از سرامیک های پیزوالکتریک چه می دانید؟ 

خلاصه: 
در این مقاله بصورت خلاصه در مورد آنالیز و خواص سرامیک های پیزوالکتریک توضیح می دهیم. تمرکز ما بر روی سرامیک های پلی کریستال است، بنابراین سرامیک های تک کریستال، مواد پلیمری، کامپوزیت های آلی / غیرآلی (organic / inorganic composites) جزء اهداف مورد بررسی در این مقاله نمی باشد. برای فهمیدن کامل رفتار سرامیک های پلی کریستال پیزوالکتریک، مطالعه ی اطلاعات پایه در زمینه ی سرامیک ها ضروری می باشد. 
برای همین مسأله ما مقدمه ای کوتاه در مورد تاریخچه ی پیزوالکتریسیته و مباحث مربوط به کارهای انجام شده بر روی سرامیک ها و پیشرفت های مربوط به رابطه ی ساختار و رفتار مواد پیزوالکتریک به شما ارائه می دهیم. ما کوشش می کنیم ما متداول ترین روش های اندازه گیری را به خوبی توضیح دهیم و پارامترهای موثر به خواص پیزوالکتریک ها را توضیح می دهیم. برای بدست آوردن اطلاعات بیشتر به منابع موجود در پایان مقاله مراجعه کنید. برای توضیح بهتر، ما از مثال (PZT) lead zirconate titanate استفاده می کنیم. زیرا این سرامیک بیشترین استفاده را داشته و مطالعات زیادی بر روی آن صورت گرفته است. 
مواد پیزوالکتریک 
تاریخچه و کارهای انجام شده در این زمینه 
مواد هوشمند، موادی هستند که متحمل فعل و انفعالات فیزیکی می شوند. یک تعریف معادل دیگر از مواد هوشمند این است که این مواد،موادی هستند که تغییرات محیطی را دریافت کرده و با استفاده از بازخوردهای سیستم، این تغییرات را حذف یا تصحیح می کنند. مواد پیزوالکتریک، آلیاژهای حافظه دار (shape-memory alloys)، مواد الکتروستریک (materials electrostrictive)، مواد تغییر شکل دهنده در اثر مغناطیس (magnetrostrictivematerials)، مایع های با خواص الکترورئولوژی (electrorheological fluids)، نمونه هایی از مواد هوشمند متداول هستند. 
تعریف و تاریخچه 
پیزوالکتریسیته یک متغیر خطی است که به ساختار میکروسکوپی جامدات مربوط می شود. برخی از سرامیک ها هنگامی که تحت تأثیر فشار قرار گیرند پلاریزه می شوند. این پدیده ی خطی و آشکار به عنوان اثر پیزوالکتریک مستقیم (The direct Piezoelectric effect) نسبت داده می شود. اثر پیزوالکتریک مستقیم همیشه با اثر پیزوالکتریک معکوس، همراه است. که این اثر پیزوالکتریک معکوس زمانی اتفاق می افتد که یک قطعه ی پیزوالکتریک در یک میدان الکتریکی قرار گیرد. 
نواحی میکروسکوپ بوجود آمده در اثر پیزوالکتریسیته باعث جابجا شدن بارهای یونی در داخل ساختار کریستالی می شود. در غیاب نیروهای فشاری خارجی، این بارها در داخل کریستال توزیع شده و ممنتم دی پل ها همدیگر را خنثی می کنند. به هرحال، هنگامی که یک تنش خارجی بر قطعه ی پیزوالکتریک وارد شود، بارها به گونه ای جابجا گشته که تقارن دی پل ها از میان می رود. بر این اساس یک شبکه ی پلاریزه ایجاد شده و نتیجه ی آن ایجاد یک میدان الکتریکی است. 
ماده ای می تواند از خود خواص پیزوالکتریک ارائه دهد که سلول واحد آن هیچگونه مرکز تعادلی نداشته باشد. خاصیت پیزوالکتریسیته به گروهی از مواد تعلق دارد که در سال 1880 به وسیله پیروژاکوپ کوری در طی مطالعات آنها بر روی آثار فشار بر روی تولید بار الکتریکی در کریستال های کوارتز، کهربا و نمک راچل (Rochelle salt)، کشف شد. در سال 1881 واژه ی Piezoelectricity توسط w.Hankel برای اولین بار برای نامگذاری این اثرات پیشنهاد شد. البته اثر معکوس این خاصیت توسط Lipmann از قوانین ترمودینامیک استنباط شد. در سه دهه ی بعد، همکاری های فراوانی در انجمن های علمی اروپا در زمینه ی پیزو الکتریسیته انجام شد واژه ی میدان پیزو الکتریسیته بوسیله آنها استفاده شد. البته کارهای انجام شده بر روی رابطه ی میان الکترومکانیکی مختلط با کریستال های پیزوالکتریک در سال 1910 انجام شد و اطلاعات آن به صورت یک مرجع استاندارد است. 
به هرحال پیچیدگی علم مربوط به مواد پیزوالکتریک باعث شد که کاربردهای این مواد تا چند سال قبل رشد پیدا نکند. لانگوین ات آل در طی جنگ جهانی اول مبدل التراسونیک پیزو الکتریکی ساخت. موفقیت او باعث ایجاد موقعیت های استفاده از مواد پیزوالکتریک در کاربردهای زیر آبی شد. در سال 1935، Scherrer , Busch خاصیت پیزوالکتریک پتاسیم دی هیدروژن فسفات (KDP) را کشف کردند. خانواده ی پیزوالکتریک های پتاسیم دی هیدروژن فسفات اولین خانواده ی عمده از مواد پیزوالکتریک و فرو الکتریک بود که کشف شده بود. 
در طی جنگ جهانی دوم، تحقیقات در زمینه ی مواد پیزوالکتریک بوسیله ی آمریکا، شوروی سابق و ژاپن بسط داده شد. محدودیت های ساخت این مواد از تجاری شدن آنها جلوگیری می کرد اما این مسأله نیز پس از کشف باریم تیتانات و سرب زیرکونا تیتانات (PZT) در دهه های 1940، 1950 برطرف شد. این خانواده از مواد خاصیت دی الکتریک و پیزوالکتریک بسیار خوبی داشتند علاوه بر این خانواده قابلیت مناسب شدن و استفاده در کاربردهای خاص را بواسطه ی دپ کردن آنها با عناصر دیگر، دارند. تا این تاریخ، PZT یکی از مواد پیزوالکتریک پر کاربرد است. این نکته قابل توجه است که بیشترین سرامیک های پیزوالکتریک تجاری در دسترس (مانند باریم تیتانات و PZT) ساختاری شبیه به ساختار پرسکیت (Perovskite) با فرمول CaTiO3 دارند. 

ساختار پرسکیت (ABD3) ساده ترین آرایش اتمی است که در آن اتم های اکسیژن در حالت اکتاهدرال قرار دارند و اتم های کوچکتر (Nb, Sn, Zr, Ti و ... ) به صورت آرایش مربعی با اتم های اکسیژن پیوند خورده اند این کاتیون های کوچکتر فضاهای اکتاهدرال مرکزی را اشغال کرده اند (موقعیت های B) و کاتیون های بزرگتر (Na, Ca, Sr, Ba, Pb و...) در گوشه های سلول واحد جای می گیرد (موقعیت های A )، ترکیباتی مانند 
KNbO3, NaNbO3, PbZro3, PbTiO3, BaTiO3 مورد مطالعه قرار گرفته و طول و دمای فروالکتریکی آنها و فازهای غیر فروالکتریک شان به صورت وسیع استخراج شده است. این ساختارها همچنین بوسیله ی اتم های مختلف جانشین شده تغییر می کند. این جانشینی های اتمی اتفاق افتاده موجب تولید ترکیبات پیچیده تری مانند 
(Pb, Sr) (Zr, Ti) O3 , (Ba, Sr) TiO3 ، (k, Bi) TiO3, Pb(fe, Ta) O3 و ... می شود. 
تقریباًٌ در سال 1965 بود که چندین شرکت ژاپنی بر روی تولید فرآیندها و کاربردهای جدید وسایل پیزوالکتریکی، متمرکز شوند. موفقیت تلاش محققین ژاپنی موجب شد تا محققین دیگر کشورها نیز به سمت تحقیقات در این زمینه جذب شوند و امروزه، نیازها و استفاده ها از این مواد در بسیاری از رشته ها از جمله کاربردهای پزشکی، ارتباطات، کاربردهای نظامی و صنعت خودرو گسترش یافته است. بررسی تاریخچه ی پیزوالکتریسیته توسط W.G.Cady انجام شده است و در سال 1971 نیز کتابی با عنوان سرامیک های پیزوالکتریک منتشر شد. که این کتاب هنوز هم به عنوان یکی از منابع قوی در زمینه ی پیزوالکتریک ها مطرح است. 
فرآیند تولید سرامیک های پیزوالکتریک 


تولید اغلب سرامیک های پیزوالکتریک توده ای با تهیه ی پودر آنها شروع می شود. پودر تولیدی سپس در اندازه و شکل مورد دلخواه پرس می شود. شکل خام تولیدی خشک و فرآوری گشته و از لحاظ مکانیکی سخت تر و پر دانسیته تر می شود. مهمترین فرآیندهایی که بر روی خواص و ویژگی های محصول تولیدی اثر می گذارند شامل: فرایند تولید پودر، فرآیند خشک کردن پودر و زینترینگ می شوند. مراحل بعدی انجام شده شامل: ماشین کاری، الکترونیک و قطب دار کردن (Poling) می شوند (قطب دار کردن یعنی: استفاده از یک میدان DC جریان برای جهت دهی به دی پل ها و القای خاصیت پیزوالکتریکی است) معمولی ترین روش برای تهیه ی پودر، مخلوط کردن اکسیدهای مورد نیازاست. در این فرآیند، پودر از مخلوط کردن نسبت های استوکیومتری مناسب از اکسیدهای تشکیل دهنده ی پیزوالکتریک بدست می آید. 
برای نمونه برای تولید (Lead Zirconiate titanate) PZT ، اکسید سرب، اکسید تیتانیم و اکسید زیرکونیم، ترکیبات اصلی هستند. براساس کاربرد و استفاده ای که از پیزو الکتریک تولیدی می شود، انواع متنوعی از عناصر دوپ شونده نیز به مخلوط افزوده می شود. که این عناصر دوپ شده موجب ایجاد خواص مورد نظر ما می شوند. سرامیک های PZT به ندرت بدون استفاده از افزودنی های دوپ شونده تولید می شوند. استفاده از عناصر دوپ شونده موجب اصلاح برخی از خواص این نوع سرامیک ها می شوند. افزودنی های دوپ شونده ای که در موقعیت های A قرار می گیرند باعث کاهش ضریب اتلاف (dissipation factor) شده که این مسأله بر روی تولید گرما تأثیر می گذارد، اما باعث کاهش ضرایب پیزوالکتریسیته (Piezoelectric coefficients) می شود. به همین دلیل پیزوالکتریک های تولیدی با این افزودنی ها بیشتر در کاربردهای التراسونیک و با فرکانس بالا استفاده می شوند. افزودنی های دوپ شونده ای که در موقعیت های B قرار می گیرند، باعث افزایش ضرایب پیزوالکتریسیته می شوند اما همچنین موجب افزایش ثابت دی الکتریک شده که این مسأله زیان آور است. پیزوالکتریک های تولیدی با این افزودنی ها دوپ شونده، به عنوان فعال کننده در کنترل کننده صدا- لرزش (control vibration and noise) ، عضله های خم کننده (benders)، کاربردهای موقعیت یابی نوری (optical positioning application) و ... استفاده می شوند. 


فلوچارتی از مراحل تهیه ی سرامیک های PZT آورده شده است. مخلوط نمودن پودر اکسیدهای مورد استفاده در تولید سرامیک های پیزوالکتریک یک به دو روش انجام می شود که در زیر بیان شده اند. 
1-روش سایش خشک با بال میل 
2-روش سایش تر با بال میل 
هر دو روش تر و خشک دارای مزایا و معایبی هستند. روش سایش تر با بال میل سریع تر از روش خشک است. به هر حال عیب روش تر اضافه شدن مرحله ای برای جداسازی مایع از پودر تولیدی است. متداول ترین روش تولید PZT ها از سایش تر با بال میل بهره می گیرد. در روش سایش تر پودر پودر این سرامیک ها با بال میل، از اتانول به عنوان مایع و از زیرکونیای تکلیس شده به عنوان محیط سایش استفاده می شود. البته ممکن است به جای یک آسیاب معمولی از یک آسیاب ارتعاشی (Vibratory mill) استفاده شود. این فرآیند که توسط Herner ابداع شده خطر آلودگی پودر با اجزای جدا شده از گلوله ها و محیط سایش را کاهش می دهد همچنین محیط زیرکونیا به خاطر کاهش ریسک آلودگی استفاده می شود. 
البته مرحله ی تکلیس نیز یکی از مراحل تعیین کننده در تولید سرامیک های PZT است. این مرحله موجب کامل شدن فرآیند تبلور کشته که فاز پرسکیت در این مرحله تشکیل می شود. اهداف این مرحله خارج شدن مواد آلی و فرار از مخلوط است و واکنش اکسیدهای موجود در مخلوط برای ایجاد ترکیبات فازی مناسب قبل از فرآیند تولید قطعه است. همچنین از اهداف دیگر این مرحله کاهش حجم شرپنکیج و یکنواختی بهتر در طی زینترینگ و پس از آن است. پس از تکلیس، یک ماده ی چسبنده به پودر افزوده می شود و مخلوط شکل دهی می شود. شکل دهی قطعات ساده با روش پرس خشک در قالب و برای بدنه های پیچیده تر، روش های اکستروژن و ریخته گری دوغابی استفاده می شود. پس از آن اشکال تولیدی زینترینگ می شود ( در واقع بوسیله یک آون مواد چسبنده ی آن خارج شده و دنس می شود.) 
مشکل عمده در زینترینگ سرامیک های PZT، فراریت Pbo در دمای 800 درجه سانتی گراد است برای به حداقل رساندن این مشکل، نمونه های PZT در حضور یک منبع سرب مانند PbZro3 زینتر می شوند و در داخل یک بوته ی ذوب بسته حرارت دهی می شوند. اشباع شدن اتمسفر محل زینتر کردن با PbO باعث به حداقل رسیدن اتلاف سرب از بدنه های PZT می شود. در این شرایط زینترینگ می تواند در دمای متنوعی بین 1200-1300 درجه سانتیگراد انجام شود. با وجود این تدابیر پیش بینی شده معمولاً اتلاف 2-3% در مقدار سرب اولیه صورت می گیرد. 
پس از برش و ماشین کاری قطعه به شکل مناسب، الکترودها تعبیه می شود و یک میدان DC برای جهت دهی به قلمرو دی پل های داخل سرامیک پلی کریستال اعمال می شود. قطب دار کردن بوسیله ی جریان DC می تواند در دمای اتاق و یا در دماهای بالاتر انجام شود. البته این مسأله به ماده و ترکیب سرامیک بستگی دارد. 
فرایند پلاریزاسیون تنها اندکی دی پل های موجود در سرامیک پلی کریستال را هم جهت می کند و نتیجه ی پلاریزاسیون پلی کریستال کمتر از حالتی است که سرامیک تک کریستال باشد. این تکنیک تولید دارای ابهامات زیادی است البته تعداد زیادی از روش های تولید دیگر وجود دارد که سرامیک های PZT با خواص و ریزساختار عالی تولید می کنند. یک مشکل بوجود آمده در این روش انحراف از حالت استوکیومتری است. این مشکل اغلب به خاطر وجود ناخالصی در مواد اولیه و اتلاف سرب از بدنه در طی فرآیند زینترینگ بوجود می آید. که باعث تغییر خواص PZT در اثر جانشینی های ناخواسته، می شود. به عنوان یک نتیجه، خواص الاستیک در اثر این مشکل می تواند 5% ، خواص پیزوالکتریک 10% و خواص دیک الکتریک 20 درصد ( با یک بچ ثابت) تغییر کنند. 
همچنین، خواص دی الکتریک و پیزوالکتریک عمدتاً به علت عدم وجود یکنواختی کاهش پیدا می کنند (این عدم یکنواختی به خاطر هم زدن کم اتفاق می افتد). این مسأله هنگامی که اکسیدهای اصلی هم گون باشد مهم می باشد. در روش های توضیح داده شده در بالا، به هرحال، اجزای اصلی به صورت محلول جامد در آمده و این نشان داده شده است که مخلوط شدن هم گون محلول جامد هنگامی که این مسأله امکان نداشته باشد، مشکل است. 
روش های دیگر برای تولید سرامیک های پیزوالکتریک به شرح زیراند: 
1) فرآیند هیدروترمال (Hydrothermal Processing) 
2) روش های هم رسوبی (coprecipitation methods) 
همچنین این نکته قابل توجه است که توسعه ی وسیعی در زمینه ی فرآیندهای تولید پودر (Powder Processing)، شکل دهی و زینترینگ بوجود آمده است که نتیجه ی این توسعه ها، افزایش کاربرد سرامیک های پیزوالکتریک است. 
روابط ساختاری و خواص مواد 
دانستن اطلاعات مربوط به پیزوالکتریسیته از ساختار مواد شروع می شود. برای توضیح بهتر، اجازه دهید بر روی یک کریستال از ( این تک کریستال های کوچک با قطر میانگین کمتر از Mm100) یک سرامیک پلی کریستال متمرکز شویم. این کریستال از اتم های مثبت و منفی تشکیل شده است که فضای خاصی را در سلولهای تکراری (سلول واحد) اشغال کرده اند. تقارن خاص سلول واحد تعیین کننده ی این مسأله است که آیا کریستال ما خاصیت پیزوالکتریسیته دارد یا نه؟ همه ی کریستال ها از 32 کلاس ( از 7 سیستم: تریکلینیک، مونوکلینیک، ارتورومبیک، تتراگونال، رمبوهدرال، هگزاگونال و کیوبیک) مشتق شده اند. از 32 کلاس، 21 عدد از آنها دارای تقارن مرکزی نیستند و 20 کلاس دارای خواص پیزوالکتریک هستند. 
( یک کلاس از 21 کلاس فاقد تقارن مرکزی، پیزوالکتریک نیست زیرا این کلاس دارای دیگر عناصر تقارن است). نبودن مرکز تقارن بدین معناست که یک حرکت شبکه ی یون های مثبت و منفی نسبت به همدیگر که در نتیجه ی اعمال تنش بوجود می آید،تولید یک دو قطبی الکتریکی می کند. یک سرامیک از قرارگیری تصادفی این کریستال های پیزوالکتریک تشکیل شده است و به همین دلیل غیرفعال است. اثرات کریستال ها همدیگر را خنثی نموده و خاصیت پیزوالکتریک قابل اندازه گیری در سرامیک بوجود نمی آید. نواحی با بردار قطبی یکسان،قلمرو (domain) نامیده می شوند. 
قطب دار کردن یکی از روش های معمولی مورد استفاده برای جهت دهی به قلمرو هاست که این عمل بوسیله ی پلاریزاسیون سرامیک ها با استفاده از یک میدان الکتریکی ساکن انجام می شود. الکترودها بر روی سرامیک اعمال می شود تا قلمروهای پیزوالکتریکی چرخیده و در جهت میدان،جهت گیری کنند. نتیجه ی بدست آمده این گونه نیست که تمام قلمروها هم جهت شوند و با جهت گیری یکسان بخشی از قلمروها سرامیک پلی کریستال دارای یک اثر پیزوالکتریکی بزرگ می شود. در طی این فرایند ماده ی پیزوالکتریک در جهت محور قطبی شدن انبساط و در جهت عمود بر آن انقباض دارد. 
روابط ساختاری 
هنگامی که در مورد معادله ی ساختاری مواد پیزوالکتریک می نویسیم باید تغیرات تنش و جابجایی الکتریکی در سه جهت عمود بر هم محاسبه گردد. این جابجایی الکتریکی بوسیله ی اثرات کوپل های عمود بر هم بوجود آمده است. همچنین این اثرات نیز بخاطر تنش های مکانیکی و الکتریکی حاصل می شود. علامت تانسور ابتدا معین می گردد که در شکل 4 جهات مرجع نشان داده شده است. 
حالت کرنش با تانسور مرتبه دوم Sij معین می شود و حالت تنش نیز بوسیله ی تانسور مرتبه دو Tkl تعیین می شود. روابطی وجود دارد که تانسور تنش را به تانسور کرنش، تسلیم Sijkl و سختی Cijkl مرتبط می سازد. رابطه میان میدان Ej (تانسور مرتبه اول) و جابجایی الکتریکی Di (تانسور مرتبه اول)، ثابت دی الکتریک Eij است. که این ثابت یک تانسور درجه 2 است. بنابراین معادلات مربوط به مواد پیزوالکتریک به صورت زیر نوشته می شوند: 
Di=ETij.Ej+dijk Tjk 
Sij=dijk Ek+E Sijkl Tkl 
که در این روابط dijk و dijk ثوابت پیزوالکتریک هستند و تانسوری درجه 3 هستند. با لانویس E, T نشان می دهند که ثابت دی الکتریک Eij و ثابت الاستیک Sijkl تحت شرایط تنش ثابت و میدان الکتریکی ثابت، اندازه گیری شده است. عموماً تانسور مرتبه اول، 3 جزء دارد، تانسور مرتبه 2، 9 جزء و مرتبه 3، 27 جزء دارد. همچنین تانسور مرتبه 4، 81 جزء دارد. درصد خیلی کمی از این اجزاء تانسوری، مستقل هستند. هر دوتای این روابط وابسته به جهت هستند. آنها یک بسته از معادلات هستند که این خواص را در جهات مختلف ماده شرح می دهند. تقارن فضایی و انتخاب بردارهای مرجع، تعداد اجزای مستقل را کاهش می دهد. یک راه مناسب برای توصیف آنها استفاده از جهات برداری مناسب مانند آنهایی که در شکل 4 نشان داده شده است. بر اساس عرف، جهت قطبی شدن را با محور 3 نمایش می دهیم. همچنین صفحات برشی با زیرنویس 4، 5و 6 نشان داده شده است که این صفحات بر جهات 1،2،3 عمود می باشد. 

