منبع:راسخون
مفاهیم زمینه ای در علم سرامیک و شکست
برای آشنایی با مواد سرامیکی ، بهتر است به دو مفهوم توجه کنیم که در این مقاله سعی داریم که این مفاهیم را توضیح دهیم . اولین مفهوم این است که تنها سه بخش عمده از مواد سرامیکی داریم که در صنعت دندانسازی مورد استفاده قرار می گیرند . این سه گروه به شرح زیر هستند :1 ـ مواد شیشه ای ( glass materials )
2 ـ شیشه های پر شده با ذرات ( particle-filled glasses )
3 ـ سرامیک های پلی کریستال ( polycrystalline ceramics )
که خواص و ویژگی های هر یک از این گروه ها را مورد بحث قرار می دهیم .
دومین مفهوم این است که هر یک از این مواد سرامیکی به طور بالقوه می توانند به صورت ترکیبی ( کامپوزیتی ) عمل کنند که این بدین معناست که این مواد می توانند به صورت ترکیبی از دو یا چند گروه بالا مورد استفاده قرار گیرند . از این لحاظ بسیاری از موادی که به ظاهر متفاوت هستند ، هنگامی که از دیدگاه ما مورد بررسی قرار گیرند ، روابط و شباهت های یکسانی را در ترکیبات ( کامپوزیت ها ) ایفا می کنند .
بررسی های تاریخی از استفاده ی مواد سرامیکی در صنعت دندانسازی دو رویه را درطی زمان بیان می کند . این دو رویه به شرح زیر هستند :
1 ـ سرامیک های دندانسازی که حالت آمورف ( شیشه ای ) دارند ، از لحاظ زیبایی نسبت به انواع دیگر سرامد هستند . و این در حالی است که سرامیک هایی که مقاومت کششی بالاتری دارند ، عمدتاً ساختاری کریستالی دارند . و البته در ساخت مواد دندانسازی هر دو فاکتور زیبایی و استحکام برای ما مهم است .
2 ـ درطی گذر زمان ، حرکت به سمت استفاده از مواد با ساختار پلی کریستال کامل ، انجام شده است . در جداول 1 و 2 جزئیاتی از ترکیبات پایه و مثال های تجاری از مواد سرامیکی مورد استفاده در دندانسازی آمده است . این موارد را بر اساس سه گروه اصلی مواد مورد استفاده در صنعت دندانسازی طبقه بندی کردیم .



سرامیک های شیشه ای ( glassy ceramics ) :
مواد سرامیکی شیشه ای ، بهترین تطابق را با خواص اپتیکی دندانها و عاج آنها دارند .شیشه یک شبکه ی سه بعدی از اتم هاست که الگوی منظم فضایی ندارد . در این مواد ، بین نزدیک ترین همسایه و همسایه ی بعدی ، الگوی منظم فضایی ( از لحاظ فاصله یا زاویه ) وجود ندارد ؛ بنابراین ساختار شیشه آمورف است . ( یا ساختاری بی شکل دارد )
به طور کلی شیشه های مورد استفاده در سرامیک های دندانی از یک گروه مینرالی معدنی با نام فلدسپارها ، مشتق می شوند و برپایه ی سیلیکا ( اکسید سیلیسیم ) و آلومینا ( اکسید آلومینیوم ) ساخته شده اند . از این رو پرسلان های فلدسپاتی به خانواده ای تعلق دارند که به آنها شیشه های آلومینوسیلیکاتی می گویند . شیشه هایی که برپایه ی فلدسپار هستند ، نسبت به تبدیل شدن به حالت بلوری درطی پخت مقاومت نشان داده و دارای گسترده پخت وسیعی هستند ( پایداری آنها اگر دما به بالاتر از حد بهینه برسد ، یکباره افت می کند) این مواد زیست سازگار هستند . در شیشه های فلدسپاتی ، شبکه ای متشکل از اتصالات پل مانندی وجود دارد که این پل ها از اتصال بین سیلیسیم با اکسیژن تشکیل شده اند . این اتصالات گاه و بی گاه به وسیله ی کاتیون هایی مانند سدیم ( ) یک بار مثبت و یا پتاسیم یک بار مثبت ( ) شکسته می شوند . حضور این بارهای مثبت موجب اصلاح شیشه و بالانس بارهای اتم های اکسیژن غیر پل می شوند . کاتیون های اصلاح کننده ، خواص مهمی از شیشه را تغییر می دهند ؛ برای مثال : دمای پخت یا ذوب را کاهش می دهند و یا موجب افزایش انبساط و انقباض حرارتی می شود .
