسيار فعال پوشش داده شده است. اين شيشه ها ضد باكترى، دفع كننده آب و از بين برنده مواد شيميايى بوده و به طور خودكار خود را تميز مى كنند. كاربرد ديگر مواد نانو ساختن پوشش هاى بسيار مقاوم در مقابل خش، به صورت يك يا چند لايه بر روى لايه اصلى است. گروه بى شمارى پارچه هاى قابل تنفس، ضدآب و لكه با كنترل منافذ و ناهموارى هاى سطح آن در حد اندازه هاى نانو از مواد پليمرى و غيرآلى ساخته شده اند. ابزار ساخته شده از كريستال هاى تنگستن، تانتانيم و تيتانيوم در اندازه هاى نانو، منجر به ساخت ابزار برش بسيار سخت تر در مقايسه با همان ماده در اندازه ذرات بزرگتر شده است. كاربرد اين ابزار در سوراخكارى، برش فلزات در ماشين تراش، قالب سازى و سنگ برى بسيار وسيع است.
 
 
 
 

فناوري نانو

در طول تاريخ بشر از زمان يونان باستان، مردم و به‌خصوص دانشمندان آن دوره بر اين باور بودند كه مواد را مي‌توان آنقدر به اجزاء كوچك تقسيم كرد تا به ذراتي رسيد كه خردناشدني هستند و اين ذرات بنيان مواد را تشكيل مي‌دهند، شايد بتوان دموكريتوس فيلسوف يوناني را پدر فناوري و علوم نانو دانست چرا که در حدود 400 سال قبل از ميلاد مسيح او اولين كسي بود كه واژة اتم را كه به معني تقسيم‌نشدني در زبان يوناني است براي توصيف ذرات سازنده مواد به كار برد.
با تحقيقات و آزمايش‌هاي بسيار، دانشمندان تاکنون 108 نوع اتم و تعداد زيادي ايزوتوپ كشف كرده‌اند. آنها همچنين پي برده اند كه اتم‌ها از ذرات كوچكتري مانند كوارك‌ها و لپتون‌ها تشكيل شده‌اند. با اين حال اين كشف‌ها در تاريخ پيدايش اين فناوري پيچيده زياد مهم نيست.
نقطه شروع و توسعه اوليه فناوري نانو به طور دقيق مشخص نيست. شايد بتوان گفت كه اولين نانوتكنولوژيست‌ها شيشه‌گران قرون وسطايي بوده‌اند كه از قالب‌هاي قديمي(Medieal forges) براي شكل‌دادن شيشه‌هايشان استفاده مي‌كرده‌اند. البته اين شيشه‌گران نمي‌دانستند كه چرا با اضافه‌كردن طلا به شيشه رنگ آن تغيير مي‌كند. در آن زمان براي ساخت شيشه‌هاي كليساهاي قرون وسطايي از ذرات نانومتري طلا استفاده مي‌‌شده است و با اين كار شيشه‌هاي رنگي بسيار جذابي بدست مي‌آمده است. اين قبيل شيشه‌ها هم‌اكنون در بين شيشه‌هاي بسيار قديمي يافت مي‌شوند. رنگ به‌وجودآمده در اين شيشه‌ها برپايه اين حقيقت استوار است كه مواد با ابعاد نانو داراي همان خواص مواد با ابعاد ميكرو نمي‌باشند.
در واقع يافتن مثالهايي براي استفاده از نانو ذرات فلزي چندان سخت نيست.رنگدانه‌هاي تزييني جام مشهور ليکرگوس در روم باستان ( قرن چهارم بعد از ميلاد) نمونه‌اي از آنهاست. اين جام هنوز در موزه بريتانيا قرار دارد و بسته به جهت نور تابيده به آن رنگهاي متفاوتي دارد. نور انعکاس يافته از آن سبز است ولي اگر نوري از درون آن بتابد، به رنگ قرمز ديده مي‌شود. آناليز اين شيشه حکايت از وجود مقادير بسيار اندکي از بلورهاي فلزي ريز700 (nm) دارد ، که حاوي نقره و طلا با نسبت مولي تقريبا 14 به 1 است حضور اين نانوبلورها باعث رنگ ويژه جام ليکرگوس گشته است.
در سال1959 ريچارد فاينمن مقاله‌اي را دربارة قابليت‌هاي فناوري نانو در آينده منتشر ساخت. باوجود موقعيت‌هايي كه توسط بسياري تا آن زمان كسب‌شده بود، ريچارد. پي. فاينمن را به عنوان پايه گذار اين علم مي‌شناسند. فاينمن كه بعدها جايزه نوبل را در فيزيك دريافت كرد درآن سال در يک مهماني شام كه توسط انجمن فيزيک آمريكا برگزار شده بود، سخنراني كرد و ايده فناوري نانو را براي عموم مردم آشكار ساخت.
عنوان سخنراني وي «فضاي زيادي در سطوح پايين وجود دارد» بود.
سخنراني او شامل اين مطلب بود كه مي‌توان تمام دايره‌المعارف بريتانيكا را بر روي يك سنجاق نگارش كرد.يعني ابعاد آن به اندازه25000/1ابعاد واقعيش كوچك مي شود. او همچنين از دوتايي‌كردن اتم‌ها براي كاهش ابعاد كامپيوترها سخن گفت (در آن زمان ابعاد كامپيوترها بسيار بزرگتر از ابعاد كنوني بودند اما او احتمال مي‌داد كه ابعاد آنها را بتوان حتي از ابعاد كامپيوترهاي كنوني نيز كوچكتر كرد. او همچنين در آن سخنراني توسعه بيشتر فناوري نانو را پيش‌بيني نمود.
برخي از رويدادهاي مهم تاريخي در شکل گيري فناوري و علوم نانو