کاربرد مواد پیزوالکتریک 
مواد پیزوالکتریک کاربرد وسیعی در علوم مختلف دارند. این مواد در بسیاری از وسایل که نیازمند تغییر انرژی مکانیکی به الکتریکی و یا بالعکس است، استفاده می شوند. زمینه ی وسیعی از کاربردهای مواد پیزوالکتریک وجود دارد و با وجود این مسأله که این مواد نزدیک به یک قرن است که مورد مطالعه قرار گرفته اند. ولی هنوز هم پتانسیل استفاده شدن در کاربردها و ابداعات دیگر را دارند. البته به خاطر وسعت این کاربردها از بیان آنها چشم پوشی می کنیم.

از سرامیک های پیزوالکتریک چه می دانید؟ 

خلاصه: 
در این مقاله بصورت خلاصه در مورد آنالیز و خواص سرامیک های پیزوالکتریک توضیح می دهیم. تمرکز ما بر روی سرامیک های پلی کریستال است، بنابراین سرامیک های تک کریستال، مواد پلیمری، کامپوزیت های آلی / غیرآلی (organic / inorganic composites) جزء اهداف مورد بررسی در این مقاله نمی باشد. برای فهمیدن کامل رفتار سرامیک های پلی کریستال پیزوالکتریک، مطالعه ی اطلاعات پایه در زمینه ی سرامیک ها ضروری می باشد. 
برای همین مسأله ما مقدمه ای کوتاه در مورد تاریخچه ی پیزوالکتریسیته و مباحث مربوط به کارهای انجام شده بر روی سرامیک ها و پیشرفت های مربوط به رابطه ی ساختار و رفتار مواد پیزوالکتریک به شما ارائه می دهیم. ما کوشش می کنیم ما متداول ترین روش های اندازه گیری را به خوبی توضیح دهیم و پارامترهای موثر به خواص پیزوالکتریک ها را توضیح می دهیم. برای بدست آوردن اطلاعات بیشتر به منابع موجود در پایان مقاله مراجعه کنید. برای توضیح بهتر، ما از مثال (PZT) lead zirconate titanate استفاده می کنیم. زیرا این سرامیک بیشترین استفاده را داشته و مطالعات زیادی بر روی آن صورت گرفته است. 
مواد پیزوالکتریک 
تاریخچه و کارهای انجام شده در این زمینه 
مواد هوشمند، موادی هستند که متحمل فعل و انفعالات فیزیکی می شوند. یک تعریف معادل دیگر از مواد هوشمند این است که این مواد،موادی هستند که تغییرات محیطی را دریافت کرده و با استفاده از بازخوردهای سیستم، این تغییرات را حذف یا تصحیح می کنند. مواد پیزوالکتریک، آلیاژهای حافظه دار (shape-memory alloys)، مواد الکتروستریک (materials electrostrictive)، مواد تغییر شکل دهنده در اثر مغناطیس (magnetrostrictivematerials)، مایع های با خواص الکترورئولوژی (electrorheological fluids)، نمونه هایی از مواد هوشمند متداول هستند. 
تعریف و تاریخچه 
پیزوالکتریسیته یک متغیر خطی است که به ساختار میکروسکوپی جامدات مربوط می شود. برخی از سرامیک ها هنگامی که تحت تأثیر فشار قرار گیرند پلاریزه می شوند. این پدیده ی خطی و آشکار به عنوان اثر پیزوالکتریک مستقیم (The direct Piezoelectric effect) نسبت داده می شود. اثر پیزوالکتریک مستقیم همیشه با اثر پیزوالکتریک معکوس، همراه است. که این اثر پیزوالکتریک معکوس زمانی اتفاق می افتد که یک قطعه ی پیزوالکتریک در یک میدان الکتریکی قرار گیرد. 
نواحی میکروسکوپ بوجود آمده در اثر پیزوالکتریسیته باعث جابجا شدن بارهای یونی در داخل ساختار کریستالی می شود. در غیاب نیروهای فشاری خارجی، این بارها در داخل کریستال توزیع شده و ممنتم دی پل ها همدیگر را خنثی می کنند. به هرحال، هنگامی که یک تنش خارجی بر قطعه ی پیزوالکتریک وارد شود، بارها به گونه ای جابجا گشته که تقارن دی پل ها از میان می رود. بر این اساس یک شبکه ی پلاریزه ایجاد شده و نتیجه ی آن ایجاد یک میدان الکتریکی است. 
ماده ای می تواند از خود خواص پیزوالکتریک ارائه دهد که سلول واحد آن هیچگونه مرکز تعادلی نداشته باشد. خاصیت پیزوالکتریسیته به گروهی از مواد تعلق دارد که در سال 1880 به وسیله پیروژاکوپ کوری در طی مطالعات آنها بر روی آثار فشار بر روی تولید بار الکتریکی در کریستال های کوارتز، کهربا و نمک راچل (Rochelle salt)، کشف شد. در سال 1881 واژه ی Piezoelectricity توسط w.Hankel برای اولین بار برای نامگذاری این اثرات پیشنهاد شد. البته اثر معکوس این خاصیت توسط Lipmann از قوانین ترمودینامیک استنباط شد. در سه دهه ی بعد، همکاری های فراوانی در انجمن های علمی اروپا در زمینه ی پیزو الکتریسیته انجام شد واژه ی میدان پیزو الکتریسیته بوسیله آنها استفاده شد. البته کارهای انجام شده بر روی رابطه ی میان الکترومکانیکی مختلط با کریستال های پیزوالکتریک در سال 1910 انجام شد و اطلاعات آن به صورت یک مرجع استاندارد است. 
به هرحال پیچیدگی علم مربوط به مواد پیزوالکتریک باعث شد که کاربردهای این مواد تا چند سال قبل رشد پیدا نکند. لانگوین ات آل در طی جنگ جهانی اول مبدل التراسونیک پیزو الکتریکی ساخت. موفقیت او باعث ایجاد موقعیت های استفاده از مواد پیزوالکتریک در کاربردهای زیر آبی شد. در سال 1935، Scherrer , Busch خاصیت پیزوالکتریک پتاسیم دی هیدروژن فسفات (KDP) را کشف کردند. خانواده ی پیزوالکتریک های پتاسیم دی هیدروژن فسفات اولین خانواده ی عمده از مواد پیزوالکتریک و فرو الکتریک بود که کشف شده بود. 
در طی جنگ جهانی دوم، تحقیقات در زمینه ی مواد پیزوالکتریک بوسیله ی آمریکا، شوروی سابق و ژاپن بسط داده شد. محدودیت های ساخت این مواد از تجاری شدن آنها جلوگیری می کرد اما این مسأله نیز پس از کشف باریم تیتانات و سرب زیرکونا تیتانات (PZT) در دهه های 1940، 1950 برطرف شد. این خانواده از مواد خاصیت دی الکتریک و پیزوالکتریک بسیار خوبی داشتند علاوه بر این خانواده قابلیت مناسب شدن و استفاده در کاربردهای خاص را بواسطه ی دپ کردن آنها با عناصر دیگر، دارند. تا این تاریخ، PZT یکی از مواد پیزوالکتریک پر کاربرد است. این نکته قابل توجه است که بیشترین سرامیک های پیزوالکتریک تجاری در دسترس (مانند باریم تیتانات و PZT) ساختاری شبیه به ساختار پرسکیت (Perovskite) با فرمول CaTiO3 دارند. 

ساختار پرسکیت (ABD3) ساده ترین آرایش اتمی است که در آن اتم های اکسیژن در حالت اکتاهدرال قرار دارند و اتم های کوچکتر (Nb, Sn, Zr, Ti و ... ) به صورت آرایش مربعی با اتم های اکسیژن پیوند خورده اند این کاتیون های کوچکتر فضاهای اکتاهدرال مرکزی را اشغال کرده اند (موقعیت های B) و کاتیون های بزرگتر (Na, Ca, Sr, Ba, Pb و...) در گوشه های سلول واحد جای می گیرد (موقعیت های A )، ترکیباتی مانند 
KNbO3, NaNbO3, PbZro3, PbTiO3, BaTiO3 مورد مطالعه قرار گرفته و طول و دمای فروالکتریکی آنها و فازهای غیر فروالکتریک شان به صورت وسیع استخراج شده است. این ساختارها همچنین بوسیله ی اتم های مختلف جانشین شده تغییر می کند. این جانشینی های اتمی اتفاق افتاده موجب تولید ترکیبات پیچیده تری مانند 
(Pb, Sr) (Zr, Ti) O3 , (Ba, Sr) TiO3 ، (k, Bi) TiO3, Pb(fe, Ta) O3 و ... می شود. 
تقریباًٌ در سال 1965 بود که چندین شرکت ژاپنی بر روی تولید فرآیندها و کاربردهای جدید وسایل پیزوالکتریکی، متمرکز شوند. موفقیت تلاش محققین ژاپنی موجب شد تا محققین دیگر کشورها نیز به سمت تحقیقات در این زمینه جذب شوند و امروزه، نیازها و استفاده ها از این مواد در بسیاری از رشته ها از جمله کاربردهای پزشکی، ارتباطات، کاربردهای نظامی و صنعت خودرو گسترش یافته است. بررسی تاریخچه ی پیزوالکتریسیته توسط W.G.Cady انجام شده است و در سال 1971 نیز کتابی با عنوان سرامیک های پیزوالکتریک منتشر شد. که این کتاب هنوز هم به عنوان یکی از منابع قوی در زمینه ی پیزوالکتریک ها مطرح است. 
فرآیند تولید سرامیک های پیزوالکتریک 


تولید اغلب سرامیک های پیزوالکتریک توده ای با تهیه ی پودر آنها شروع می شود. پودر تولیدی سپس در اندازه و شکل مورد دلخواه پرس می شود. شکل خام تولیدی خشک و فرآوری گشته و از لحاظ مکانیکی سخت تر و پر دانسیته تر می شود. مهمترین فرآیندهایی که بر روی خواص و ویژگی های محصول تولیدی اثر می گذارند شامل: فرایند تولید پودر، فرآیند خشک کردن پودر و زینترینگ می شوند. مراحل بعدی انجام شده شامل: ماشین کاری، الکترونیک و قطب دار کردن (Poling) می شوند (قطب دار کردن یعنی: استفاده از یک میدان DC جریان برای جهت دهی به دی پل ها و القای خاصیت پیزوالکتریکی است) معمولی ترین روش برای تهیه ی پودر، مخلوط کردن اکسیدهای مورد نیازاست. در این فرآیند، پودر از مخلوط کردن نسبت های استوکیومتری مناسب از اکسیدهای تشکیل دهنده ی پیزوالکتریک بدست می آید. 
برای نمونه برای تولید (Lead Zirconiate titanate) PZT ، اکسید سرب، اکسید تیتانیم و اکسید زیرکونیم، ترکیبات اصلی هستند. براساس کاربرد و استفاده ای که از پیزو الکتریک تولیدی می شود، انواع متنوعی از عناصر دوپ شونده نیز به مخلوط افزوده می شود. که این عناصر دوپ شده موجب ایجاد خواص مورد نظر ما می شوند. سرامیک های PZT به ندرت بدون استفاده از افزودنی های دوپ شونده تولید می شوند. استفاده از عناصر دوپ شونده موجب اصلاح برخی از خواص این نوع سرامیک ها می شوند. افزودنی های دوپ شونده ای که در موقعیت های A قرار می گیرند باعث کاهش ضریب اتلاف (dissipation factor) شده که این مسأله بر روی تولید گرما تأثیر می گذارد، اما باعث کاهش ضرایب پیزوالکتریسیته (Piezoelectric coefficients) می شود. به همین دلیل پیزوالکتریک های تولیدی با این افزودنی ها بیشتر در کاربردهای التراسونیک و با فرکانس بالا استفاده می شوند. افزودنی های دوپ شونده ای که در موقعیت های B قرار می گیرند، باعث افزایش ضرایب پیزوالکتریسیته می شوند اما همچنین موجب افزایش ثابت دی الکتریک شده که این مسأله زیان آور است. پیزوالکتریک های تولیدی با این افزودنی ها دوپ شونده، به عنوان فعال کننده در کنترل کننده صدا- لرزش (control vibration and noise) ، عضله های خم کننده (benders)، کاربردهای موقعیت یابی نوری (optical positioning application) و ... استفاده می شوند. 


فلوچارتی از مراحل تهیه ی سرامیک های PZT آورده شده است. مخلوط نمودن پودر اکسیدهای مورد استفاده در تولید سرامیک های پیزوالکتریک یک به دو روش انجام می شود که در زیر بیان شده اند. 
1-روش سایش خشک با بال میل 
2-روش سایش تر با بال میل 
هر دو روش تر و خشک دارای مزایا و معایبی هستند. روش سایش تر با بال میل سریع تر از روش خشک است. به هر حال عیب روش تر اضافه شدن مرحله ای برای جداسازی مایع از پودر تولیدی است. متداول ترین روش تولید PZT ها از سایش تر با بال میل بهره می گیرد. در روش سایش تر پودر پودر این سرامیک ها با بال میل، از اتانول به عنوان مایع و از زیرکونیای تکلیس شده به عنوان محیط سایش استفاده می شود. البته ممکن است به جای یک آسیاب معمولی از یک آسیاب ارتعاشی (Vibratory mill) استفاده شود. این فرآیند که توسط Herner ابداع شده خطر آلودگی پودر با اجزای جدا شده از گلوله ها و محیط سایش را کاهش می دهد همچنین محیط زیرکونیا به خاطر کاهش ریسک آلودگی استفاده می شود. 
البته مرحله ی تکلیس نیز یکی از مراحل تعیین کننده در تولید سرامیک های PZT است. این مرحله موجب کامل شدن فرآیند تبلور کشته که فاز پرسکیت در این مرحله تشکیل می شود. اهداف این مرحله خارج شدن مواد آلی و فرار از مخلوط است و واکنش اکسیدهای موجود در مخلوط برای ایجاد ترکیبات فازی مناسب قبل از فرآیند تولید قطعه است. همچنین از اهداف دیگر این مرحله کاهش حجم شرپنکیج و یکنواختی بهتر در طی زینترینگ و پس از آن است. پس از تکلیس، یک ماده ی چسبنده به پودر افزوده می شود و مخلوط شکل دهی می شود. شکل دهی قطعات ساده با روش پرس خشک در قالب و برای بدنه های پیچیده تر، روش های اکستروژن و ریخته گری دوغابی استفاده می شود. پس از آن اشکال تولیدی زینترینگ می شود ( در واقع بوسیله یک آون مواد چسبنده ی آن خارج شده و دنس می شود.) 
مشکل عمده در زینترینگ سرامیک های PZT، فراریت Pbo در دمای 800 درجه سانتی گراد است برای به حداقل رساندن این مشکل، نمونه های PZT در حضور یک منبع سرب مانند PbZro3 زینتر می شوند و در داخل یک بوته ی ذوب بسته حرارت دهی می شوند. اشباع شدن اتمسفر محل زینتر کردن با PbO باعث به حداقل رسیدن اتلاف سرب از بدنه های PZT می شود. در این شرایط زینترینگ می تواند در دمای متنوعی بین 1200-1300 درجه سانتیگراد انجام شود. با وجود این تدابیر پیش بینی شده معمولاً اتلاف 2-3% در مقدار سرب اولیه صورت می گیرد. 
پس از برش و ماشین کاری قطعه به شکل مناسب، الکترودها تعبیه می شود و یک میدان DC برای جهت دهی به قلمرو دی پل های داخل سرامیک پلی کریستال اعمال می شود. قطب دار کردن بوسیله ی جریان DC می تواند در دمای اتاق و یا در دماهای بالاتر انجام شود. البته این مسأله به ماده و ترکیب سرامیک بستگی دارد. 
فرایند پلاریزاسیون تنها اندکی دی پل های موجود در سرامیک پلی کریستال را هم جهت می کند و نتیجه ی پلاریزاسیون پلی کریستال کمتر از حالتی است که سرامیک تک کریستال باشد. این تکنیک تولید دارای ابهامات زیادی است البته تعداد زیادی از روش های تولید دیگر وجود دارد که سرامیک های PZT با خواص و ریزساختار عالی تولید می کنند. یک مشکل بوجود آمده در این روش انحراف از حالت استوکیومتری است. این مشکل اغلب به خاطر وجود ناخالصی در مواد اولیه و اتلاف سرب از بدنه در طی فرآیند زینترینگ بوجود می آید. که باعث تغییر خواص PZT در اثر جانشینی های ناخواسته، می شود. به عنوان یک نتیجه، خواص الاستیک در اثر این مشکل می تواند 5% ، خواص پیزوالکتریک 10% و خواص دیک الکتریک 20 درصد ( با یک بچ ثابت) تغییر کنند. 
همچنین، خواص دی الکتریک و پیزوالکتریک عمدتاً به علت عدم وجود یکنواختی کاهش پیدا می کنند (این عدم یکنواختی به خاطر هم زدن کم اتفاق می افتد). این مسأله هنگامی که اکسیدهای اصلی هم گون باشد مهم می باشد. در روش های توضیح داده شده در بالا، به هرحال، اجزای اصلی به صورت محلول جامد در آمده و این نشان داده شده است که مخلوط شدن هم گون محلول جامد هنگامی که این مسأله امکان نداشته باشد، مشکل است. 
روش های دیگر برای تولید سرامیک های پیزوالکتریک به شرح زیراند: 
1) فرآیند هیدروترمال (Hydrothermal Processing) 
2) روش های هم رسوبی (coprecipitation methods) 
همچنین این نکته قابل توجه است که توسعه ی وسیعی در زمینه ی فرآیندهای تولید پودر (Powder Processing)، شکل دهی و زینترینگ بوجود آمده است که نتیجه ی این توسعه ها، افزایش کاربرد سرامیک های پیزوالکتریک است. 
روابط ساختاری و خواص مواد 
دانستن اطلاعات مربوط به پیزوالکتریسیته از ساختار مواد شروع می شود. برای توضیح بهتر، اجازه دهید بر روی یک کریستال از ( این تک کریستال های کوچک با قطر میانگین کمتر از Mm100) یک سرامیک پلی کریستال متمرکز شویم. این کریستال از اتم های مثبت و منفی تشکیل شده است که فضای خاصی را در سلولهای تکراری (سلول واحد) اشغال کرده اند. تقارن خاص سلول واحد تعیین کننده ی این مسأله است که آیا کریستال ما خاصیت پیزوالکتریسیته دارد یا نه؟ همه ی کریستال ها از 32 کلاس ( از 7 سیستم: تریکلینیک، مونوکلینیک، ارتورومبیک، تتراگونال، رمبوهدرال، هگزاگونال و کیوبیک) مشتق شده اند. از 32 کلاس، 21 عدد از آنها دارای تقارن مرکزی نیستند و 20 کلاس دارای خواص پیزوالکتریک هستند. 
( یک کلاس از 21 کلاس فاقد تقارن مرکزی، پیزوالکتریک نیست زیرا این کلاس دارای دیگر عناصر تقارن است). نبودن مرکز تقارن بدین معناست که یک حرکت شبکه ی یون های مثبت و منفی نسبت به همدیگر که در نتیجه ی اعمال تنش بوجود می آید،تولید یک دو قطبی الکتریکی می کند. یک سرامیک از قرارگیری تصادفی این کریستال های پیزوالکتریک تشکیل شده است و به همین دلیل غیرفعال است. اثرات کریستال ها همدیگر را خنثی نموده و خاصیت پیزوالکتریک قابل اندازه گیری در سرامیک بوجود نمی آید. نواحی با بردار قطبی یکسان،قلمرو (domain) نامیده می شوند. 
قطب دار کردن یکی از روش های معمولی مورد استفاده برای جهت دهی به قلمرو هاست که این عمل بوسیله ی پلاریزاسیون سرامیک ها با استفاده از یک میدان الکتریکی ساکن انجام می شود. الکترودها بر روی سرامیک اعمال می شود تا قلمروهای پیزوالکتریکی چرخیده و در جهت میدان،جهت گیری کنند. نتیجه ی بدست آمده این گونه نیست که تمام قلمروها هم جهت شوند و با جهت گیری یکسان بخشی از قلمروها سرامیک پلی کریستال دارای یک اثر پیزوالکتریکی بزرگ می شود. در طی این فرایند ماده ی پیزوالکتریک در جهت محور قطبی شدن انبساط و در جهت عمود بر آن انقباض دارد. 
روابط ساختاری 
هنگامی که در مورد معادله ی ساختاری مواد پیزوالکتریک می نویسیم باید تغیرات تنش و جابجایی الکتریکی در سه جهت عمود بر هم محاسبه گردد. این جابجایی الکتریکی بوسیله ی اثرات کوپل های عمود بر هم بوجود آمده است. همچنین این اثرات نیز بخاطر تنش های مکانیکی و الکتریکی حاصل می شود. علامت تانسور ابتدا معین می گردد که در شکل 4 جهات مرجع نشان داده شده است. 
حالت کرنش با تانسور مرتبه دوم Sij معین می شود و حالت تنش نیز بوسیله ی تانسور مرتبه دو Tkl تعیین می شود. روابطی وجود دارد که تانسور تنش را به تانسور کرنش، تسلیم Sijkl و سختی Cijkl مرتبط می سازد. رابطه میان میدان Ej (تانسور مرتبه اول) و جابجایی الکتریکی Di (تانسور مرتبه اول)، ثابت دی الکتریک Eij است. که این ثابت یک تانسور درجه 2 است. بنابراین معادلات مربوط به مواد پیزوالکتریک به صورت زیر نوشته می شوند: 
Di=ETij.Ej+dijk Tjk 
Sij=dijk Ek+E Sijkl Tkl 
که در این روابط dijk و dijk ثوابت پیزوالکتریک هستند و تانسوری درجه 3 هستند. با لانویس E, T نشان می دهند که ثابت دی الکتریک Eij و ثابت الاستیک Sijkl تحت شرایط تنش ثابت و میدان الکتریکی ثابت، اندازه گیری شده است. عموماً تانسور مرتبه اول، 3 جزء دارد، تانسور مرتبه 2، 9 جزء و مرتبه 3، 27 جزء دارد. همچنین تانسور مرتبه 4، 81 جزء دارد. درصد خیلی کمی از این اجزاء تانسوری، مستقل هستند. هر دوتای این روابط وابسته به جهت هستند. آنها یک بسته از معادلات هستند که این خواص را در جهات مختلف ماده شرح می دهند. تقارن فضایی و انتخاب بردارهای مرجع، تعداد اجزای مستقل را کاهش می دهد. یک راه مناسب برای توصیف آنها استفاده از جهات برداری مناسب مانند آنهایی که در شکل 4 نشان داده شده است. بر اساس عرف، جهت قطبی شدن را با محور 3 نمایش می دهیم. همچنین صفحات برشی با زیرنویس 4، 5و 6 نشان داده شده است که این صفحات بر جهات 1،2،3 عمود می باشد. 