شیشه های پر شده با ذرات ( Partic - filled glasses ) :
در این نوع از مواد ، ذرات پر کننده به ترکیب اولیه ی شیشه اضافه می شوند . این اضافه شدن ذرات موجب بهبود خواص مکانیکی و کنترل اثرات اپتیکی مانند ماتی ( opalescence ) ، رنگ ( color ) و شفافیت ( opacity ) می شود . این پر کننده ها معمولاً از مواد کریستالی انتخاب می شوند ولی این امکان وجود دارد که این مواد از ذرات شیشه ای با نقطه ذوب بالاتر نسبت به شیشه ی پایه نیز انتخاب شوند . یک چنین ترکیباتی که بر پایه ی دو یا چند ماده ی مجزا ( فاز مجرا) تشکیل شده اند ، با عنوان کامپوزیت ( composites ) معروف اند . البته نام کامپوزیت در نوشته های مربوط به دندانپزشکی بیشتر به معنای کامپوزیت های با پایه ی رزین ( resin based composites ) است . این تصویر که اکثر سرامیک های دندانی ، مواد کامپوزیتی هستند ، برای درک بهتر در مورد آنها ، مفید می باشد . برای اینکه در مطالعه ی شیشه های پر شده با ذرات گیج نشویم ، این مواد را بر اساس نوع ذرات پر کننده و مقدار آنها ، علت اضافه کردن ذرات و چگونگی اضافه شدن ذرات به شیشه پایه ، طبقه بندی می کنیم .اولین پر کننده ای که برای سرامیک های دندانی استفاده شد ، ذرات کریستالی ، مینرالی است که لوسیت نامیده می شود . این پر کننده برای تولید پرسلان هایی ( چینی هایی ) استفاده می شود که بتوانند به خوبی و بر اساس فلزات مورد استفاده در ساختارش آتش بگیرد . ضریب انبساط گرمایی لوسیت بالا است . در زیر ضریب انبساط گرمایی برای عده ای از مواد آمده است :
ضریب انبساط گرمایی | نوع ماده |
| لوسیت |
| شیشه های فلدسپاتی |
| آلیاژهای دندانی |
افزایش در استحکام میانگین در قطعات پروتزها نیز به وسیله ی پر کننده ی مناسب و یکنواختی در پراکندگی پر کننده در فاز شیشه ای ، به دست می آید . بر اساس چیزی که گفتیم یک تکنیک با نام استحکام بخشی دیسپرشن ( dispersion strengthening ) به وجود آمده است . اولین سرامیک استحکام داده شده به وسیله ی این روش ، از شیشه های فلدسپاتی با پر کننده ی ذرات آلومینیوم اکسید ( با درصد وزنی 55 % ) ساخته شد . البته از لوسیت با درصد 45 ـ 55 درصد وزنی نیز برای تولید قطعات استحکام داده شده به وسیله ی این روش ، استفاده شده است که این درصد استفاده شده از لوسیت از مقدار مورد نیاز برای سرامیک ـ فلز بیشتر است . سرامیک های تجاری با پر کننده ی به هم چسبیده از لوسیت نیز وجود دارند که این نوع سرامیک را با پرس کردن پودر و مواد اولیه ی لازم ، در داخل یک قالب تولید می کنند . به غیر از رفتار انقباضی در سرامیک های دندانسازی ، گفته شده است که این دو مزیت را در زیر می بینیم :
1 ـ لوسیت به خاطر ضریب شکستش که به ضریب شکست شیشه های فلدسپاتی نزدیک است ؛ مورد توجه قرار دارد . این نزدیکی ضریب شکستها ، موجب باقی ماندن حالت نیمه شفافی در این نوع شیشه هاست .
2 ـ لوسیت با سرعت بیشتری نسبت به شیشه ی بدون لوسیت اچ می شود . و موجب پدید آمدن خاصیت اچ شدن انتخابی ( selective etching ) می شود که درطی عمل اچ شدن شیشه ی حاوی لوسیت ، تعداد زیادی برجستگی ایجاد می شود که این برجستگی ها موجب افزایش قدرت پیوند میکرومکانیکی بین لوسیت و شیشه می شود .
شیشه ـ سرامیک ها ( زیر مجموعه ی ویژه ای از شیشه های پر شده با ذرات ) :
ذرات پر کننده ی کریستالی می توانند به صورت مکانیکی به شیشه اضافه شوند ، برای مثال این کار را می توان با مخلوط کردن ذرات کریستالی پر کننده باپودر شیشه ، قبل از پخت انجام داد . در تحقیقات انجام شده در سالهای اخیر، ذرات پر کننده در داخل جسم شیشه ای ، رشد داده می شوند . در واقع این کار پس از شکل دهی نمونه ( مانند یک پروتز ) انجام می شود .پس از انجام عمل شکل دهی ، جسم شیشه ای تحت عملیات حرارتی خاصی قرار می گیرد که این عملیات حرارتی موجب رسوب و رشد فاز کریستالی در داخل شیشه می شود .