کاربرد مواد پیزوالکتریک 
مواد پیزوالکتریک کاربرد وسیعی در علوم مختلف دارند. این مواد در بسیاری از وسایل که نیازمند تغییر انرژی مکانیکی به الکتریکی و یا بالعکس است، استفاده می شوند. زمینه ی وسیعی از کاربردهای مواد پیزوالکتریک وجود دارد و با وجود این مسأله که این مواد نزدیک به یک قرن است که مورد مطالعه قرار گرفته اند. ولی هنوز هم پتانسیل استفاده شدن در کاربردها و ابداعات دیگر را دارند. البته به خاطر وسعت این کاربردها از بیان آنها چشم پوشی می کنیم.

از سرامیک های پیزوالکتریک چه می دانید؟ 

خلاصه: 
در این مقاله بصورت خلاصه در مورد آنالیز و خواص سرامیک های پیزوالکتریک توضیح می دهیم. تمرکز ما بر روی سرامیک های پلی کریستال است، بنابراین سرامیک های تک کریستال، مواد پلیمری، کامپوزیت های آلی / غیرآلی (organic / inorganic composites) جزء اهداف مورد بررسی در این مقاله نمی باشد. برای فهمیدن کامل رفتار سرامیک های پلی کریستال پیزوالکتریک، مطالعه ی اطلاعات پایه در زمینه ی سرامیک ها ضروری می باشد. 
برای همین مسأله ما مقدمه ای کوتاه در مورد تاریخچه ی پیزوالکتریسیته و مباحث مربوط به کارهای انجام شده بر روی سرامیک ها و پیشرفت های مربوط به رابطه ی ساختار و رفتار مواد پیزوالکتریک به شما ارائه می دهیم. ما کوشش می کنیم ما متداول ترین روش های اندازه گیری را به خوبی توضیح دهیم و پارامترهای موثر به خواص پیزوالکتریک ها را توضیح می دهیم. برای بدست آوردن اطلاعات بیشتر به منابع موجود در پایان مقاله مراجعه کنید. برای توضیح بهتر، ما از مثال (PZT) lead zirconate titanate استفاده می کنیم. زیرا این سرامیک بیشترین استفاده را داشته و مطالعات زیادی بر روی آن صورت گرفته است. 
مواد پیزوالکتریک 
تاریخچه و کارهای انجام شده در این زمینه 
مواد هوشمند، موادی هستند که متحمل فعل و انفعالات فیزیکی می شوند. یک تعریف معادل دیگر از مواد هوشمند این است که این مواد،موادی هستند که تغییرات محیطی را دریافت کرده و با استفاده از بازخوردهای سیستم، این تغییرات را حذف یا تصحیح می کنند. مواد پیزوالکتریک، آلیاژهای حافظه دار (shape-memory alloys)، مواد الکتروستریک (materials electrostrictive)، مواد تغییر شکل دهنده در اثر مغناطیس (magnetrostrictivematerials)، مایع های با خواص الکترورئولوژی (electrorheological fluids)، نمونه هایی از مواد هوشمند متداول هستند. 
تعریف و تاریخچه 
پیزوالکتریسیته یک متغیر خطی است که به ساختار میکروسکوپی جامدات مربوط می شود. برخی از سرامیک ها هنگامی که تحت تأثیر فشار قرار گیرند پلاریزه می شوند. این پدیده ی خطی و آشکار به عنوان اثر پیزوالکتریک مستقیم (The direct Piezoelectric effect) نسبت داده می شود. اثر پیزوالکتریک مستقیم همیشه با اثر پیزوالکتریک معکوس، همراه است. که این اثر پیزوالکتریک معکوس زمانی اتفاق می افتد که یک قطعه ی پیزوالکتریک در یک میدان الکتریکی قرار گیرد. 
نواحی میکروسکوپ بوجود آمده در اثر پیزوالکتریسیته باعث جابجا شدن بارهای یونی در داخل ساختار کریستالی می شود. در غیاب نیروهای فشاری خارجی، این بارها در داخل کریستال توزیع شده و ممنتم دی پل ها همدیگر را خنثی می کنند. به هرحال، هنگامی که یک تنش خارجی بر قطعه ی پیزوالکتریک وارد شود، بارها به گونه ای جابجا گشته که تقارن دی پل ها از میان می رود. بر این اساس یک شبکه ی پلاریزه ایجاد شده و نتیجه ی آن ایجاد یک میدان الکتریکی است. 
ماده ای می تواند از خود خواص پیزوالکتریک ارائه دهد که سلول واحد آن هیچگونه مرکز تعادلی نداشته باشد. خاصیت پیزوالکتریسیته به گروهی از مواد تعلق دارد که در سال 1880 به وسیله پیروژاکوپ کوری در طی مطالعات آنها بر روی آثار فشار بر روی تولید بار الکتریکی در کریستال های کوارتز، کهربا و نمک راچل (Rochelle salt)، کشف شد. در سال 1881 واژه ی Piezoelectricity توسط w.Hankel برای اولین بار برای نامگذاری این اثرات پیشنهاد شد. البته اثر معکوس این خاصیت توسط Lipmann از قوانین ترمودینامیک استنباط شد. در سه دهه ی بعد، همکاری های فراوانی در انجمن های علمی اروپا در زمینه ی پیزو الکتریسیته انجام شد واژه ی میدان پیزو الکتریسیته بوسیله آنها استفاده شد. البته کارهای انجام شده بر روی رابطه ی میان الکترومکانیکی مختلط با کریستال های پیزوالکتریک در سال 1910 انجام شد و اطلاعات آن به صورت یک مرجع استاندارد است. 
به هرحال پیچیدگی علم مربوط به مواد پیزوالکتریک باعث شد که کاربردهای این مواد تا چند سال قبل رشد پیدا نکند. لانگوین ات آل در طی جنگ جهانی اول مبدل التراسونیک پیزو الکتریکی ساخت. موفقیت او باعث ایجاد موقعیت های استفاده از مواد پیزوالکتریک در کاربردهای زیر آبی شد. در سال 1935، Scherrer , Busch خاصیت پیزوالکتریک پتاسیم دی هیدروژن فسفات (KDP) را کشف کردند. خانواده ی پیزوالکتریک های پتاسیم دی هیدروژن فسفات اولین خانواده ی عمده از مواد پیزوالکتریک و فرو الکتریک بود که کشف شده بود. 
در طی جنگ جهانی دوم، تحقیقات در زمینه ی مواد پیزوالکتریک بوسیله ی آمریکا، شوروی سابق و ژاپن بسط داده شد. محدودیت های ساخت این مواد از تجاری شدن آنها جلوگیری می کرد اما این مسأله نیز پس از کشف باریم تیتانات و سرب زیرکونا تیتانات (PZT) در دهه های 1940، 1950 برطرف شد. این خانواده از مواد خاصیت دی الکتریک و پیزوالکتریک بسیار خوبی داشتند علاوه بر این خانواده قابلیت مناسب شدن و استفاده در کاربردهای خاص را بواسطه ی دپ کردن آنها با عناصر دیگر، دارند. تا این تاریخ، PZT یکی از مواد پیزوالکتریک پر کاربرد است. این نکته قابل توجه است که بیشترین سرامیک های پیزوالکتریک تجاری در دسترس (مانند باریم تیتانات و PZT) ساختاری شبیه به ساختار پرسکیت (Perovskite) با فرمول CaTiO3 دارند. 

ساختار پرسکیت (ABD3) ساده ترین آرایش اتمی است که در آن اتم های اکسیژن در حالت اکتاهدرال قرار دارند و اتم های کوچکتر (Nb, Sn, Zr, Ti و ... ) به صورت آرایش مربعی با اتم های اکسیژن پیوند خورده اند این کاتیون های کوچکتر فضاهای اکتاهدرال مرکزی را اشغال کرده اند (موقعیت های B) و کاتیون های بزرگتر (Na, Ca, Sr, Ba, Pb و...) در گوشه های سلول واحد جای می گیرد (موقعیت های A )، ترکیباتی مانند 
KNbO3, NaNbO3, PbZro3, PbTiO3, BaTiO3 مورد مطالعه قرار گرفته و طول و دمای فروالکتریکی آنها و فازهای غیر فروالکتریک شان به صورت وسیع استخراج شده است. این ساختارها همچنین بوسیله ی اتم های مختلف جانشین شده تغییر می کند. این جانشینی های اتمی اتفاق افتاده موجب تولید ترکیبات پیچیده تری مانند 
(Pb, Sr) (Zr, Ti) O3 , (Ba, Sr) TiO3 ، (k, Bi) TiO3, Pb(fe, Ta) O3 و ... می شود. 
تقریباًٌ در سال 1965 بود که چندین شرکت ژاپنی بر روی تولید فرآیندها و کاربردهای جدید وسایل پیزوالکتریکی، متمرکز شوند. موفقیت تلاش محققین ژاپنی موجب شد تا محققین دیگر کشورها نیز به سمت تحقیقات در این زمینه جذب شوند و امروزه، نیازها و استفاده ها از این مواد در بسیاری از رشته ها از جمله کاربردهای پزشکی، ارتباطات، کاربردهای نظامی و صنعت خودرو گسترش یافته است. بررسی تاریخچه ی پیزوالکتریسیته توسط W.G.Cady انجام شده است و در سال 1971 نیز کتابی با عنوان سرامیک های پیزوالکتریک منتشر شد. که این کتاب هنوز هم به عنوان یکی از منابع قوی در زمینه ی پیزوالکتریک ها مطرح است. 
فرآیند تولید سرامیک های پیزوالکتریک 


تولید اغلب سرامیک های پیزوالکتریک توده ای با تهیه ی پودر آنها شروع می شود. پودر تولیدی سپس در اندازه و شکل مورد دلخواه پرس می شود. شکل خام تولیدی خشک و فرآوری گشته و از لحاظ مکانیکی سخت تر و پر دانسیته تر می شود. مهمترین فرآیندهایی که بر روی خواص و ویژگی های محصول تولیدی اثر می گذارند شامل: فرایند تولید پودر، فرآیند خشک کردن پودر و زینترینگ می شوند. مراحل بعدی انجام شده شامل: ماشین کاری، الکترونیک و قطب دار کردن (Poling) می شوند (قطب دار کردن یعنی: استفاده از یک میدان DC جریان برای جهت دهی به دی پل ها و القای خاصیت پیزوالکتریکی است) معمولی ترین روش برای تهیه ی پودر، مخلوط کردن اکسیدهای مورد نیازاست. در این فرآیند، پودر از مخلوط کردن نسبت های استوکیومتری مناسب از اکسیدهای تشکیل دهنده ی پیزوالکتریک بدست می آید. 
برای نمونه برای تولید (Lead Zirconiate titanate) PZT ، اکسید سرب، اکسید تیتانیم و اکسید زیرکونیم، ترکیبات اصلی هستند. براساس کاربرد و استفاده ای که از پیزو الکتریک تولیدی می شود، انواع متنوعی از عناصر دوپ شونده نیز به مخلوط افزوده می شود. که این عناصر دوپ شده موجب ایجاد خواص مورد نظر ما می شوند. سرامیک های PZT به ندرت بدون استفاده از افزودنی های دوپ شونده تولید می شوند. استفاده از عناصر دوپ شونده موجب اصلاح برخی از خواص این نوع سرامیک ها می شوند. افزودنی های دوپ شونده ای که در موقعیت های A قرار می گیرند باعث کاهش ضریب اتلاف (dissipation factor) شده که این مسأله بر روی تولید گرما تأثیر می گذارد، اما باعث کاهش ضرایب پیزوالکتریسیته (Piezoelectric coefficients) می شود. به همین دلیل پیزوالکتریک های تولیدی با این افزودنی ها بیشتر در کاربردهای التراسونیک و با فرکانس بالا استفاده می شوند. افزودنی های دوپ شونده ای که در موقعیت های B قرار می گیرند، باعث افزایش ضرایب پیزوالکتریسیته می شوند اما همچنین موجب افزایش ثابت دی الکتریک شده که این مسأله زیان آور است. پیزوالکتریک های تولیدی با این افزودنی ها دوپ شونده، به عنوان فعال کننده در کنترل کننده صدا- لرزش (control vibration and noise) ، عضله های خم کننده (benders)، کاربردهای موقعیت یابی نوری (optical positioning application) و ... استفاده می شوند. 


فلوچارتی از مراحل تهیه ی سرامیک های PZT آورده شده است. مخلوط نمودن پودر اکسیدهای مورد استفاده در تولید سرامیک های پیزوالکتریک یک به دو روش انجام می شود که در زیر بیان شده اند. 
1-روش سایش خشک با بال میل 
2-روش سایش تر با بال میل 
هر دو روش تر و خشک دارای مزایا و معایبی هستند. روش سایش تر با بال میل سریع تر از روش خشک است. به هر حال عیب روش تر اضافه شدن مرحله ای برای جداسازی مایع از پودر تولیدی است. متداول ترین روش تولید PZT ها از سایش تر با بال میل بهره می گیرد. در روش سایش تر پودر پودر این سرامیک ها با بال میل، از اتانول به عنوان مایع و از زیرکونیای تکلیس شده به عنوان محیط سایش استفاده می شود. البته ممکن است به جای یک آسیاب معمولی از یک آسیاب ارتعاشی (Vibratory mill) استفاده شود. این فرآیند که توسط Herner ابداع شده خطر آلودگی پودر با اجزای جدا شده از گلوله ها و محیط سایش را کاهش می دهد همچنین محیط زیرکونیا به خاطر کاهش ریسک آلودگی استفاده می شود. 
البته مرحله ی تکلیس نیز یکی از مراحل تعیین کننده در تولید سرامیک های PZT است. این مرحله موجب کامل شدن فرآیند تبلور کشته که فاز پرسکیت در این مرحله تشکیل می شود. اهداف این مرحله خارج شدن مواد آلی و فرار از مخلوط است و واکنش اکسیدهای موجود در مخلوط برای ایجاد ترکیبات فازی مناسب قبل از فرآیند تولید قطعه است. همچنین از اهداف دیگر این مرحله کاهش حجم شرپنکیج و یکنواختی بهتر در طی زینترینگ و پس از آن است. پس از تکلیس، یک ماده ی چسبنده به پودر افزوده می شود و مخلوط شکل دهی می شود. شکل دهی قطعات ساده با روش پرس خشک در قالب و برای بدنه های پیچیده تر، روش های اکستروژن و ریخته گری دوغابی استفاده می شود. پس از آن اشکال تولیدی زینترینگ می شود ( در واقع بوسیله یک آون مواد چسبنده ی آن خارج شده و دنس می شود.) 
مشکل عمده در زینترینگ سرامیک های PZT، فراریت Pbo در دمای 800 درجه سانتی گراد است برای به حداقل رساندن این مشکل، نمونه های PZT در حضور یک منبع سرب مانند PbZro3 زینتر می شوند و در داخل یک بوته ی ذوب بسته حرارت دهی می شوند. اشباع شدن اتمسفر محل زینتر کردن با PbO باعث به حداقل رسیدن اتلاف سرب از بدنه های PZT می شود. در این شرایط زینترینگ می تواند در دمای متنوعی بین 1200-1300 درجه سانتیگراد انجام شود. با وجود این تدابیر پیش بینی شده معمولاً اتلاف 2-3% در مقدار سرب اولیه صورت می گیرد. 
پس از برش و ماشین کاری قطعه به شکل مناسب، الکترودها تعبیه می شود و یک میدان DC برای جهت دهی به قلمرو دی پل های داخل سرامیک پلی کریستال اعمال می شود. قطب دار کردن بوسیله ی جریان DC می تواند در دمای اتاق و یا در دماهای بالاتر انجام شود. البته این مسأله به ماده و ترکیب سرامیک بستگی دارد. 
فرایند پلاریزاسیون تنها اندکی دی پل های موجود در سرامیک پلی کریستال را هم جهت می کند و نتیجه ی پلاریزاسیون پلی کریستال کمتر از حالتی است که سرامیک تک کریستال باشد. این تکنیک تولید دارای ابهامات زیادی است البته تعداد زیادی از روش های تولید دیگر وجود دارد که سرامیک های PZT با خواص و ریزساختار عالی تولید می کنند. یک مشکل بوجود آمده در این روش انحراف از حالت استوکیومتری است. این مشکل اغلب به خاطر وجود ناخالصی در مواد اولیه و اتلاف سرب از بدنه در طی فرآیند زینترینگ بوجود می آید. که باعث تغییر خواص PZT در اثر جانشینی های ناخواسته، می شود. به عنوان یک نتیجه، خواص الاستیک در اثر این مشکل می تواند 5% ، خواص پیزوالکتریک 10% و خواص دیک الکتریک 20 درصد ( با یک بچ ثابت) تغییر کنند. 
همچنین، خواص دی الکتریک و پیزوالکتریک عمدتاً به علت عدم وجود یکنواختی کاهش پیدا می کنند (این عدم یکنواختی به خاطر هم زدن کم اتفاق می افتد). این مسأله هنگامی که اکسیدهای اصلی هم گون باشد مهم می باشد. در روش های توضیح داده شده در بالا، به هرحال، اجزای اصلی به صورت محلول جامد در آمده و این نشان داده شده است که مخلوط شدن هم گون محلول جامد هنگامی که این مسأله امکان نداشته باشد، مشکل است. 
روش های دیگر برای تولید سرامیک های پیزوالکتریک به شرح زیراند: 
1) فرآیند هیدروترمال (Hydrothermal Processing) 
2) روش های هم رسوبی (coprecipitation methods) 
همچنین این نکته قابل توجه است که توسعه ی وسیعی در زمینه ی فرآیندهای تولید پودر (Powder Processing)، شکل دهی و زینترینگ بوجود آمده است که نتیجه ی این توسعه ها، افزایش کاربرد سرامیک های پیزوالکتریک است. 
روابط ساختاری و خواص مواد 
دانستن اطلاعات مربوط به پیزوالکتریسیته از ساختار مواد شروع می شود. برای توضیح بهتر، اجازه دهید بر روی یک کریستال از ( این تک کریستال های کوچک با قطر میانگین کمتر از Mm100) یک سرامیک پلی کریستال متمرکز شویم. این کریستال از اتم های مثبت و منفی تشکیل شده است که فضای خاصی را در سلولهای تکراری (سلول واحد) اشغال کرده اند. تقارن خاص سلول واحد تعیین کننده ی این مسأله است که آیا کریستال ما خاصیت پیزوالکتریسیته دارد یا نه؟ همه ی کریستال ها از 32 کلاس ( از 7 سیستم: تریکلینیک، مونوکلینیک، ارتورومبیک، تتراگونال، رمبوهدرال، هگزاگونال و کیوبیک) مشتق شده اند. از 32 کلاس، 21 عدد از آنها دارای تقارن مرکزی نیستند و 20 کلاس دارای خواص پیزوالکتریک هستند. 
( یک کلاس از 21 کلاس فاقد تقارن مرکزی، پیزوالکتریک نیست زیرا این کلاس دارای دیگر عناصر تقارن است). نبودن مرکز تقارن بدین معناست که یک حرکت شبکه ی یون های مثبت و منفی نسبت به همدیگر که در نتیجه ی اعمال تنش بوجود می آید،تولید یک دو قطبی الکتریکی می کند. یک سرامیک از قرارگیری تصادفی این کریستال های پیزوالکتریک تشکیل شده است و به همین دلیل غیرفعال است. اثرات کریستال ها همدیگر را خنثی نموده و خاصیت پیزوالکتریک قابل اندازه گیری در سرامیک بوجود نمی آید. نواحی با بردار قطبی یکسان،قلمرو (domain) نامیده می شوند. 
قطب دار کردن یکی از روش های معمولی مورد استفاده برای جهت دهی به قلمرو هاست که این عمل بوسیله ی پلاریزاسیون سرامیک ها با استفاده از یک میدان الکتریکی ساکن انجام می شود. الکترودها بر روی سرامیک اعمال می شود تا قلمروهای پیزوالکتریکی چرخیده و در جهت میدان،جهت گیری کنند. نتیجه ی بدست آمده این گونه نیست که تمام قلمروها هم جهت شوند و با جهت گیری یکسان بخشی از قلمروها سرامیک پلی کریستال دارای یک اثر پیزوالکتریکی بزرگ می شود. در طی این فرایند ماده ی پیزوالکتریک در جهت محور قطبی شدن انبساط و در جهت عمود بر آن انقباض دارد. 
روابط ساختاری 
هنگامی که در مورد معادله ی ساختاری مواد پیزوالکتریک می نویسیم باید تغیرات تنش و جابجایی الکتریکی در سه جهت عمود بر هم محاسبه گردد. این جابجایی الکتریکی بوسیله ی اثرات کوپل های عمود بر هم بوجود آمده است. همچنین این اثرات نیز بخاطر تنش های مکانیکی و الکتریکی حاصل می شود. علامت تانسور ابتدا معین می گردد که در شکل 4 جهات مرجع نشان داده شده است. 
حالت کرنش با تانسور مرتبه دوم Sij معین می شود و حالت تنش نیز بوسیله ی تانسور مرتبه دو Tkl تعیین می شود. روابطی وجود دارد که تانسور تنش را به تانسور کرنش، تسلیم Sijkl و سختی Cijkl مرتبط می سازد. رابطه میان میدان Ej (تانسور مرتبه اول) و جابجایی الکتریکی Di (تانسور مرتبه اول)، ثابت دی الکتریک Eij است. که این ثابت یک تانسور درجه 2 است. بنابراین معادلات مربوط به مواد پیزوالکتریک به صورت زیر نوشته می شوند: 
Di=ETij.Ej+dijk Tjk 
Sij=dijk Ek+E Sijkl Tkl 
که در این روابط dijk و dijk ثوابت پیزوالکتریک هستند و تانسوری درجه 3 هستند. با لانویس E, T نشان می دهند که ثابت دی الکتریک Eij و ثابت الاستیک Sijkl تحت شرایط تنش ثابت و میدان الکتریکی ثابت، اندازه گیری شده است. عموماً تانسور مرتبه اول، 3 جزء دارد، تانسور مرتبه 2، 9 جزء و مرتبه 3، 27 جزء دارد. همچنین تانسور مرتبه 4، 81 جزء دارد. درصد خیلی کمی از این اجزاء تانسوری، مستقل هستند. هر دوتای این روابط وابسته به جهت هستند. آنها یک بسته از معادلات هستند که این خواص را در جهات مختلف ماده شرح می دهند. تقارن فضایی و انتخاب بردارهای مرجع، تعداد اجزای مستقل را کاهش می دهد. یک راه مناسب برای توصیف آنها استفاده از جهات برداری مناسب مانند آنهایی که در شکل 4 نشان داده شده است. بر اساس عرف، جهت قطبی شدن را با محور 3 نمایش می دهیم. همچنین صفحات برشی با زیرنویس 4، 5و 6 نشان داده شده است که این صفحات بر جهات 1،2،3 عمود می باشد. 

کاربرد مواد پیزوالکتریک 
مواد پیزوالکتریک کاربرد وسیعی در علوم مختلف دارند. این مواد در بسیاری از وسایل که نیازمند تغییر انرژی مکانیکی به الکتریکی و یا بالعکس است، استفاده می شوند. زمینه ی وسیعی از کاربردهای مواد پیزوالکتریک وجود دارد و با وجود این مسأله که این مواد نزدیک به یک قرن است که مورد مطالعه قرار گرفته اند. ولی هنوز هم پتانسیل استفاده شدن در کاربردها و ابداعات دیگر را دارند. البته به خاطر وسعت این کاربردها از بیان آنها چشم پوشی می کنیم.

از سرامیک های پیزوالکتریک چه می دانید؟ 

خلاصه: 
در این مقاله بصورت خلاصه در مورد آنالیز و خواص سرامیک های پیزوالکتریک توضیح می دهیم. تمرکز ما بر روی سرامیک های پلی کریستال است، بنابراین سرامیک های تک کریستال، مواد پلیمری، کامپوزیت های آلی / غیرآلی (organic / inorganic composites) جزء اهداف مورد بررسی در این مقاله نمی باشد. برای فهمیدن کامل رفتار سرامیک های پلی کریستال پیزوالکتریک، مطالعه ی اطلاعات پایه در زمینه ی سرامیک ها ضروری می باشد. 
برای همین مسأله ما مقدمه ای کوتاه در مورد تاریخچه ی پیزوالکتریسیته و مباحث مربوط به کارهای انجام شده بر روی سرامیک ها و پیشرفت های مربوط به رابطه ی ساختار و رفتار مواد پیزوالکتریک به شما ارائه می دهیم. ما کوشش می کنیم ما متداول ترین روش های اندازه گیری را به خوبی توضیح دهیم و پارامترهای موثر به خواص پیزوالکتریک ها را توضیح می دهیم. برای بدست آوردن اطلاعات بیشتر به منابع موجود در پایان مقاله مراجعه کنید. برای توضیح بهتر، ما از مثال (PZT) lead zirconate titanate استفاده می کنیم. زیرا این سرامیک بیشترین استفاده را داشته و مطالعات زیادی بر روی آن صورت گرفته است. 
مواد پیزوالکتریک 
تاریخچه و کارهای انجام شده در این زمینه 
مواد هوشمند، موادی هستند که متحمل فعل و انفعالات فیزیکی می شوند. یک تعریف معادل دیگر از مواد هوشمند این است که این مواد،موادی هستند که تغییرات محیطی را دریافت کرده و با استفاده از بازخوردهای سیستم، این تغییرات را حذف یا تصحیح می کنند. مواد پیزوالکتریک، آلیاژهای حافظه دار (shape-memory alloys)، مواد الکتروستریک (materials electrostrictive)، مواد تغییر شکل دهنده در اثر مغناطیس (magnetrostrictivematerials)، مایع های با خواص الکترورئولوژی (electrorheological fluids)، نمونه هایی از مواد هوشمند متداول هستند. 
تعریف و تاریخچه 
پیزوالکتریسیته یک متغیر خطی است که به ساختار میکروسکوپی جامدات مربوط می شود. برخی از سرامیک ها هنگامی که تحت تأثیر فشار قرار گیرند پلاریزه می شوند. این پدیده ی خطی و آشکار به عنوان اثر پیزوالکتریک مستقیم (The direct Piezoelectric effect) نسبت داده می شود. اثر پیزوالکتریک مستقیم همیشه با اثر پیزوالکتریک معکوس، همراه است. که این اثر پیزوالکتریک معکوس زمانی اتفاق می افتد که یک قطعه ی پیزوالکتریک در یک میدان الکتریکی قرار گیرد. 
نواحی میکروسکوپ بوجود آمده در اثر پیزوالکتریسیته باعث جابجا شدن بارهای یونی در داخل ساختار کریستالی می شود. در غیاب نیروهای فشاری خارجی، این بارها در داخل کریستال توزیع شده و ممنتم دی پل ها همدیگر را خنثی می کنند. به هرحال، هنگامی که یک تنش خارجی بر قطعه ی پیزوالکتریک وارد شود، بارها به گونه ای جابجا گشته که تقارن دی پل ها از میان می رود. بر این اساس یک شبکه ی پلاریزه ایجاد شده و نتیجه ی آن ایجاد یک میدان الکتریکی است. 
ماده ای می تواند از خود خواص پیزوالکتریک ارائه دهد که سلول واحد آن هیچگونه مرکز تعادلی نداشته باشد. خاصیت پیزوالکتریسیته به گروهی از مواد تعلق دارد که در سال 1880 به وسیله پیروژاکوپ کوری در طی مطالعات آنها بر روی آثار فشار بر روی تولید بار الکتریکی در کریستال های کوارتز، کهربا و نمک راچل (Rochelle salt)، کشف شد. در سال 1881 واژه ی Piezoelectricity توسط w.Hankel برای اولین بار برای نامگذاری این اثرات پیشنهاد شد. البته اثر معکوس این خاصیت توسط Lipmann از قوانین ترمودینامیک استنباط شد. در سه دهه ی بعد، همکاری های فراوانی در انجمن های علمی اروپا در زمینه ی پیزو الکتریسیته انجام شد واژه ی میدان پیزو الکتریسیته بوسیله آنها استفاده شد. البته کارهای انجام شده بر روی رابطه ی میان الکترومکانیکی مختلط با کریستال های پیزوالکتریک در سال 1910 انجام شد و اطلاعات آن به صورت یک مرجع استاندارد است. 
به هرحال پیچیدگی علم مربوط به مواد پیزوالکتریک باعث شد که کاربردهای این مواد تا چند سال قبل رشد پیدا نکند. لانگوین ات آل در طی جنگ جهانی اول مبدل التراسونیک پیزو الکتریکی ساخت. موفقیت او باعث ایجاد موقعیت های استفاده از مواد پیزوالکتریک در کاربردهای زیر آبی شد. در سال 1935، Scherrer , Busch خاصیت پیزوالکتریک پتاسیم دی هیدروژن فسفات (KDP) را کشف کردند. خانواده ی پیزوالکتریک های پتاسیم دی هیدروژن فسفات اولین خانواده ی عمده از مواد پیزوالکتریک و فرو الکتریک بود که کشف شده بود. 
در طی جنگ جهانی دوم، تحقیقات در زمینه ی مواد پیزوالکتریک بوسیله ی آمریکا، شوروی سابق و ژاپن بسط داده شد. محدودیت های ساخت این مواد از تجاری شدن آنها جلوگیری می کرد اما این مسأله نیز پس از کشف باریم تیتانات و سرب زیرکونا تیتانات (PZT) در دهه های 1940، 1950 برطرف شد. این خانواده از مواد خاصیت دی الکتریک و پیزوالکتریک بسیار خوبی داشتند علاوه بر این خانواده قابلیت مناسب شدن و استفاده در کاربردهای خاص را بواسطه ی دپ کردن آنها با عناصر دیگر، دارند. تا این تاریخ، PZT یکی از مواد پیزوالکتریک پر کاربرد است. این نکته قابل توجه است که بیشترین سرامیک های پیزوالکتریک تجاری در دسترس (مانند باریم تیتانات و PZT) ساختاری شبیه به ساختار پرسکیت (Perovskite) با فرمول CaTiO3 دارند. 

ساختار پرسکیت (ABD3) ساده ترین آرایش اتمی است که در آن اتم های اکسیژن در حالت اکتاهدرال قرار دارند و اتم های کوچکتر (Nb, Sn, Zr, Ti و ... ) به صورت آرایش مربعی با اتم های اکسیژن پیوند خورده اند این کاتیون های کوچکتر فضاهای اکتاهدرال مرکزی را اشغال کرده اند (موقعیت های B) و کاتیون های بزرگتر (Na, Ca, Sr, Ba, Pb و...) در گوشه های سلول واحد جای می گیرد (موقعیت های A )، ترکیباتی مانند 
KNbO3, NaNbO3, PbZro3, PbTiO3, BaTiO3 مورد مطالعه قرار گرفته و طول و دمای فروالکتریکی آنها و فازهای غیر فروالکتریک شان به صورت وسیع استخراج شده است. این ساختارها همچنین بوسیله ی اتم های مختلف جانشین شده تغییر می کند. این جانشینی های اتمی اتفاق افتاده موجب تولید ترکیبات پیچیده تری مانند 
(Pb, Sr) (Zr, Ti) O3 , (Ba, Sr) TiO3 ، (k, Bi) TiO3, Pb(fe, Ta) O3 و ... می شود. 
تقریباًٌ در سال 1965 بود که چندین شرکت ژاپنی بر روی تولید فرآیندها و کاربردهای جدید وسایل پیزوالکتریکی، متمرکز شوند. موفقیت تلاش محققین ژاپنی موجب شد تا محققین دیگر کشورها نیز به سمت تحقیقات در این زمینه جذب شوند و امروزه، نیازها و استفاده ها از این مواد در بسیاری از رشته ها از جمله کاربردهای پزشکی، ارتباطات، کاربردهای نظامی و صنعت خودرو گسترش یافته است. بررسی تاریخچه ی پیزوالکتریسیته توسط W.G.Cady انجام شده است و در سال 1971 نیز کتابی با عنوان سرامیک های پیزوالکتریک منتشر شد. که این کتاب هنوز هم به عنوان یکی از منابع قوی در زمینه ی پیزوالکتریک ها مطرح است. 
فرآیند تولید سرامیک های پیزوالکتریک 


تولید اغلب سرامیک های پیزوالکتریک توده ای با تهیه ی پودر آنها شروع می شود. پودر تولیدی سپس در اندازه و شکل مورد دلخواه پرس می شود. شکل خام تولیدی خشک و فرآوری گشته و از لحاظ مکانیکی سخت تر و پر دانسیته تر می شود. مهمترین فرآیندهایی که بر روی خواص و ویژگی های محصول تولیدی اثر می گذارند شامل: فرایند تولید پودر، فرآیند خشک کردن پودر و زینترینگ می شوند. مراحل بعدی انجام شده شامل: ماشین کاری، الکترونیک و قطب دار کردن (Poling) می شوند (قطب دار کردن یعنی: استفاده از یک میدان DC جریان برای جهت دهی به دی پل ها و القای خاصیت پیزوالکتریکی است) معمولی ترین روش برای تهیه ی پودر، مخلوط کردن اکسیدهای مورد نیازاست. در این فرآیند، پودر از مخلوط کردن نسبت های استوکیومتری مناسب از اکسیدهای تشکیل دهنده ی پیزوالکتریک بدست می آید. 
برای نمونه برای تولید (Lead Zirconiate titanate) PZT ، اکسید سرب، اکسید تیتانیم و اکسید زیرکونیم، ترکیبات اصلی هستند. براساس کاربرد و استفاده ای که از پیزو الکتریک تولیدی می شود، انواع متنوعی از عناصر دوپ شونده نیز به مخلوط افزوده می شود. که این عناصر دوپ شده موجب ایجاد خواص مورد نظر ما می شوند. سرامیک های PZT به ندرت بدون استفاده از افزودنی های دوپ شونده تولید می شوند. استفاده از عناصر دوپ شونده موجب اصلاح برخی از خواص این نوع سرامیک ها می شوند. افزودنی های دوپ شونده ای که در موقعیت های A قرار می گیرند باعث کاهش ضریب اتلاف (dissipation factor) شده که این مسأله بر روی تولید گرما تأثیر می گذارد، اما باعث کاهش ضرایب پیزوالکتریسیته (Piezoelectric coefficients) می شود. به همین دلیل پیزوالکتریک های تولیدی با این افزودنی ها بیشتر در کاربردهای التراسونیک و با فرکانس بالا استفاده می شوند. افزودنی های دوپ شونده ای که در موقعیت های B قرار می گیرند، باعث افزایش ضرایب پیزوالکتریسیته می شوند اما همچنین موجب افزایش ثابت دی الکتریک شده که این مسأله زیان آور است. پیزوالکتریک های تولیدی با این افزودنی ها دوپ شونده، به عنوان فعال کننده در کنترل کننده صدا- لرزش (control vibration and noise) ، عضله های خم کننده (benders)، کاربردهای موقعیت یابی نوری (optical positioning application) و ... استفاده می شوند. 