به دلیل اینکه پر کننده ها از لحاظ شیمیایی از خود اتم های شیشه مشتق شده اند ، ترکیب شیشه ی باقی مانده درطی این پروسه که Ceraming نام دارد ، عوض می شود . این ماده ی به وجود آمده که در اصل یک کامپوزیت پر شده با ذرات است ، شیشه سرامیک نامیده می شود . ( Dentsply ) material dicor اولین شیشه ـ سرامیک تجاری است که برای تولید پروتزهای ثابت کننده ، استفاده شد . این شیشه ـ سرامیک شامل ذرات پر کننده ای از یک نوع میکای کریستالی ( با درصد حجمی تقریباً 55 درصد ) است .
به علاوه ، اخیراً یک شیشه ـ سرامیک حاوی 70 درصد حجمی پر کننده ی دی سیلیکات لیتیم برای استفاده های دندانپزشکی به صورت تجاری ، تولید شده است .
سرامیک های پلی کریستال ( polycrystalline ceramics ) :
سرامیک های پلی کریستال هیچ قسمت شیشه ای ( آمورف ) ندارد . و همه ی اتم هایش به صورت متراکم و در یک آزمایش منظم قرار گرفته اند که این امر باعث می شود که یک ترک با سختی و مشکل بیشتری نسبت به شیشه های با دانسیته ی کمتر و شبکه ی نامنظم ، گسترش پیدا کند . از این رو ، سرامیک های پلی کریستال به طور عمومی از سرامیک های شیشه ای محکمتر هستند و تافنس ( چقرمگی ) آنها نیز بیشتر است .تولید اشکال پیچیده ( به عنوان مثال یک پروتز ) از سرامیک های پلی کریستال ، مشکل تر از تولید این قطعات از سرامیک های شیشه ای است . از این رو ، پروتزهایی با کارایی خوب که از سرامیک های پلی کریستال ساخته شده باشد تا قبل از استفاده از وسایل کامپیوتری ( computer – aid manufacturing ) به صورت عملی مورد استفاده قرار نگرفت .

سرامیک های پلی کریستال تمایل به مات بودن بیشتری نسبت به سرامیک های شیشه ای دارد ، بنابراین این مواد در کلیه ی مکان های مورد نیاز در دیواره ی پروتزها استفاده نمی شود . این سرامیک ها که از لحاظ مکانیکی خواص بهتری نسبت به مواد شیشه ای دارند ، معمولاً با روکشی از مواد شیشه ای مورد استفاده قرار می گیرند تا حالت زیبایی پروتز تولیدی بیشتر شود .
سرامیک ها در حالت کلی نور را از خود عبور می دهند در حالی که فلزات حتی در ضخامت های بسیار کم نیز نور را از خود عبور نمی دهند . در واقع نحوه ی قرارگیری باندهای الکترونی در فلزات به نحوی است که طول موج مرئی را کاملاً جذب می کند . اما سرامیک ها دارای باندهای الکترونی هستند که طول موج مرئی را از خود عبور می دهد . حال این سوال پیش می آید که اگر سرامیک ها نور را از خود عبور می دهند ! پس چرا سرامیک ها حالت کدر مانند دارند ؟
در جواب باید گفت که اکثر سرامیک ها ، پلی کریستال اند و این پلی کریستال بودن آنهاست که موجب کدر بودن آنها می شود و در صورتی که بتوان یک سرامیک را به صورت تک کریستال تهیه کرد ، می توان آن را به صورت شفاف دید . البته در مورد سرامیک ها ، علاوه بر پلی کریستال بودن ، ضخامت نیز بر انتقال نور در آنها تاثیر دارد . در واقع در استفاده از سرامیک های پلی کریستال در دندانسازی به ضخامت بدنه ی سرامیکی نیز توجه می شود که این مساله باعث این می شود که یک بدنه راپوشش دهند ولی بدنه ی دیگری ( با ضخامت کمتری ) را پوشش ندهند


)،
این نوع میکا ناپایدار می شود و در حضور کوارتز تجزبه گشته و به فلدسپار
پتاسیک و سیلیمانیت (sillimanite) تبدیل می شود.(طبق فرمول زیر):
تشکیل می شود. این فرآیند در کریستالیزاسیون اولیه ی کانی های آذرین مانند گرانیت ها و پگماتیت ها (Pegmatites) نیز رخ می دهد.