فلوچارتی از مراحل تهیه ی سرامیک های PZT آورده شده است. مخلوط نمودن پودر اکسیدهای مورد استفاده در تولید سرامیک های پیزوالکتریک یک به دو روش انجام می شود که در زیر بیان شده اند. 
1-روش سایش خشک با بال میل 
2-روش سایش تر با بال میل 
هر دو روش تر و خشک دارای مزایا و معایبی هستند. روش سایش تر با بال میل سریع تر از روش خشک است. به هر حال عیب روش تر اضافه شدن مرحله ای برای جداسازی مایع از پودر تولیدی است. متداول ترین روش تولید PZT ها از سایش تر با بال میل بهره می گیرد. در روش سایش تر پودر پودر این سرامیک ها با بال میل، از اتانول به عنوان مایع و از زیرکونیای تکلیس شده به عنوان محیط سایش استفاده می شود. البته ممکن است به جای یک آسیاب معمولی از یک آسیاب ارتعاشی (Vibratory mill) استفاده شود. این فرآیند که توسط Herner ابداع شده خطر آلودگی پودر با اجزای جدا شده از گلوله ها و محیط سایش را کاهش می دهد همچنین محیط زیرکونیا به خاطر کاهش ریسک آلودگی استفاده می شود. 
البته مرحله ی تکلیس نیز یکی از مراحل تعیین کننده در تولید سرامیک های PZT است. این مرحله موجب کامل شدن فرآیند تبلور کشته که فاز پرسکیت در این مرحله تشکیل می شود. اهداف این مرحله خارج شدن مواد آلی و فرار از مخلوط است و واکنش اکسیدهای موجود در مخلوط برای ایجاد ترکیبات فازی مناسب قبل از فرآیند تولید قطعه است. همچنین از اهداف دیگر این مرحله کاهش حجم شرپنکیج و یکنواختی بهتر در طی زینترینگ و پس از آن است. پس از تکلیس، یک ماده ی چسبنده به پودر افزوده می شود و مخلوط شکل دهی می شود. شکل دهی قطعات ساده با روش پرس خشک در قالب و برای بدنه های پیچیده تر، روش های اکستروژن و ریخته گری دوغابی استفاده می شود. پس از آن اشکال تولیدی زینترینگ می شود ( در واقع بوسیله یک آون مواد چسبنده ی آن خارج شده و دنس می شود.) 
مشکل عمده در زینترینگ سرامیک های PZT، فراریت Pbo در دمای 800 درجه سانتی گراد است برای به حداقل رساندن این مشکل، نمونه های PZT در حضور یک منبع سرب مانند PbZro3 زینتر می شوند و در داخل یک بوته ی ذوب بسته حرارت دهی می شوند. اشباع شدن اتمسفر محل زینتر کردن با PbO باعث به حداقل رسیدن اتلاف سرب از بدنه های PZT می شود. در این شرایط زینترینگ می تواند در دمای متنوعی بین 1200-1300 درجه سانتیگراد انجام شود. با وجود این تدابیر پیش بینی شده معمولاً اتلاف 2-3% در مقدار سرب اولیه صورت می گیرد. 
پس از برش و ماشین کاری قطعه به شکل مناسب، الکترودها تعبیه می شود و یک میدان DC برای جهت دهی به قلمرو دی پل های داخل سرامیک پلی کریستال اعمال می شود. قطب دار کردن بوسیله ی جریان DC می تواند در دمای اتاق و یا در دماهای بالاتر انجام شود. البته این مسأله به ماده و ترکیب سرامیک بستگی دارد. 
فرایند پلاریزاسیون تنها اندکی دی پل های موجود در سرامیک پلی کریستال را هم جهت می کند و نتیجه ی پلاریزاسیون پلی کریستال کمتر از حالتی است که سرامیک تک کریستال باشد. این تکنیک تولید دارای ابهامات زیادی است البته تعداد زیادی از روش های تولید دیگر وجود دارد که سرامیک های PZT با خواص و ریزساختار عالی تولید می کنند. یک مشکل بوجود آمده در این روش انحراف از حالت استوکیومتری است. این مشکل اغلب به خاطر وجود ناخالصی در مواد اولیه و اتلاف سرب از بدنه در طی فرآیند زینترینگ بوجود می آید. که باعث تغییر خواص PZT در اثر جانشینی های ناخواسته، می شود. به عنوان یک نتیجه، خواص الاستیک در اثر این مشکل می تواند 5% ، خواص پیزوالکتریک 10% و خواص دیک الکتریک 20 درصد ( با یک بچ ثابت) تغییر کنند. 
همچنین، خواص دی الکتریک و پیزوالکتریک عمدتاً به علت عدم وجود یکنواختی کاهش پیدا می کنند (این عدم یکنواختی به خاطر هم زدن کم اتفاق می افتد). این مسأله هنگامی که اکسیدهای اصلی هم گون باشد مهم می باشد. در روش های توضیح داده شده در بالا، به هرحال، اجزای اصلی به صورت محلول جامد در آمده و این نشان داده شده است که مخلوط شدن هم گون محلول جامد هنگامی که این مسأله امکان نداشته باشد، مشکل است. 
روش های دیگر برای تولید سرامیک های پیزوالکتریک به شرح زیراند: 
1) فرآیند هیدروترمال (Hydrothermal Processing) 
2) روش های هم رسوبی (coprecipitation methods) 
همچنین این نکته قابل توجه است که توسعه ی وسیعی در زمینه ی فرآیندهای تولید پودر (Powder Processing)، شکل دهی و زینترینگ بوجود آمده است که نتیجه ی این توسعه ها، افزایش کاربرد سرامیک های پیزوالکتریک است. 
روابط ساختاری و خواص مواد 
دانستن اطلاعات مربوط به پیزوالکتریسیته از ساختار مواد شروع می شود. برای توضیح بهتر، اجازه دهید بر روی یک کریستال از ( این تک کریستال های کوچک با قطر میانگین کمتر از Mm100) یک سرامیک پلی کریستال متمرکز شویم. این کریستال از اتم های مثبت و منفی تشکیل شده است که فضای خاصی را در سلولهای تکراری (سلول واحد) اشغال کرده اند. تقارن خاص سلول واحد تعیین کننده ی این مسأله است که آیا کریستال ما خاصیت پیزوالکتریسیته دارد یا نه؟ همه ی کریستال ها از 32 کلاس ( از 7 سیستم: تریکلینیک، مونوکلینیک، ارتورومبیک، تتراگونال، رمبوهدرال، هگزاگونال و کیوبیک) مشتق شده اند. از 32 کلاس، 21 عدد از آنها دارای تقارن مرکزی نیستند و 20 کلاس دارای خواص پیزوالکتریک هستند. 
( یک کلاس از 21 کلاس فاقد تقارن مرکزی، پیزوالکتریک نیست زیرا این کلاس دارای دیگر عناصر تقارن است). نبودن مرکز تقارن بدین معناست که یک حرکت شبکه ی یون های مثبت و منفی نسبت به همدیگر که در نتیجه ی اعمال تنش بوجود می آید،تولید یک دو قطبی الکتریکی می کند. یک سرامیک از قرارگیری تصادفی این کریستال های پیزوالکتریک تشکیل شده است و به همین دلیل غیرفعال است. اثرات کریستال ها همدیگر را خنثی نموده و خاصیت پیزوالکتریک قابل اندازه گیری در سرامیک بوجود نمی آید. نواحی با بردار قطبی یکسان،قلمرو (domain) نامیده می شوند. 
قطب دار کردن یکی از روش های معمولی مورد استفاده برای جهت دهی به قلمرو هاست که این عمل بوسیله ی پلاریزاسیون سرامیک ها با استفاده از یک میدان الکتریکی ساکن انجام می شود. الکترودها بر روی سرامیک اعمال می شود تا قلمروهای پیزوالکتریکی چرخیده و در جهت میدان،جهت گیری کنند. نتیجه ی بدست آمده این گونه نیست که تمام قلمروها هم جهت شوند و با جهت گیری یکسان بخشی از قلمروها سرامیک پلی کریستال دارای یک اثر پیزوالکتریکی بزرگ می شود. در طی این فرایند ماده ی پیزوالکتریک در جهت محور قطبی شدن انبساط و در جهت عمود بر آن انقباض دارد. 
روابط ساختاری 
هنگامی که در مورد معادله ی ساختاری مواد پیزوالکتریک می نویسیم باید تغیرات تنش و جابجایی الکتریکی در سه جهت عمود بر هم محاسبه گردد. این جابجایی الکتریکی بوسیله ی اثرات کوپل های عمود بر هم بوجود آمده است. همچنین این اثرات نیز بخاطر تنش های مکانیکی و الکتریکی حاصل می شود. علامت تانسور ابتدا معین می گردد که در شکل 4 جهات مرجع نشان داده شده است. 
حالت کرنش با تانسور مرتبه دوم Sij معین می شود و حالت تنش نیز بوسیله ی تانسور مرتبه دو Tkl تعیین می شود. روابطی وجود دارد که تانسور تنش را به تانسور کرنش، تسلیم Sijkl و سختی Cijkl مرتبط می سازد. رابطه میان میدان Ej (تانسور مرتبه اول) و جابجایی الکتریکی Di (تانسور مرتبه اول)، ثابت دی الکتریک Eij است. که این ثابت یک تانسور درجه 2 است. بنابراین معادلات مربوط به مواد پیزوالکتریک به صورت زیر نوشته می شوند: 
Di=ETij.Ej+dijk Tjk 
Sij=dijk Ek+E Sijkl Tkl 
که در این روابط dijk و dijk ثوابت پیزوالکتریک هستند و تانسوری درجه 3 هستند. با لانویس E, T نشان می دهند که ثابت دی الکتریک Eij و ثابت الاستیک Sijkl تحت شرایط تنش ثابت و میدان الکتریکی ثابت، اندازه گیری شده است. عموماً تانسور مرتبه اول، 3 جزء دارد، تانسور مرتبه 2، 9 جزء و مرتبه 3، 27 جزء دارد. همچنین تانسور مرتبه 4، 81 جزء دارد. درصد خیلی کمی از این اجزاء تانسوری، مستقل هستند. هر دوتای این روابط وابسته به جهت هستند. آنها یک بسته از معادلات هستند که این خواص را در جهات مختلف ماده شرح می دهند. تقارن فضایی و انتخاب بردارهای مرجع، تعداد اجزای مستقل را کاهش می دهد. یک راه مناسب برای توصیف آنها استفاده از جهات برداری مناسب مانند آنهایی که در شکل 4 نشان داده شده است. بر اساس عرف، جهت قطبی شدن را با محور 3 نمایش می دهیم. همچنین صفحات برشی با زیرنویس 4، 5و 6 نشان داده شده است که این صفحات بر جهات 1،2،3 عمود می باشد. 

کاربرد مواد پیزوالکتریک 
مواد پیزوالکتریک کاربرد وسیعی در علوم مختلف دارند. این مواد در بسیاری از وسایل که نیازمند تغییر انرژی مکانیکی به الکتریکی و یا بالعکس است، استفاده می شوند. زمینه ی وسیعی از کاربردهای مواد پیزوالکتریک وجود دارد و با وجود این مسأله که این مواد نزدیک به یک قرن است که مورد مطالعه قرار گرفته اند. ولی هنوز هم پتانسیل استفاده شدن در کاربردها و ابداعات دیگر را دارند. البته به خاطر وسعت این کاربردها از بیان آنها چشم پوشی می کنیم.

از سرامیک های پیزوالکتریک چه می دانید؟ 

خلاصه: 
در این مقاله بصورت خلاصه در مورد آنالیز و خواص سرامیک های پیزوالکتریک توضیح می دهیم. تمرکز ما بر روی سرامیک های پلی کریستال است، بنابراین سرامیک های تک کریستال، مواد پلیمری، کامپوزیت های آلی / غیرآلی (organic / inorganic composites) جزء اهداف مورد بررسی در این مقاله نمی باشد. برای فهمیدن کامل رفتار سرامیک های پلی کریستال پیزوالکتریک، مطالعه ی اطلاعات پایه در زمینه ی سرامیک ها ضروری می باشد. 
برای همین مسأله ما مقدمه ای کوتاه در مورد تاریخچه ی پیزوالکتریسیته و مباحث مربوط به کارهای انجام شده بر روی سرامیک ها و پیشرفت های مربوط به رابطه ی ساختار و رفتار مواد پیزوالکتریک به شما ارائه می دهیم. ما کوشش می کنیم ما متداول ترین روش های اندازه گیری را به خوبی توضیح دهیم و پارامترهای موثر به خواص پیزوالکتریک ها را توضیح می دهیم. برای بدست آوردن اطلاعات بیشتر به منابع موجود در پایان مقاله مراجعه کنید. برای توضیح بهتر، ما از مثال (PZT) lead zirconate titanate استفاده می کنیم. زیرا این سرامیک بیشترین استفاده را داشته و مطالعات زیادی بر روی آن صورت گرفته است. 
مواد پیزوالکتریک 
تاریخچه و کارهای انجام شده در این زمینه 
مواد هوشمند، موادی هستند که متحمل فعل و انفعالات فیزیکی می شوند. یک تعریف معادل دیگر از مواد هوشمند این است که این مواد،موادی هستند که تغییرات محیطی را دریافت کرده و با استفاده از بازخوردهای سیستم، این تغییرات را حذف یا تصحیح می کنند. مواد پیزوالکتریک، آلیاژهای حافظه دار (shape-memory alloys)، مواد الکتروستریک (materials electrostrictive)، مواد تغییر شکل دهنده در اثر مغناطیس (magnetrostrictivematerials)، مایع های با خواص الکترورئولوژی (electrorheological fluids)، نمونه هایی از مواد هوشمند متداول هستند. 
تعریف و تاریخچه 
پیزوالکتریسیته یک متغیر خطی است که به ساختار میکروسکوپی جامدات مربوط می شود. برخی از سرامیک ها هنگامی که تحت تأثیر فشار قرار گیرند پلاریزه می شوند. این پدیده ی خطی و آشکار به عنوان اثر پیزوالکتریک مستقیم (The direct Piezoelectric effect) نسبت داده می شود. اثر پیزوالکتریک مستقیم همیشه با اثر پیزوالکتریک معکوس، همراه است. که این اثر پیزوالکتریک معکوس زمانی اتفاق می افتد که یک قطعه ی پیزوالکتریک در یک میدان الکتریکی قرار گیرد. 
نواحی میکروسکوپ بوجود آمده در اثر پیزوالکتریسیته باعث جابجا شدن بارهای یونی در داخل ساختار کریستالی می شود. در غیاب نیروهای فشاری خارجی، این بارها در داخل کریستال توزیع شده و ممنتم دی پل ها همدیگر را خنثی می کنند. به هرحال، هنگامی که یک تنش خارجی بر قطعه ی پیزوالکتریک وارد شود، بارها به گونه ای جابجا گشته که تقارن دی پل ها از میان می رود. بر این اساس یک شبکه ی پلاریزه ایجاد شده و نتیجه ی آن ایجاد یک میدان الکتریکی است. 
ماده ای می تواند از خود خواص پیزوالکتریک ارائه دهد که سلول واحد آن هیچگونه مرکز تعادلی نداشته باشد. خاصیت پیزوالکتریسیته به گروهی از مواد تعلق دارد که در سال 1880 به وسیله پیروژاکوپ کوری در طی مطالعات آنها بر روی آثار فشار بر روی تولید بار الکتریکی در کریستال های کوارتز، کهربا و نمک راچل (Rochelle salt)، کشف شد. در سال 1881 واژه ی Piezoelectricity توسط w.Hankel برای اولین بار برای نامگذاری این اثرات پیشنهاد شد. البته اثر معکوس این خاصیت توسط Lipmann از قوانین ترمودینامیک استنباط شد. در سه دهه ی بعد، همکاری های فراوانی در انجمن های علمی اروپا در زمینه ی پیزو الکتریسیته انجام شد واژه ی میدان پیزو الکتریسیته بوسیله آنها استفاده شد. البته کارهای انجام شده بر روی رابطه ی میان الکترومکانیکی مختلط با کریستال های پیزوالکتریک در سال 1910 انجام شد و اطلاعات آن به صورت یک مرجع استاندارد است. 
به هرحال پیچیدگی علم مربوط به مواد پیزوالکتریک باعث شد که کاربردهای این مواد تا چند سال قبل رشد پیدا نکند. لانگوین ات آل در طی جنگ جهانی اول مبدل التراسونیک پیزو الکتریکی ساخت. موفقیت او باعث ایجاد موقعیت های استفاده از مواد پیزوالکتریک در کاربردهای زیر آبی شد. در سال 1935، Scherrer , Busch خاصیت پیزوالکتریک پتاسیم دی هیدروژن فسفات (KDP) را کشف کردند. خانواده ی پیزوالکتریک های پتاسیم دی هیدروژن فسفات اولین خانواده ی عمده از مواد پیزوالکتریک و فرو الکتریک بود که کشف شده بود. 
در طی جنگ جهانی دوم، تحقیقات در زمینه ی مواد پیزوالکتریک بوسیله ی آمریکا، شوروی سابق و ژاپن بسط داده شد. محدودیت های ساخت این مواد از تجاری شدن آنها جلوگیری می کرد اما این مسأله نیز پس از کشف باریم تیتانات و سرب زیرکونا تیتانات (PZT) در دهه های 1940، 1950 برطرف شد. این خانواده از مواد خاصیت دی الکتریک و پیزوالکتریک بسیار خوبی داشتند علاوه بر این خانواده قابلیت مناسب شدن و استفاده در کاربردهای خاص را بواسطه ی دپ کردن آنها با عناصر دیگر، دارند. تا این تاریخ، PZT یکی از مواد پیزوالکتریک پر کاربرد است. این نکته قابل توجه است که بیشترین سرامیک های پیزوالکتریک تجاری در دسترس (مانند باریم تیتانات و PZT) ساختاری شبیه به ساختار پرسکیت (Perovskite) با فرمول CaTiO3 دارند. 

ساختار پرسکیت (ABD3) ساده ترین آرایش اتمی است که در آن اتم های اکسیژن در حالت اکتاهدرال قرار دارند و اتم های کوچکتر (Nb, Sn, Zr, Ti و ... ) به صورت آرایش مربعی با اتم های اکسیژن پیوند خورده اند این کاتیون های کوچکتر فضاهای اکتاهدرال مرکزی را اشغال کرده اند (موقعیت های B) و کاتیون های بزرگتر (Na, Ca, Sr, Ba, Pb و...) در گوشه های سلول واحد جای می گیرد (موقعیت های A )، ترکیباتی مانند 
KNbO3, NaNbO3, PbZro3, PbTiO3, BaTiO3 مورد مطالعه قرار گرفته و طول و دمای فروالکتریکی آنها و فازهای غیر فروالکتریک شان به صورت وسیع استخراج شده است. این ساختارها همچنین بوسیله ی اتم های مختلف جانشین شده تغییر می کند. این جانشینی های اتمی اتفاق افتاده موجب تولید ترکیبات پیچیده تری مانند 
(Pb, Sr) (Zr, Ti) O3 , (Ba, Sr) TiO3 ، (k, Bi) TiO3, Pb(fe, Ta) O3 و ... می شود. 
تقریباًٌ در سال 1965 بود که چندین شرکت ژاپنی بر روی تولید فرآیندها و کاربردهای جدید وسایل پیزوالکتریکی، متمرکز شوند. موفقیت تلاش محققین ژاپنی موجب شد تا محققین دیگر کشورها نیز به سمت تحقیقات در این زمینه جذب شوند و امروزه، نیازها و استفاده ها از این مواد در بسیاری از رشته ها از جمله کاربردهای پزشکی، ارتباطات، کاربردهای نظامی و صنعت خودرو گسترش یافته است. بررسی تاریخچه ی پیزوالکتریسیته توسط W.G.Cady انجام شده است و در سال 1971 نیز کتابی با عنوان سرامیک های پیزوالکتریک منتشر شد. که این کتاب هنوز هم به عنوان یکی از منابع قوی در زمینه ی پیزوالکتریک ها مطرح است. 
فرآیند تولید سرامیک های پیزوالکتریک 


تولید اغلب سرامیک های پیزوالکتریک توده ای با تهیه ی پودر آنها شروع می شود. پودر تولیدی سپس در اندازه و شکل مورد دلخواه پرس می شود. شکل خام تولیدی خشک و فرآوری گشته و از لحاظ مکانیکی سخت تر و پر دانسیته تر می شود. مهمترین فرآیندهایی که بر روی خواص و ویژگی های محصول تولیدی اثر می گذارند شامل: فرایند تولید پودر، فرآیند خشک کردن پودر و زینترینگ می شوند. مراحل بعدی انجام شده شامل: ماشین کاری، الکترونیک و قطب دار کردن (Poling) می شوند (قطب دار کردن یعنی: استفاده از یک میدان DC جریان برای جهت دهی به دی پل ها و القای خاصیت پیزوالکتریکی است) معمولی ترین روش برای تهیه ی پودر، مخلوط کردن اکسیدهای مورد نیازاست. در این فرآیند، پودر از مخلوط کردن نسبت های استوکیومتری مناسب از اکسیدهای تشکیل دهنده ی پیزوالکتریک بدست می آید. 
برای نمونه برای تولید (Lead Zirconiate titanate) PZT ، اکسید سرب، اکسید تیتانیم و اکسید زیرکونیم، ترکیبات اصلی هستند. براساس کاربرد و استفاده ای که از پیزو الکتریک تولیدی می شود، انواع متنوعی از عناصر دوپ شونده نیز به مخلوط افزوده می شود. که این عناصر دوپ شده موجب ایجاد خواص مورد نظر ما می شوند. سرامیک های PZT به ندرت بدون استفاده از افزودنی های دوپ شونده تولید می شوند. استفاده از عناصر دوپ شونده موجب اصلاح برخی از خواص این نوع سرامیک ها می شوند. افزودنی های دوپ شونده ای که در موقعیت های A قرار می گیرند باعث کاهش ضریب اتلاف (dissipation factor) شده که این مسأله بر روی تولید گرما تأثیر می گذارد، اما باعث کاهش ضرایب پیزوالکتریسیته (Piezoelectric coefficients) می شود. به همین دلیل پیزوالکتریک های تولیدی با این افزودنی ها بیشتر در کاربردهای التراسونیک و با فرکانس بالا استفاده می شوند. افزودنی های دوپ شونده ای که در موقعیت های B قرار می گیرند، باعث افزایش ضرایب پیزوالکتریسیته می شوند اما همچنین موجب افزایش ثابت دی الکتریک شده که این مسأله زیان آور است. پیزوالکتریک های تولیدی با این افزودنی ها دوپ شونده، به عنوان فعال کننده در کنترل کننده صدا- لرزش (control vibration and noise) ، عضله های خم کننده (benders)، کاربردهای موقعیت یابی نوری (optical positioning application) و ... استفاده می شوند. 


فلوچارتی از مراحل تهیه ی سرامیک های PZT آورده شده است. مخلوط نمودن پودر اکسیدهای مورد استفاده در تولید سرامیک های پیزوالکتریک یک به دو روش انجام می شود که در زیر بیان شده اند. 
1-روش سایش خشک با بال میل 
2-روش سایش تر با بال میل 
هر دو روش تر و خشک دارای مزایا و معایبی هستند. روش سایش تر با بال میل سریع تر از روش خشک است. به هر حال عیب روش تر اضافه شدن مرحله ای برای جداسازی مایع از پودر تولیدی است. متداول ترین روش تولید PZT ها از سایش تر با بال میل بهره می گیرد. در روش سایش تر پودر پودر این سرامیک ها با بال میل، از اتانول به عنوان مایع و از زیرکونیای تکلیس شده به عنوان محیط سایش استفاده می شود. البته ممکن است به جای یک آسیاب معمولی از یک آسیاب ارتعاشی (Vibratory mill) استفاده شود. این فرآیند که توسط Herner ابداع شده خطر آلودگی پودر با اجزای جدا شده از گلوله ها و محیط سایش را کاهش می دهد همچنین محیط زیرکونیا به خاطر کاهش ریسک آلودگی استفاده می شود. 
البته مرحله ی تکلیس نیز یکی از مراحل تعیین کننده در تولید سرامیک های PZT است. این مرحله موجب کامل شدن فرآیند تبلور کشته که فاز پرسکیت در این مرحله تشکیل می شود. اهداف این مرحله خارج شدن مواد آلی و فرار از مخلوط است و واکنش اکسیدهای موجود در مخلوط برای ایجاد ترکیبات فازی مناسب قبل از فرآیند تولید قطعه است. همچنین از اهداف دیگر این مرحله کاهش حجم شرپنکیج و یکنواختی بهتر در طی زینترینگ و پس از آن است. پس از تکلیس، یک ماده ی چسبنده به پودر افزوده می شود و مخلوط شکل دهی می شود. شکل دهی قطعات ساده با روش پرس خشک در قالب و برای بدنه های پیچیده تر، روش های اکستروژن و ریخته گری دوغابی استفاده می شود. پس از آن اشکال تولیدی زینترینگ می شود ( در واقع بوسیله یک آون مواد چسبنده ی آن خارج شده و دنس می شود.) 
مشکل عمده در زینترینگ سرامیک های PZT، فراریت Pbo در دمای 800 درجه سانتی گراد است برای به حداقل رساندن این مشکل، نمونه های PZT در حضور یک منبع سرب مانند PbZro3 زینتر می شوند و در داخل یک بوته ی ذوب بسته حرارت دهی می شوند. اشباع شدن اتمسفر محل زینتر کردن با PbO باعث به حداقل رسیدن اتلاف سرب از بدنه های PZT می شود. در این شرایط زینترینگ می تواند در دمای متنوعی بین 1200-1300 درجه سانتیگراد انجام شود. با وجود این تدابیر پیش بینی شده معمولاً اتلاف 2-3% در مقدار سرب اولیه صورت می گیرد. 
پس از برش و ماشین کاری قطعه به شکل مناسب، الکترودها تعبیه می شود و یک میدان DC برای جهت دهی به قلمرو دی پل های داخل سرامیک پلی کریستال اعمال می شود. قطب دار کردن بوسیله ی جریان DC می تواند در دمای اتاق و یا در دماهای بالاتر انجام شود. البته این مسأله به ماده و ترکیب سرامیک بستگی دارد. 
فرایند پلاریزاسیون تنها اندکی دی پل های موجود در سرامیک پلی کریستال را هم جهت می کند و نتیجه ی پلاریزاسیون پلی کریستال کمتر از حالتی است که سرامیک تک کریستال باشد. این تکنیک تولید دارای ابهامات زیادی است البته تعداد زیادی از روش های تولید دیگر وجود دارد که سرامیک های PZT با خواص و ریزساختار عالی تولید می کنند. یک مشکل بوجود آمده در این روش انحراف از حالت استوکیومتری است. این مشکل اغلب به خاطر وجود ناخالصی در مواد اولیه و اتلاف سرب از بدنه در طی فرآیند زینترینگ بوجود می آید. که باعث تغییر خواص PZT در اثر جانشینی های ناخواسته، می شود. به عنوان یک نتیجه، خواص الاستیک در اثر این مشکل می تواند 5% ، خواص پیزوالکتریک 10% و خواص دیک الکتریک 20 درصد ( با یک بچ ثابت) تغییر کنند. 
همچنین، خواص دی الکتریک و پیزوالکتریک عمدتاً به علت عدم وجود یکنواختی کاهش پیدا می کنند (این عدم یکنواختی به خاطر هم زدن کم اتفاق می افتد). این مسأله هنگامی که اکسیدهای اصلی هم گون باشد مهم می باشد. در روش های توضیح داده شده در بالا، به هرحال، اجزای اصلی به صورت محلول جامد در آمده و این نشان داده شده است که مخلوط شدن هم گون محلول جامد هنگامی که این مسأله امکان نداشته باشد، مشکل است. 
روش های دیگر برای تولید سرامیک های پیزوالکتریک به شرح زیراند: 
1) فرآیند هیدروترمال (Hydrothermal Processing) 
2) روش های هم رسوبی (coprecipitation methods) 
همچنین این نکته قابل توجه است که توسعه ی وسیعی در زمینه ی فرآیندهای تولید پودر (Powder Processing)، شکل دهی و زینترینگ بوجود آمده است که نتیجه ی این توسعه ها، افزایش کاربرد سرامیک های پیزوالکتریک است. 
روابط ساختاری و خواص مواد 
دانستن اطلاعات مربوط به پیزوالکتریسیته از ساختار مواد شروع می شود. برای توضیح بهتر، اجازه دهید بر روی یک کریستال از ( این تک کریستال های کوچک با قطر میانگین کمتر از Mm100) یک سرامیک پلی کریستال متمرکز شویم. این کریستال از اتم های مثبت و منفی تشکیل شده است که فضای خاصی را در سلولهای تکراری (سلول واحد) اشغال کرده اند. تقارن خاص سلول واحد تعیین کننده ی این مسأله است که آیا کریستال ما خاصیت پیزوالکتریسیته دارد یا نه؟ همه ی کریستال ها از 32 کلاس ( از 7 سیستم: تریکلینیک، مونوکلینیک، ارتورومبیک، تتراگونال، رمبوهدرال، هگزاگونال و کیوبیک) مشتق شده اند. از 32 کلاس، 21 عدد از آنها دارای تقارن مرکزی نیستند و 20 کلاس دارای خواص پیزوالکتریک هستند. 
( یک کلاس از 21 کلاس فاقد تقارن مرکزی، پیزوالکتریک نیست زیرا این کلاس دارای دیگر عناصر تقارن است). نبودن مرکز تقارن بدین معناست که یک حرکت شبکه ی یون های مثبت و منفی نسبت به همدیگر که در نتیجه ی اعمال تنش بوجود می آید،تولید یک دو قطبی الکتریکی می کند. یک سرامیک از قرارگیری تصادفی این کریستال های پیزوالکتریک تشکیل شده است و به همین دلیل غیرفعال است. اثرات کریستال ها همدیگر را خنثی نموده و خاصیت پیزوالکتریک قابل اندازه گیری در سرامیک بوجود نمی آید. نواحی با بردار قطبی یکسان،قلمرو (domain) نامیده می شوند. 
قطب دار کردن یکی از روش های معمولی مورد استفاده برای جهت دهی به قلمرو هاست که این عمل بوسیله ی پلاریزاسیون سرامیک ها با استفاده از یک میدان الکتریکی ساکن انجام می شود. الکترودها بر روی سرامیک اعمال می شود تا قلمروهای پیزوالکتریکی چرخیده و در جهت میدان،جهت گیری کنند. نتیجه ی بدست آمده این گونه نیست که تمام قلمروها هم جهت شوند و با جهت گیری یکسان بخشی از قلمروها سرامیک پلی کریستال دارای یک اثر پیزوالکتریکی بزرگ می شود. در طی این فرایند ماده ی پیزوالکتریک در جهت محور قطبی شدن انبساط و در جهت عمود بر آن انقباض دارد. 
روابط ساختاری 
هنگامی که در مورد معادله ی ساختاری مواد پیزوالکتریک می نویسیم باید تغیرات تنش و جابجایی الکتریکی در سه جهت عمود بر هم محاسبه گردد. این جابجایی الکتریکی بوسیله ی اثرات کوپل های عمود بر هم بوجود آمده است. همچنین این اثرات نیز بخاطر تنش های مکانیکی و الکتریکی حاصل می شود. علامت تانسور ابتدا معین می گردد که در شکل 4 جهات مرجع نشان داده شده است. 
حالت کرنش با تانسور مرتبه دوم Sij معین می شود و حالت تنش نیز بوسیله ی تانسور مرتبه دو Tkl تعیین می شود. روابطی وجود دارد که تانسور تنش را به تانسور کرنش، تسلیم Sijkl و سختی Cijkl مرتبط می سازد. رابطه میان میدان Ej (تانسور مرتبه اول) و جابجایی الکتریکی Di (تانسور مرتبه اول)، ثابت دی الکتریک Eij است. که این ثابت یک تانسور درجه 2 است. بنابراین معادلات مربوط به مواد پیزوالکتریک به صورت زیر نوشته می شوند: 
Di=ETij.Ej+dijk Tjk 
Sij=dijk Ek+E Sijkl Tkl 
که در این روابط dijk و dijk ثوابت پیزوالکتریک هستند و تانسوری درجه 3 هستند. با لانویس E, T نشان می دهند که ثابت دی الکتریک Eij و ثابت الاستیک Sijkl تحت شرایط تنش ثابت و میدان الکتریکی ثابت، اندازه گیری شده است. عموماً تانسور مرتبه اول، 3 جزء دارد، تانسور مرتبه 2، 9 جزء و مرتبه 3، 27 جزء دارد. همچنین تانسور مرتبه 4، 81 جزء دارد. درصد خیلی کمی از این اجزاء تانسوری، مستقل هستند. هر دوتای این روابط وابسته به جهت هستند. آنها یک بسته از معادلات هستند که این خواص را در جهات مختلف ماده شرح می دهند. تقارن فضایی و انتخاب بردارهای مرجع، تعداد اجزای مستقل را کاهش می دهد. یک راه مناسب برای توصیف آنها استفاده از جهات برداری مناسب مانند آنهایی که در شکل 4 نشان داده شده است. بر اساس عرف، جهت قطبی شدن را با محور 3 نمایش می دهیم. همچنین صفحات برشی با زیرنویس 4، 5و 6 نشان داده شده است که این صفحات بر جهات 1،2،3 عمود می باشد. 

کاربرد مواد پیزوالکتریک 
مواد پیزوالکتریک کاربرد وسیعی در علوم مختلف دارند. این مواد در بسیاری از وسایل که نیازمند تغییر انرژی مکانیکی به الکتریکی و یا بالعکس است، استفاده می شوند. زمینه ی وسیعی از کاربردهای مواد پیزوالکتریک وجود دارد و با وجود این مسأله که این مواد نزدیک به یک قرن است که مورد مطالعه قرار گرفته اند. ولی هنوز هم پتانسیل استفاده شدن در کاربردها و ابداعات دیگر را دارند. البته به خاطر وسعت این کاربردها از بیان آنها چشم پوشی می کنیم.

سویل دلجوان( کارشناس مواد-سرامیک)

1- تولید آلومینا از بوکسیت

بوکسیت عمده ترین منبع تولید آلومینا یا اکسید آلومینیوم می باشد به طوری که %90 آلومینیوم جهان از این ماده تامین می شود. سنگ معدن بوکسیت یکی از سنگ های کم یاب می باشد که در شرایط جغرافیایی و آب و هوایی خاص شکل می گیرد. این سنگ معدن از جنس هیدروکسید آلومینیوم می باشد که از سه کانی دیاسپور، گیبسیت و بوهمیت و ناخالصی هایی از قبیل سیلیس، اکسید آهن و تیتان تشکیل شده است. نمایی از این سنگ درتصویر 1 آورده شده است .

 

تصویر 1-نمایی از سنگ بوکسیت [R1]

بوکسیت مناسب برای استحصال آلومینا باید میزان آلومینای بالا، اکسید آهن و سیلیس اندک داشته باشد. در جدول زیر ترکیب تقریبی بوکسیت تکلیس شده برای مصارف نسوز آورده شده است.

اجزای ترکیب

درصد

SiO2

Fe2O3

TiO2

AL2O3

ماکزیمم 75%

ماکزیمم 25%

ماکزیمم 35%

ماکزیمم 86.5%

 

 جدول1- ترکیب تقریبی بوکسیت تکلیس شده برای مصارف نسوز[R3]

 

                  

بوکسیت به طور مستقیم در تولید مواد ساینده و در صنایع شیمیایی مورد استفاده قرار می گیرد. منابع بوکسیت ایران بسیار اندک و نامناسب می باشد. ایران با ۳۹ میلیون تن ذخیره، حدود ۰‎/۱ درصد کل ذخایر بوکسیت جهان را در اختیار دارد بنابراین استفاده از نفلین سیانیت رایج تر است. مقدار آلومینا در بوکسیت وارداتی بین 50 تا 75 درصد متغییر است. بزرگترین و مناسب ترین ذخایر بوکسیت جهان در گینه وجود دارد لذا قرارداد 99 ساله بهره برداری از بوکسیت گینه توسط ایران می تواند بسیار سازنده باشد. روشهای گوناگون و متنوعی برای استحصال آلومینا از بوکسیت وجود دارد که از این میان می توان به روش بایر، سینتر با سودا و روش های اسیدی اشاره کرد. از میان روش های نام برده روش بایر به عنوان عمده ترین روش صنعتی تولید آلومینا در سطح جهان بسیارحائز اهمیت است. خلاصه ای از عملیات صورت گرفته در روش بایر در شکل زیر آورده شده است.

 

 

تصویر2- خلاصه ای از عملیات صورت گرفته در روش بایر(R4)

در روش بایر ابتدا بوکسیت در محلول داغ NaOH در دمای 175⁰C شست و شو داده می شود که این فرایند منجر به تولید AL(OH)3  می گردد. این ماده به حالت محلول می باشد و واکنش شیمیایی آن به شکل زیر می باشد:          Al2O3 + 2 OH- + 3 H2O → 2 [Al(OH)4] -                                                                     ترکیبات دیگر بوکسیت به شکل نامحلول با فیلتر کردن از AL(OH)3  محلول جدا می شود. این ناخالصی ها اصطلاحا گل قرمز نامیده می شود. در مرحله بعد محلول هیدروکسید سرد می شود و هیدروکسید آلومینیوم سفید رنگ به جای می گذارد. این ماده در دمای 1050⁰C کلسینه شده و به آلومینا و بخار آب تبدیل می شود.

2 Al(OH)3Al2O3 + 3 H2O

روش بایر یکی از روش هایی است که مصرف آب و انرژی بالایی دارد. از این رو تحقیقات زیادی برای کاهش هزینه های تولید به این روش دردست انجام است.

2- تولید آلومینا از آلونیت

آلونیت یکی از منابع تامین آلومینا می باشد. استفاده از این منبع رواج کم تری در مقایسه با سایر منابع دارد. علل مختلفی باعث می شود تا آلونیت گزینه مناسبی به عنوان ماده اولیه تولید آلومینا نباشد که از این میان می توان به موارد زیر اشاره کرد: ذخایر بسیار محدود این کانی در جهان، درصد پایین آلومینای موجود در این کانی، روش های هزینه بر تولید و از همه مهمتر تولید محصولات جانبی سمی، آلاینده و خطرناک از جمله اسید کلریدریک و گاز های SOX .

آلونیت یا پتاسیم آلومینیوم فسفات هیدراته با فرمول KAl3(SO4)2(OH)6 نمایش داده می شود. اما خلوص این کانی در غنی ترین معادن نیز بسیار پایین است و معمولا به همراه نا خالصی های سیلیسی یافت می شود. دراین کانی یون آلومینیوم با آهن و یون پتاسیم با سدیم جایگزین می گردد. در نتیجه این کانی رنگ های مختلفی به خود می گیرد که در شکل 3 تصویری از این کانی آورده شده است.

  

تصویر3-تصویری از کانی آلونیت با میزان ناخالصی مختلف [R5]

روش های مختلفی برای استحصال آلومینا از آلونیت وجود دارد که روش مناسب با توجه به میزان سیلیس موجود تعیین می شود. دریکی از روش های بسیار رایج، ابتدا آلونیت در برابر کلرید پتاسیم یا کلرید سدیم یا مخلوطی از هر دو در دمای بین ⁰C500 تا ⁰C590 کلسینه می شود. محصول این مرحله آلومینای ناخالص، سولفات ها و..می باشد. سولفات ها با آب داغ شست و شو داده شده و از محیط خارج می شود. آلومینای ناخالص باقی مانده در معرض اسید کلریدریک اسیدشویی می شود. دما در این مرحله بین ⁰C30 تا ⁰C100 می باشد. محصول این مرحله ALCL3.6H2O می باشد که کلسینه شده و در معرض حرارت تولید آلومینا و اسید کلریدریک می کند. در سایر روش ها مراحل مشابه با مواد شیمیایی دیگر انجام می پذیرد. برای مثال دریکی دیگر از روش ها از محلول های حاوی نیترات نقره برای تولید آلومینا و پتاسیم سولفات از آلونیت استفاده می گردد که به ازای تولید 190 کیلوگرم پودر آلومینا،440 کیلوگرم پتاسیم سولفات تولید می شود.

3- تولید آلومینا از نفلین سیانیت

آلومینای تولیدی از نفلین سیانیت در حدود 12/1 تا 25/1 آلومینای تولیدی از بوکسیت است اما اقتصادی بودن تولید آلومینا از نفلین سیانیت به دلیل تامین مواد اولیه سیمان، کربنات سدیم و پتاسیم و سولفات پتاسیم از محصولات جانبی نفلین سیانیت می باشد. نفلین سیانیت مصرفی در صنعت تولید آلومینا به فرمول  (Na,K)2O.AL2O3.2SiO2دارای ترکیبات مفید Na2O، K2O، AL2O3  وسزیم، لیتیم، روبیدیم و ترکیبات غیر مفید Fe2O3، S، CL، SiO2 می باشد. فرایند استحصال آلومینا و محصولات جانبی از سنگ معدن نفلین شامل مراحل زیر می باشد:

1-خردایش سنگ آهک وسنگ نفلین به طور جداگانه توسط سنگ شکن

2-آسیاب کردن مخلوط مواد خام شامل سنگ آهک، نفلین، محلول کربنات و گل برگشتی از مرحله سیلیس زدایی

3-تصحیح ترکیب و نسبت مولی بین عناصر تشکیل دهنده بار به گونه ای که نسبت های مولی زیر درترکیب حاصل شود:

(K2O+Na2O)/AL2O3=1±0.05                   CaO/SiO2=2

4-سینتر کردن ترکیب سنگ آهک و سنگ نفلین و تشکیل آلومینات سدیم پتاسیم (2O.AL2O3 (Na,K)) محلول و سیلیکات دی کلسیم غیر محلول (2CaO.SiO2)

5-خردایش مواد سینتر شده تا ابعاد کمتر از 1 میلیمتر

6-خردایش مواد زینتر شده نفلینی (آلومینات سدیم پتاسیم) و مواد قلیایی در محلول قلیا (لیچ)و ارسال گل بلیت باقی مانده به فرایند سیمان سازی

7-سیلیس زدایی مرحله اول از محلول تولیدی در مرحله قبل (توسط اتوکلاو در دمای 170⁰Cو زمان 2 ساعت)و تشکیل هیدروآلوموسیلیکات سدیم غیر محلول( Na2O.AL2O.1.7SiO2.nH2O) یا گل سفید

8-تقسیم محلول آلومینای سیلیس زدایی شده در مرحله اول به دو قسمت ارسال یک قسمت به شاخه تولید آلومینا و یک قسمت به واحد سیلیس زدایی مرحله دوم (جهت تولید جوانه هیدروآلوموسیلیکات و کربنات ها)

9-سیلیس زدایی مرحله دوم از محلول آلومینای ارسالی به این خط (توسط شیر آهک تشکیل هیدروآلوموسیلیکات کلسیم غیر محلول  (3CaO.AL2O3.mSiO2.(2-6m)H2O) یا گل سفید )

10-جدا سازی گل سفید و ارسال جامد به فرایند سینتر و مایع به فرایند جدا سازی هیدروکسید آلومینیوم

11-جداسازی کریستال های هیدروکسید آلومینیوم توسط فرایند کربونیزاسیون توسط CO2:

2NaOH+CO2→Na2CO3+H2O

NaALO2+2H2O→AL(OH)3+NaOH

12-ارسال جوانه (کریستالهای )ریز دانه هیدروکسیدآلومینیوم به شاخه تولید آلومینا و محلول باقیمانده به واحد تولید کربنات ها

13-جدا سازی هیدروکسید آلومینیوم درشت دانه در خط تولید آلومینا

14-تکلیس هیدرات آلومینیوم (حرارت دهی مرحله ای تا 250⁰C،500⁰C،950⁰C) و تولید آلومینا

AL(OH)3→ALOOH→AL2O3

15-تولید سیمان از گل بلیت تولیدی

 

منابع:

1-http://en.wikipedia.org/wiki/Bauxite

2-http://minerals.usgs.gov/minerals/pubs/commodity/bauxite/

3-Z.Ali Nemati,ceramic refractory,sharif university,2006

4-www.energymanagertraining.co

5-http://en.wikipedia.org/wiki/Alunite

6-http://www.freepatentsonline.com/4331636.html

7-http://www.patentstorm.us/patents/3984521/description.html

8-بررسی مطالعات انجام شده در مورد پروژه تولید آلومینا از نفلین سیانیت و پیشنهاد ادامه آن از شرکت کانی کاوان شرق

سویل دلجوان( کارشناس مواد-سرامیک)

1- تولید آلومینا از بوکسیت

بوکسیت عمده ترین منبع تولید آلومینا یا اکسید آلومینیوم می باشد به طوری که %90 آلومینیوم جهان از این ماده تامین می شود. سنگ معدن بوکسیت یکی از سنگ های کم یاب می باشد که در شرایط جغرافیایی و آب و هوایی خاص شکل می گیرد. این سنگ معدن از جنس هیدروکسید آلومینیوم می باشد که از سه کانی دیاسپور، گیبسیت و بوهمیت و ناخالصی هایی از قبیل سیلیس، اکسید آهن و تیتان تشکیل شده است. نمایی از این سنگ درتصویر 1 آورده شده است .