را تولید می کند. ایالات متحده ی آمریکا سالانه 75000 تن میکای ورقه ای و
ذره ای تولید می کند. اگر چه ایالات متحده ی آمریکا از لحاظ تاریخی تولید
کننده ی صفحات میکایی است ولی منابع داخلی این ماده به پایان رسیده و از
این رو این کشور تنها به تولید میکای ورقه ای و ذره ای می پردازد.
در طبیعت به میزان فراوان وجود ندارد و باید به صورت مصنوعی ساخته شود.
این ماده دارای خواص زیادی است که موجب شده تا این ماده برای کاربردهای دما
بالا مناسب باشد. مولایت دارای ضریب انبساط حرارتی بسیار کوچکی است.(این
مسأله باعث می شود که مولایت مقاومت به شک حرارتی خوبی داشته باشد). این
ماده همچنین در دمای بالا مقاومت به خزش خوبی دارد و از همه مهمتر، مولایت
به آسانی با شیشه ی مذاب یا سر باره ی فلزات مذاب واکنش نمی دهد و در
اتمسفر های کوره ای خورنده پایدار است.
، بوکسیت و کائولن تولید شود. (کیانیت مینرالی است که به صورت طبیعی در
سنگ های دگرگون یافت می شود.) این مخلوط (درنسبت های معین) در دماهای
بالاتر از 1600c° زینته می شود. ماده ی زینته شده به این روش دارای 90-85%
مولایت است . علاوه بر مولایت درصدی شیشه و کریستو بالیت (یکی از پلی فرم
های
وجود دارد . آفریقای جنوبی تولید کننده ی عمده ی کیانیت دنیاست این کشور سالانه 165000 تن کیانیت تولید می کند.
، آلومینا ، کوراندوم) بیشترین ماده ی شیمیایی غیر آلی است که در صنعت
سرامیک استفاده می شود. این اکسید از کانی بوکسیت (bauxite) و بوسیله ی
فرآیند بایر (bayer Process) تولید می شود. بوکسیت مخلوطی از اکسید
آلومینیوم هیدراته با اکسید آهن
، سیلیس
(به عنوان ناخالصی) تشکیل شده است. این کانی از هوا زدگی و متلاشی شدن سنگ
های آلومینیوم دار بوجود می آید که در اغلب موارد جنس سنگ ها از نوع آذرین
است. این کانی در مناطق گرمسیری تشکیل می شود. مانند کائولن، بوکسیت نیز
می تواند به صورت ذخایر اولیه و ثانویه باشد.
است. کریستال های آلومینا می توانند اندازه ی بین o.1 – 25 میکرون داشته
باشد. شکل 2 کارخانه ی تولید آلومینا به روش بایر را نشان می دهد.
و در فشار کل O.5MPa اتفاق می افتد. همه ی آلومینای هیدراته ی موجود در
بوکسیت حل می گردد و به صورت سدیم آلومینات در می آید.طبق فرمول زیر: 
به داخل محلول بوجود آمده ،فرآیند ایجاد رسوب تسریع می شود و عمل رسوب زایی ایجاد می شود.
داشته باشد. این میزان از خلوص برای آلومینا برای بسیاری از کاربردها
مناسب است. کنترل دقیق شرایط ته نشست شدن، شستشوی رسوبات و کنترل شرایط
کلیناسیون و آسیا ب کردن می تواند موجب تشکیل آلومینایی با خلوص 99.99%
شود. قیمت آلومینای کلسینه شده ی معمولی 0.60 دلار بر کیلوگرم است و این
قیمت می تواند برای آلومینای کلسینه شده ی با خلوص بالاتر به 2.00 دلار بر
کیلوگرم برسد. قیمت گرید متالورژیکی (مناسب برای تولید آلومینوم ) تقریبا ً
150 دلار برتن است. 
می دهند. تشکیل این فاز باعث کاهش دانستیه، استحکام ، مقاومت به شک حرارتی و مقاومت به خوردگی محصول نهایی می شود. جدول 4 درصد 

سرامیک مشتق از کلمه keramos یونانی است که به معنی سفالینه یا شئی پخته شده است. در واقع منشا پیدایش این علم همان سفالینههای ساخته شده توسط انسانهای اولیه هستند. در واقع قبل از کشف و استفاده فلزات، بشر از گلهای رس به علت وفور و فراوانی آنها و همچنین شکلگیری بسیار خوب آنها در در صورت مخلوط شدن با آب و درجه حرارت نسبتاً پایین پخت آنها استفاده میکرد. آلومینوسیلیکاتها که خاکهای رسی خود آنها به حساب میآیند، از عناصر آلومینیوم، سیلیسم و اکسیژن ساخته میشوند که این سه عنصر بر روی هم حدود 85 درصد پوسته جامد کره زمین را تشکیل میدهند. این سه عنصر فراوانترین عناصر پوسته زمین هستند.