 

تصویر 1-نمایی از سنگ بوکسیت [R1]

بوکسیت مناسب برای استحصال آلومینا باید میزان آلومینای بالا، اکسید آهن و سیلیس اندک داشته باشد. در جدول زیر ترکیب تقریبی بوکسیت تکلیس شده برای مصارف نسوز آورده شده است.

اجزای ترکیب

درصد

SiO2

Fe2O3

TiO2

AL2O3

ماکزیمم 75%

ماکزیمم 25%

ماکزیمم 35%

ماکزیمم 86.5%

 

 جدول1- ترکیب تقریبی بوکسیت تکلیس شده برای مصارف نسوز[R3]

 

                  

بوکسیت به طور مستقیم در تولید مواد ساینده و در صنایع شیمیایی مورد استفاده قرار می گیرد. منابع بوکسیت ایران بسیار اندک و نامناسب می باشد. ایران با ۳۹ میلیون تن ذخیره، حدود ۰‎/۱ درصد کل ذخایر بوکسیت جهان را در اختیار دارد بنابراین استفاده از نفلین سیانیت رایج تر است. مقدار آلومینا در بوکسیت وارداتی بین 50 تا 75 درصد متغییر است. بزرگترین و مناسب ترین ذخایر بوکسیت جهان در گینه وجود دارد لذا قرارداد 99 ساله بهره برداری از بوکسیت گینه توسط ایران می تواند بسیار سازنده باشد. روشهای گوناگون و متنوعی برای استحصال آلومینا از بوکسیت وجود دارد که از این میان می توان به روش بایر، سینتر با سودا و روش های اسیدی اشاره کرد. از میان روش های نام برده روش بایر به عنوان عمده ترین روش صنعتی تولید آلومینا در سطح جهان بسیارحائز اهمیت است. خلاصه ای از عملیات صورت گرفته در روش بایر در شکل زیر آورده شده است.

 

 

تصویر2- خلاصه ای از عملیات صورت گرفته در روش بایر(R4)

در روش بایر ابتدا بوکسیت در محلول داغ NaOH در دمای 175⁰C شست و شو داده می شود که این فرایند منجر به تولید AL(OH)3  می گردد. این ماده به حالت محلول می باشد و واکنش شیمیایی آن به شکل زیر می باشد:          Al2O3 + 2 OH- + 3 H2O → 2 [Al(OH)4] -                                                                     ترکیبات دیگر بوکسیت به شکل نامحلول با فیلتر کردن از AL(OH)3  محلول جدا می شود. این ناخالصی ها اصطلاحا گل قرمز نامیده می شود. در مرحله بعد محلول هیدروکسید سرد می شود و هیدروکسید آلومینیوم سفید رنگ به جای می گذارد. این ماده در دمای 1050⁰C کلسینه شده و به آلومینا و بخار آب تبدیل می شود.

2 Al(OH)3Al2O3 + 3 H2O

روش بایر یکی از روش هایی است که مصرف آب و انرژی بالایی دارد. از این رو تحقیقات زیادی برای کاهش هزینه های تولید به این روش دردست انجام است.

2- تولید آلومینا از آلونیت

آلونیت یکی از منابع تامین آلومینا می باشد. استفاده از این منبع رواج کم تری در مقایسه با سایر منابع دارد. علل مختلفی باعث می شود تا آلونیت گزینه مناسبی به عنوان ماده اولیه تولید آلومینا نباشد که از این میان می توان به موارد زیر اشاره کرد: ذخایر بسیار محدود این کانی در جهان، درصد پایین آلومینای موجود در این کانی، روش های هزینه بر تولید و از همه مهمتر تولید محصولات جانبی سمی، آلاینده و خطرناک از جمله اسید کلریدریک و گاز های SOX .

آلونیت یا پتاسیم آلومینیوم فسفات هیدراته با فرمول KAl3(SO4)2(OH)6 نمایش داده می شود. اما خلوص این کانی در غنی ترین معادن نیز بسیار پایین است و معمولا به همراه نا خالصی های سیلیسی یافت می شود. دراین کانی یون آلومینیوم با آهن و یون پتاسیم با سدیم جایگزین می گردد. در نتیجه این کانی رنگ های مختلفی به خود می گیرد که در شکل 3 تصویری از این کانی آورده شده است.

  

تصویر3-تصویری از کانی آلونیت با میزان ناخالصی مختلف [R5]

روش های مختلفی برای استحصال آلومینا از آلونیت وجود دارد که روش مناسب با توجه به میزان سیلیس موجود تعیین می شود. دریکی از روش های بسیار رایج، ابتدا آلونیت در برابر کلرید پتاسیم یا کلرید سدیم یا مخلوطی از هر دو در دمای بین ⁰C500 تا ⁰C590 کلسینه می شود. محصول این مرحله آلومینای ناخالص، سولفات ها و..می باشد. سولفات ها با آب داغ شست و شو داده شده و از محیط خارج می شود. آلومینای ناخالص باقی مانده در معرض اسید کلریدریک اسیدشویی می شود. دما در این مرحله بین ⁰C30 تا ⁰C100 می باشد. محصول این مرحله ALCL3.6H2O می باشد که کلسینه شده و در معرض حرارت تولید آلومینا و اسید کلریدریک می کند. در سایر روش ها مراحل مشابه با مواد شیمیایی دیگر انجام می پذیرد. برای مثال دریکی دیگر از روش ها از محلول های حاوی نیترات نقره برای تولید آلومینا و پتاسیم سولفات از آلونیت استفاده می گردد که به ازای تولید 190 کیلوگرم پودر آلومینا،440 کیلوگرم پتاسیم سولفات تولید می شود.

3- تولید آلومینا از نفلین سیانیت

آلومینای تولیدی از نفلین سیانیت در حدود 12/1 تا 25/1 آلومینای تولیدی از بوکسیت است اما اقتصادی بودن تولید آلومینا از نفلین سیانیت به دلیل تامین مواد اولیه سیمان، کربنات سدیم و پتاسیم و سولفات پتاسیم از محصولات جانبی نفلین سیانیت می باشد. نفلین سیانیت مصرفی در صنعت تولید آلومینا به فرمول  (Na,K)2O.AL2O3.2SiO2دارای ترکیبات مفید Na2O، K2O، AL2O3  وسزیم، لیتیم، روبیدیم و ترکیبات غیر مفید Fe2O3، S، CL، SiO2 می باشد. فرایند استحصال آلومینا و محصولات جانبی از سنگ معدن نفلین شامل مراحل زیر می باشد:

1-خردایش سنگ آهک وسنگ نفلین به طور جداگانه توسط سنگ شکن

2-آسیاب کردن مخلوط مواد خام شامل سنگ آهک، نفلین، محلول کربنات و گل برگشتی از مرحله سیلیس زدایی

3-تصحیح ترکیب و نسبت مولی بین عناصر تشکیل دهنده بار به گونه ای که نسبت های مولی زیر درترکیب حاصل شود:

(K2O+Na2O)/AL2O3=1±0.05                   CaO/SiO2=2

4-سینتر کردن ترکیب سنگ آهک و سنگ نفلین و تشکیل آلومینات سدیم پتاسیم (2O.AL2O3 (Na,K)) محلول و سیلیکات دی کلسیم غیر محلول (2CaO.SiO2)

5-خردایش مواد سینتر شده تا ابعاد کمتر از 1 میلیمتر

6-خردایش مواد زینتر شده نفلینی (آلومینات سدیم پتاسیم) و مواد قلیایی در محلول قلیا (لیچ)و ارسال گل بلیت باقی مانده به فرایند سیمان سازی

7-سیلیس زدایی مرحله اول از محلول تولیدی در مرحله قبل (توسط اتوکلاو در دمای 170⁰Cو زمان 2 ساعت)و تشکیل هیدروآلوموسیلیکات سدیم غیر محلول( Na2O.AL2O.1.7SiO2.nH2O) یا گل سفید

8-تقسیم محلول آلومینای سیلیس زدایی شده در مرحله اول به دو قسمت ارسال یک قسمت به شاخه تولید آلومینا و یک قسمت به واحد سیلیس زدایی مرحله دوم (جهت تولید جوانه هیدروآلوموسیلیکات و کربنات ها)

9-سیلیس زدایی مرحله دوم از محلول آلومینای ارسالی به این خط (توسط شیر آهک تشکیل هیدروآلوموسیلیکات کلسیم غیر محلول  (3CaO.AL2O3.mSiO2.(2-6m)H2O) یا گل سفید )

10-جدا سازی گل سفید و ارسال جامد به فرایند سینتر و مایع به فرایند جدا سازی هیدروکسید آلومینیوم

11-جداسازی کریستال های هیدروکسید آلومینیوم توسط فرایند کربونیزاسیون توسط CO2:

2NaOH+CO2→Na2CO3+H2O

NaALO2+2H2O→AL(OH)3+NaOH

12-ارسال جوانه (کریستالهای )ریز دانه هیدروکسیدآلومینیوم به شاخه تولید آلومینا و محلول باقیمانده به واحد تولید کربنات ها

13-جدا سازی هیدروکسید آلومینیوم درشت دانه در خط تولید آلومینا

14-تکلیس هیدرات آلومینیوم (حرارت دهی مرحله ای تا 250⁰C،500⁰C،950⁰C) و تولید آلومینا

AL(OH)3→ALOOH→AL2O3

15-تولید سیمان از گل بلیت تولیدی

 

منابع:

1-http://en.wikipedia.org/wiki/Bauxite

2-http://minerals.usgs.gov/minerals/pubs/commodity/bauxite/

3-Z.Ali Nemati,ceramic refractory,sharif university,2006

4-www.energymanagertraining.co

5-http://en.wikipedia.org/wiki/Alunite

6-http://www.freepatentsonline.com/4331636.html

7-http://www.patentstorm.us/patents/3984521/description.html

8-بررسی مطالعات انجام شده در مورد پروژه تولید آلومینا از نفلین سیانیت و پیشنهاد ادامه آن از شرکت کانی کاوان شرق

سویل دلجوان( کارشناس مواد-سرامیک)

1- تولید آلومینا از بوکسیت

بوکسیت عمده ترین منبع تولید آلومینا یا اکسید آلومینیوم می باشد به طوری که %90 آلومینیوم جهان از این ماده تامین می شود. سنگ معدن بوکسیت یکی از سنگ های کم یاب می باشد که در شرایط جغرافیایی و آب و هوایی خاص شکل می گیرد. این سنگ معدن از جنس هیدروکسید آلومینیوم می باشد که از سه کانی دیاسپور، گیبسیت و بوهمیت و ناخالصی هایی از قبیل سیلیس، اکسید آهن و تیتان تشکیل شده است. نمایی از این سنگ درتصویر 1 آورده شده است .

 

تصویر 1-نمایی از سنگ بوکسیت [R1]

بوکسیت مناسب برای استحصال آلومینا باید میزان آلومینای بالا، اکسید آهن و سیلیس اندک داشته باشد. در جدول زیر ترکیب تقریبی بوکسیت تکلیس شده برای مصارف نسوز آورده شده است.

اجزای ترکیب

درصد

SiO2

Fe2O3

TiO2

AL2O3

ماکزیمم 75%

ماکزیمم 25%

ماکزیمم 35%

ماکزیمم 86.5%

 

 جدول1- ترکیب تقریبی بوکسیت تکلیس شده برای مصارف نسوز[R3]

 

                  

بوکسیت به طور مستقیم در تولید مواد ساینده و در صنایع شیمیایی مورد استفاده قرار می گیرد. منابع بوکسیت ایران بسیار اندک و نامناسب می باشد. ایران با ۳۹ میلیون تن ذخیره، حدود ۰‎/۱ درصد کل ذخایر بوکسیت جهان را در اختیار دارد بنابراین استفاده از نفلین سیانیت رایج تر است. مقدار آلومینا در بوکسیت وارداتی بین 50 تا 75 درصد متغییر است. بزرگترین و مناسب ترین ذخایر بوکسیت جهان در گینه وجود دارد لذا قرارداد 99 ساله بهره برداری از بوکسیت گینه توسط ایران می تواند بسیار سازنده باشد. روشهای گوناگون و متنوعی برای استحصال آلومینا از بوکسیت وجود دارد که از این میان می توان به روش بایر، سینتر با سودا و روش های اسیدی اشاره کرد. از میان روش های نام برده روش بایر به عنوان عمده ترین روش صنعتی تولید آلومینا در سطح جهان بسیارحائز اهمیت است. خلاصه ای از عملیات صورت گرفته در روش بایر در شکل زیر آورده شده است.

 

 

تصویر2- خلاصه ای از عملیات صورت گرفته در روش بایر(R4)

در روش بایر ابتدا بوکسیت در محلول داغ NaOH در دمای 175⁰C شست و شو داده می شود که این فرایند منجر به تولید AL(OH)3  می گردد. این ماده به حالت محلول می باشد و واکنش شیمیایی آن به شکل زیر می باشد:          Al2O3 + 2 OH- + 3 H2O → 2 [Al(OH)4] -                                                                     ترکیبات دیگر بوکسیت به شکل نامحلول با فیلتر کردن از AL(OH)3  محلول جدا می شود. این ناخالصی ها اصطلاحا گل قرمز نامیده می شود. در مرحله بعد محلول هیدروکسید سرد می شود و هیدروکسید آلومینیوم سفید رنگ به جای می گذارد. این ماده در دمای 1050⁰C کلسینه شده و به آلومینا و بخار آب تبدیل می شود.

2 Al(OH)3Al2O3 + 3 H2O

روش بایر یکی از روش هایی است که مصرف آب و انرژی بالایی دارد. از این رو تحقیقات زیادی برای کاهش هزینه های تولید به این روش دردست انجام است.

2- تولید آلومینا از آلونیت

آلونیت یکی از منابع تامین آلومینا می باشد. استفاده از این منبع رواج کم تری در مقایسه با سایر منابع دارد. علل مختلفی باعث می شود تا آلونیت گزینه مناسبی به عنوان ماده اولیه تولید آلومینا نباشد که از این میان می توان به موارد زیر اشاره کرد: ذخایر بسیار محدود این کانی در جهان، درصد پایین آلومینای موجود در این کانی، روش های هزینه بر تولید و از همه مهمتر تولید محصولات جانبی سمی، آلاینده و خطرناک از جمله اسید کلریدریک و گاز های SOX .

آلونیت یا پتاسیم آلومینیوم فسفات هیدراته با فرمول KAl3(SO4)2(OH)6 نمایش داده می شود. اما خلوص این کانی در غنی ترین معادن نیز بسیار پایین است و معمولا به همراه نا خالصی های سیلیسی یافت می شود. دراین کانی یون آلومینیوم با آهن و یون پتاسیم با سدیم جایگزین می گردد. در نتیجه این کانی رنگ های مختلفی به خود می گیرد که در شکل 3 تصویری از این کانی آورده شده است.

  

تصویر3-تصویری از کانی آلونیت با میزان ناخالصی مختلف [R5]

روش های مختلفی برای استحصال آلومینا از آلونیت وجود دارد که روش مناسب با توجه به میزان سیلیس موجود تعیین می شود. دریکی از روش های بسیار رایج، ابتدا آلونیت در برابر کلرید پتاسیم یا کلرید سدیم یا مخلوطی از هر دو در دمای بین ⁰C500 تا ⁰C590 کلسینه می شود. محصول این مرحله آلومینای ناخالص، سولفات ها و..می باشد. سولفات ها با آب داغ شست و شو داده شده و از محیط خارج می شود. آلومینای ناخالص باقی مانده در معرض اسید کلریدریک اسیدشویی می شود. دما در این مرحله بین ⁰C30 تا ⁰C100 می باشد. محصول این مرحله ALCL3.6H2O می باشد که کلسینه شده و در معرض حرارت تولید آلومینا و اسید کلریدریک می کند. در سایر روش ها مراحل مشابه با مواد شیمیایی دیگر انجام می پذیرد. برای مثال دریکی دیگر از روش ها از محلول های حاوی نیترات نقره برای تولید آلومینا و پتاسیم سولفات از آلونیت استفاده می گردد که به ازای تولید 190 کیلوگرم پودر آلومینا،440 کیلوگرم پتاسیم سولفات تولید می شود.

3- تولید آلومینا از نفلین سیانیت

آلومینای تولیدی از نفلین سیانیت در حدود 12/1 تا 25/1 آلومینای تولیدی از بوکسیت است اما اقتصادی بودن تولید آلومینا از نفلین سیانیت به دلیل تامین مواد اولیه سیمان، کربنات سدیم و پتاسیم و سولفات پتاسیم از محصولات جانبی نفلین سیانیت می باشد. نفلین سیانیت مصرفی در صنعت تولید آلومینا به فرمول  (Na,K)2O.AL2O3.2SiO2دارای ترکیبات مفید Na2O، K2O، AL2O3  وسزیم، لیتیم، روبیدیم و ترکیبات غیر مفید Fe2O3، S، CL، SiO2 می باشد. فرایند استحصال آلومینا و محصولات جانبی از سنگ معدن نفلین شامل مراحل زیر می باشد:

1-خردایش سنگ آهک وسنگ نفلین به طور جداگانه توسط سنگ شکن

2-آسیاب کردن مخلوط مواد خام شامل سنگ آهک، نفلین، محلول کربنات و گل برگشتی از مرحله سیلیس زدایی

3-تصحیح ترکیب و نسبت مولی بین عناصر تشکیل دهنده بار به گونه ای که نسبت های مولی زیر درترکیب حاصل شود:

(K2O+Na2O)/AL2O3=1±0.05                   CaO/SiO2=2

4-سینتر کردن ترکیب سنگ آهک و سنگ نفلین و تشکیل آلومینات سدیم پتاسیم (2O.AL2O3 (Na,K)) محلول و سیلیکات دی کلسیم غیر محلول (2CaO.SiO2)

5-خردایش مواد سینتر شده تا ابعاد کمتر از 1 میلیمتر

6-خردایش مواد زینتر شده نفلینی (آلومینات سدیم پتاسیم) و مواد قلیایی در محلول قلیا (لیچ)و ارسال گل بلیت باقی مانده به فرایند سیمان سازی

7-سیلیس زدایی مرحله اول از محلول تولیدی در مرحله قبل (توسط اتوکلاو در دمای 170⁰Cو زمان 2 ساعت)و تشکیل هیدروآلوموسیلیکات سدیم غیر محلول( Na2O.AL2O.1.7SiO2.nH2O) یا گل سفید

8-تقسیم محلول آلومینای سیلیس زدایی شده در مرحله اول به دو قسمت ارسال یک قسمت به شاخه تولید آلومینا و یک قسمت به واحد سیلیس زدایی مرحله دوم (جهت تولید جوانه هیدروآلوموسیلیکات و کربنات ها)

9-سیلیس زدایی مرحله دوم از محلول آلومینای ارسالی به این خط (توسط شیر آهک تشکیل هیدروآلوموسیلیکات کلسیم غیر محلول  (3CaO.AL2O3.mSiO2.(2-6m)H2O) یا گل سفید )

10-جدا سازی گل سفید و ارسال جامد به فرایند سینتر و مایع به فرایند جدا سازی هیدروکسید آلومینیوم

11-جداسازی کریستال های هیدروکسید آلومینیوم توسط فرایند کربونیزاسیون توسط CO2:

2NaOH+CO2→Na2CO3+H2O

NaALO2+2H2O→AL(OH)3+NaOH

12-ارسال جوانه (کریستالهای )ریز دانه هیدروکسیدآلومینیوم به شاخه تولید آلومینا و محلول باقیمانده به واحد تولید کربنات ها

13-جدا سازی هیدروکسید آلومینیوم درشت دانه در خط تولید آلومینا

14-تکلیس هیدرات آلومینیوم (حرارت دهی مرحله ای تا 250⁰C،500⁰C،950⁰C) و تولید آلومینا

AL(OH)3→ALOOH→AL2O3

15-تولید سیمان از گل بلیت تولیدی

 

منابع:

1-http://en.wikipedia.org/wiki/Bauxite

2-http://minerals.usgs.gov/minerals/pubs/commodity/bauxite/

3-Z.Ali Nemati,ceramic refractory,sharif university,2006

4-www.energymanagertraining.co

5-http://en.wikipedia.org/wiki/Alunite

6-http://www.freepatentsonline.com/4331636.html

7-http://www.patentstorm.us/patents/3984521/description.html

8-بررسی مطالعات انجام شده در مورد پروژه تولید آلومینا از نفلین سیانیت و پیشنهاد ادامه آن از شرکت کانی کاوان شرق

سویل دلجوان( کارشناس مواد-سرامیک)

1- تولید آلومینا از بوکسیت

بوکسیت عمده ترین منبع تولید آلومینا یا اکسید آلومینیوم می باشد به طوری که %90 آلومینیوم جهان از این ماده تامین می شود. سنگ معدن بوکسیت یکی از سنگ های کم یاب می باشد که در شرایط جغرافیایی و آب و هوایی خاص شکل می گیرد. این سنگ معدن از جنس هیدروکسید آلومینیوم می باشد که از سه کانی دیاسپور، گیبسیت و بوهمیت و ناخالصی هایی از قبیل سیلیس، اکسید آهن و تیتان تشکیل شده است. نمایی از این سنگ درتصویر 1 آورده شده است .

 

تصویر 1-نمایی از سنگ بوکسیت [R1]

بوکسیت مناسب برای استحصال آلومینا باید میزان آلومینای بالا، اکسید آهن و سیلیس اندک داشته باشد. در جدول زیر ترکیب تقریبی بوکسیت تکلیس شده برای مصارف نسوز آورده شده است.

اجزای ترکیب

درصد

SiO2

Fe2O3

TiO2

AL2O3

ماکزیمم 75%

ماکزیمم 25%

ماکزیمم 35%

ماکزیمم 86.5%

 

 جدول1- ترکیب تقریبی بوکسیت تکلیس شده برای مصارف نسوز[R3]

 

                  

بوکسیت به طور مستقیم در تولید مواد ساینده و در صنایع شیمیایی مورد استفاده قرار می گیرد. منابع بوکسیت ایران بسیار اندک و نامناسب می باشد. ایران با ۳۹ میلیون تن ذخیره، حدود ۰‎/۱ درصد کل ذخایر بوکسیت جهان را در اختیار دارد بنابراین استفاده از نفلین سیانیت رایج تر است. مقدار آلومینا در بوکسیت وارداتی بین 50 تا 75 درصد متغییر است. بزرگترین و مناسب ترین ذخایر بوکسیت جهان در گینه وجود دارد لذا قرارداد 99 ساله بهره برداری از بوکسیت گینه توسط ایران می تواند بسیار سازنده باشد. روشهای گوناگون و متنوعی برای استحصال آلومینا از بوکسیت وجود دارد که از این میان می توان به روش بایر، سینتر با سودا و روش های اسیدی اشاره کرد. از میان روش های نام برده روش بایر به عنوان عمده ترین روش صنعتی تولید آلومینا در سطح جهان بسیارحائز اهمیت است. خلاصه ای از عملیات صورت گرفته در روش بایر در شکل زیر آورده شده است.

 

 

تصویر2- خلاصه ای از عملیات صورت گرفته در روش بایر(R4)

در روش بایر ابتدا بوکسیت در محلول داغ NaOH در دمای 175⁰C شست و شو داده می شود که این فرایند منجر به تولید AL(OH)3  می گردد. این ماده به حالت محلول می باشد و واکنش شیمیایی آن به شکل زیر می باشد:          Al2O3 + 2 OH- + 3 H2O → 2 [Al(OH)4] -                                                                     ترکیبات دیگر بوکسیت به شکل نامحلول با فیلتر کردن از AL(OH)3  محلول جدا می شود. این ناخالصی ها اصطلاحا گل قرمز نامیده می شود. در مرحله بعد محلول هیدروکسید سرد می شود و هیدروکسید آلومینیوم سفید رنگ به جای می گذارد. این ماده در دمای 1050⁰C کلسینه شده و به آلومینا و بخار آب تبدیل می شود.

2 Al(OH)3Al2O3 + 3 H2O

روش بایر یکی از روش هایی است که مصرف آب و انرژی بالایی دارد. از این رو تحقیقات زیادی برای کاهش هزینه های تولید به این روش دردست انجام است.

2- تولید آلومینا از آلونیت

آلونیت یکی از منابع تامین آلومینا می باشد. استفاده از این منبع رواج کم تری در مقایسه با سایر منابع دارد. علل مختلفی باعث می شود تا آلونیت گزینه مناسبی به عنوان ماده اولیه تولید آلومینا نباشد که از این میان می توان به موارد زیر اشاره کرد: ذخایر بسیار محدود این کانی در جهان، درصد پایین آلومینای موجود در این کانی، روش های هزینه بر تولید و از همه مهمتر تولید محصولات جانبی سمی، آلاینده و خطرناک از جمله اسید کلریدریک و گاز های SOX .

آلونیت یا پتاسیم آلومینیوم فسفات هیدراته با فرمول KAl3(SO4)2(OH)6 نمایش داده می شود. اما خلوص این کانی در غنی ترین معادن نیز بسیار پایین است و معمولا به همراه نا خالصی های سیلیسی یافت می شود. دراین کانی یون آلومینیوم با آهن و یون پتاسیم با سدیم جایگزین می گردد. در نتیجه این کانی رنگ های مختلفی به خود می گیرد که در شکل 3 تصویری از این کانی آورده شده است.

  

تصویر3-تصویری از کانی آلونیت با میزان ناخالصی مختلف [R5]

روش های مختلفی برای استحصال آلومینا از آلونیت وجود دارد که روش مناسب با توجه به میزان سیلیس موجود تعیین می شود. دریکی از روش های بسیار رایج، ابتدا آلونیت در برابر کلرید پتاسیم یا کلرید سدیم یا مخلوطی از هر دو در دمای بین ⁰C500 تا ⁰C590 کلسینه می شود. محصول این مرحله آلومینای ناخالص، سولفات ها و..می باشد. سولفات ها با آب داغ شست و شو داده شده و از محیط خارج می شود. آلومینای ناخالص باقی مانده در معرض اسید کلریدریک اسیدشویی می شود. دما در این مرحله بین ⁰C30 تا ⁰C100 می باشد. محصول این مرحله ALCL3.6H2O می باشد که کلسینه شده و در معرض حرارت تولید آلومینا و اسید کلریدریک می کند. در سایر روش ها مراحل مشابه با مواد شیمیایی دیگر انجام می پذیرد. برای مثال دریکی دیگر از روش ها از محلول های حاوی نیترات نقره برای تولید آلومینا و پتاسیم سولفات از آلونیت استفاده می گردد که به ازای تولید 190 کیلوگرم پودر آلومینا،440 کیلوگرم پتاسیم سولفات تولید می شود.

3- تولید آلومینا از نفلین سیانیت

آلومینای تولیدی از نفلین سیانیت در حدود 12/1 تا 25/1 آلومینای تولیدی از بوکسیت است اما اقتصادی بودن تولید آلومینا از نفلین سیانیت به دلیل تامین مواد اولیه سیمان، کربنات سدیم و پتاسیم و سولفات پتاسیم از محصولات جانبی نفلین سیانیت می باشد. نفلین سیانیت مصرفی در صنعت تولید آلومینا به فرمول  (Na,K)2O.AL2O3.2SiO2دارای ترکیبات مفید Na2O، K2O، AL2O3  وسزیم، لیتیم، روبیدیم و ترکیبات غیر مفید Fe2O3، S، CL، SiO2 می باشد. فرایند استحصال آلومینا و محصولات جانبی از سنگ معدن نفلین شامل مراحل زیر می باشد:

1-خردایش سنگ آهک وسنگ نفلین به طور جداگانه توسط سنگ شکن

2-آسیاب کردن مخلوط مواد خام شامل سنگ آهک، نفلین، محلول کربنات و گل برگشتی از مرحله سیلیس زدایی

3-تصحیح ترکیب و نسبت مولی بین عناصر تشکیل دهنده بار به گونه ای که نسبت های مولی زیر درترکیب حاصل شود:

(K2O+Na2O)/AL2O3=1±0.05                   CaO/SiO2=2

4-سینتر کردن ترکیب سنگ آهک و سنگ نفلین و تشکیل آلومینات سدیم پتاسیم (2O.AL2O3 (Na,K)) محلول و سیلیکات دی کلسیم غیر محلول (2CaO.SiO2)

5-خردایش مواد سینتر شده تا ابعاد کمتر از 1 میلیمتر

6-خردایش مواد زینتر شده نفلینی (آلومینات سدیم پتاسیم) و مواد قلیایی در محلول قلیا (لیچ)و ارسال گل بلیت باقی مانده به فرایند سیمان سازی

7-سیلیس زدایی مرحله اول از محلول تولیدی در مرحله قبل (توسط اتوکلاو در دمای 170⁰Cو زمان 2 ساعت)و تشکیل هیدروآلوموسیلیکات سدیم غیر محلول( Na2O.AL2O.1.7SiO2.nH2O) یا گل سفید

8-تقسیم محلول آلومینای سیلیس زدایی شده در مرحله اول به دو قسمت ارسال یک قسمت به شاخه تولید آلومینا و یک قسمت به واحد سیلیس زدایی مرحله دوم (جهت تولید جوانه هیدروآلوموسیلیکات و کربنات ها)

9-سیلیس زدایی مرحله دوم از محلول آلومینای ارسالی به این خط (توسط شیر آهک تشکیل هیدروآلوموسیلیکات کلسیم غیر محلول  (3CaO.AL2O3.mSiO2.(2-6m)H2O) یا گل سفید )

10-جدا سازی گل سفید و ارسال جامد به فرایند سینتر و مایع به فرایند جدا سازی هیدروکسید آلومینیوم

11-جداسازی کریستال های هیدروکسید آلومینیوم توسط فرایند کربونیزاسیون توسط CO2:

2NaOH+CO2→Na2CO3+H2O

NaALO2+2H2O→AL(OH)3+NaOH

12-ارسال جوانه (کریستالهای )ریز دانه هیدروکسیدآلومینیوم به شاخه تولید آلومینا و محلول باقیمانده به واحد تولید کربنات ها

13-جدا سازی هیدروکسید آلومینیوم درشت دانه در خط تولید آلومینا

14-تکلیس هیدرات آلومینیوم (حرارت دهی مرحله ای تا 250⁰C،500⁰C،950⁰C) و تولید آلومینا

AL(OH)3→ALOOH→AL2O3

15-تولید سیمان از گل بلیت تولیدی

 

منابع:

1-http://en.wikipedia.org/wiki/Bauxite

2-http://minerals.usgs.gov/minerals/pubs/commodity/bauxite/

3-Z.Ali Nemati,ceramic refractory,sharif university,2006

4-www.energymanagertraining.co

5-http://en.wikipedia.org/wiki/Alunite

6-http://www.freepatentsonline.com/4331636.html

7-http://www.patentstorm.us/patents/3984521/description.html

8-بررسی مطالعات انجام شده در مورد پروژه تولید آلومینا از نفلین سیانیت و پیشنهاد ادامه آن از شرکت کانی کاوان شرق

سویل دلجوان( کارشناس مواد-سرامیک)

1- تولید آلومینا از بوکسیت

بوکسیت عمده ترین منبع تولید آلومینا یا اکسید آلومینیوم می باشد به طوری که %90 آلومینیوم جهان از این ماده تامین می شود. سنگ معدن بوکسیت یکی از سنگ های کم یاب می باشد که در شرایط جغرافیایی و آب و هوایی خاص شکل می گیرد. این سنگ معدن از جنس هیدروکسید آلومینیوم می باشد که از سه کانی دیاسپور، گیبسیت و بوهمیت و ناخالصی هایی از قبیل سیلیس، اکسید آهن و تیتان تشکیل شده است. نمایی از این سنگ درتصویر 1 آورده شده است .

 

تصویر 1-نمایی از سنگ بوکسیت [R1]

بوکسیت مناسب برای استحصال آلومینا باید میزان آلومینای بالا، اکسید آهن و سیلیس اندک داشته باشد. در جدول زیر ترکیب تقریبی بوکسیت تکلیس شده برای مصارف نسوز آورده شده است.

اجزای ترکیب

درصد

SiO2

Fe2O3

TiO2

AL2O3

ماکزیمم 75%

ماکزیمم 25%

ماکزیمم 35%

ماکزیمم 86.5%

 

 جدول1- ترکیب تقریبی بوکسیت تکلیس شده برای مصارف نسوز[R3]

 

                  

بوکسیت به طور مستقیم در تولید مواد ساینده و در صنایع شیمیایی مورد استفاده قرار می گیرد. منابع بوکسیت ایران بسیار اندک و نامناسب می باشد. ایران با ۳۹ میلیون تن ذخیره، حدود ۰‎/۱ درصد کل ذخایر بوکسیت جهان را در اختیار دارد بنابراین استفاده از نفلین سیانیت رایج تر است. مقدار آلومینا در بوکسیت وارداتی بین 50 تا 75 درصد متغییر است. بزرگترین و مناسب ترین ذخایر بوکسیت جهان در گینه وجود دارد لذا قرارداد 99 ساله بهره برداری از بوکسیت گینه توسط ایران می تواند بسیار سازنده باشد. روشهای گوناگون و متنوعی برای استحصال آلومینا از بوکسیت وجود دارد که از این میان می توان به روش بایر، سینتر با سودا و روش های اسیدی اشاره کرد. از میان روش های نام برده روش بایر به عنوان عمده ترین روش صنعتی تولید آلومینا در سطح جهان بسیارحائز اهمیت است. خلاصه ای از عملیات صورت گرفته در روش بایر در شکل زیر آورده شده است.

 

 

تصویر2- خلاصه ای از عملیات صورت گرفته در روش بایر(R4)

در روش بایر ابتدا بوکسیت در محلول داغ NaOH در دمای 175⁰C شست و شو داده می شود که این فرایند منجر به تولید AL(OH)3  می گردد. این ماده به حالت محلول می باشد و واکنش شیمیایی آن به شکل زیر می باشد:          Al2O3 + 2 OH- + 3 H2O → 2 [Al(OH)4] -                                                                     ترکیبات دیگر بوکسیت به شکل نامحلول با فیلتر کردن از AL(OH)3  محلول جدا می شود. این ناخالصی ها اصطلاحا گل قرمز نامیده می شود. در مرحله بعد محلول هیدروکسید سرد می شود و هیدروکسید آلومینیوم سفید رنگ به جای می گذارد. این ماده در دمای 1050⁰C کلسینه شده و به آلومینا و بخار آب تبدیل می شود.

2 Al(OH)3Al2O3 + 3 H2O

روش بایر یکی از روش هایی است که مصرف آب و انرژی بالایی دارد. از این رو تحقیقات زیادی برای کاهش هزینه های تولید به این روش دردست انجام است.

2- تولید آلومینا از آلونیت

آلونیت یکی از منابع تامین آلومینا می باشد. استفاده از این منبع رواج کم تری در مقایسه با سایر منابع دارد. علل مختلفی باعث می شود تا آلونیت گزینه مناسبی به عنوان ماده اولیه تولید آلومینا نباشد که از این میان می توان به موارد زیر اشاره کرد: ذخایر بسیار محدود این کانی در جهان، درصد پایین آلومینای موجود در این کانی، روش های هزینه بر تولید و از همه مهمتر تولید محصولات جانبی سمی، آلاینده و خطرناک از جمله اسید کلریدریک و گاز های SOX .

آلونیت یا پتاسیم آلومینیوم فسفات هیدراته با فرمول KAl3(SO4)2(OH)6 نمایش داده می شود. اما خلوص این کانی در غنی ترین معادن نیز بسیار پایین است و معمولا به همراه نا خالصی های سیلیسی یافت می شود. دراین کانی یون آلومینیوم با آهن و یون پتاسیم با سدیم جایگزین می گردد. در نتیجه این کانی رنگ های مختلفی به خود می گیرد که در شکل 3 تصویری از این کانی آورده شده است.

  

تصویر3-تصویری از کانی آلونیت با میزان ناخالصی مختلف [R5]

روش های مختلفی برای استحصال آلومینا از آلونیت وجود دارد که روش مناسب با توجه به میزان سیلیس موجود تعیین می شود. دریکی از روش های بسیار رایج، ابتدا آلونیت در برابر کلرید پتاسیم یا کلرید سدیم یا مخلوطی از هر دو در دمای بین ⁰C500 تا ⁰C590 کلسینه می شود. محصول این مرحله آلومینای ناخالص، سولفات ها و..می باشد. سولفات ها با آب داغ شست و شو داده شده و از محیط خارج می شود. آلومینای ناخالص باقی مانده در معرض اسید کلریدریک اسیدشویی می شود. دما در این مرحله بین ⁰C30 تا ⁰C100 می باشد. محصول این مرحله ALCL3.6H2O می باشد که کلسینه شده و در معرض حرارت تولید آلومینا و اسید کلریدریک می کند. در سایر روش ها مراحل مشابه با مواد شیمیایی دیگر انجام می پذیرد. برای مثال دریکی دیگر از روش ها از محلول های حاوی نیترات نقره برای تولید آلومینا و پتاسیم سولفات از آلونیت استفاده می گردد که به ازای تولید 190 کیلوگرم پودر آلومینا،440 کیلوگرم پتاسیم سولفات تولید می شود.

3- تولید آلومینا از نفلین سیانیت

آلومینای تولیدی از نفلین سیانیت در حدود 12/1 تا 25/1 آلومینای تولیدی از بوکسیت است اما اقتصادی بودن تولید آلومینا از نفلین سیانیت به دلیل تامین مواد اولیه سیمان، کربنات سدیم و پتاسیم و سولفات پتاسیم از محصولات جانبی نفلین سیانیت می باشد. نفلین سیانیت مصرفی در صنعت تولید آلومینا به فرمول  (Na,K)2O.AL2O3.2SiO2دارای ترکیبات مفید Na2O، K2O، AL2O3  وسزیم، لیتیم، روبیدیم و ترکیبات غیر مفید Fe2O3، S، CL، SiO2 می باشد. فرایند استحصال آلومینا و محصولات جانبی از سنگ معدن نفلین شامل مراحل زیر می باشد:

1-خردایش سنگ آهک وسنگ نفلین به طور جداگانه توسط سنگ شکن

2-آسیاب کردن مخلوط مواد خام شامل سنگ آهک، نفلین، محلول کربنات و گل برگشتی از مرحله سیلیس زدایی

3-تصحیح ترکیب و نسبت مولی بین عناصر تشکیل دهنده بار به گونه ای که نسبت های مولی زیر درترکیب حاصل شود:

(K2O+Na2O)/AL2O3=1±0.05                   CaO/SiO2=2

4-سینتر کردن ترکیب سنگ آهک و سنگ نفلین و تشکیل آلومینات سدیم پتاسیم (2O.AL2O3 (Na,K)) محلول و سیلیکات دی کلسیم غیر محلول (2CaO.SiO2)

5-خردایش مواد سینتر شده تا ابعاد کمتر از 1 میلیمتر

6-خردایش مواد زینتر شده نفلینی (آلومینات سدیم پتاسیم) و مواد قلیایی در محلول قلیا (لیچ)و ارسال گل بلیت باقی مانده به فرایند سیمان سازی

7-سیلیس زدایی مرحله اول از محلول تولیدی در مرحله قبل (توسط اتوکلاو در دمای 170⁰Cو زمان 2 ساعت)و تشکیل هیدروآلوموسیلیکات سدیم غیر محلول( Na2O.AL2O.1.7SiO2.nH2O) یا گل سفید

8-تقسیم محلول آلومینای سیلیس زدایی شده در مرحله اول به دو قسمت ارسال یک قسمت به شاخه تولید آلومینا و یک قسمت به واحد سیلیس زدایی مرحله دوم (جهت تولید جوانه هیدروآلوموسیلیکات و کربنات ها)

9-سیلیس زدایی مرحله دوم از محلول آلومینای ارسالی به این خط (توسط شیر آهک تشکیل هیدروآلوموسیلیکات کلسیم غیر محلول  (3CaO.AL2O3.mSiO2.(2-6m)H2O) یا گل سفید )

10-جدا سازی گل سفید و ارسال جامد به فرایند سینتر و مایع به فرایند جدا سازی هیدروکسید آلومینیوم

11-جداسازی کریستال های هیدروکسید آلومینیوم توسط فرایند کربونیزاسیون توسط CO2:

2NaOH+CO2→Na2CO3+H2O

NaALO2+2H2O→AL(OH)3+NaOH

12-ارسال جوانه (کریستالهای )ریز دانه هیدروکسیدآلومینیوم به شاخه تولید آلومینا و محلول باقیمانده به واحد تولید کربنات ها

13-جدا سازی هیدروکسید آلومینیوم درشت دانه در خط تولید آلومینا

14-تکلیس هیدرات آلومینیوم (حرارت دهی مرحله ای تا 250⁰C،500⁰C،950⁰C) و تولید آلومینا

AL(OH)3→ALOOH→AL2O3

15-تولید سیمان از گل بلیت تولیدی

 

منابع:

1-http://en.wikipedia.org/wiki/Bauxite

2-http://minerals.usgs.gov/minerals/pubs/commodity/bauxite/

3-Z.Ali Nemati,ceramic refractory,sharif university,2006

4-www.energymanagertraining.co

5-http://en.wikipedia.org/wiki/Alunite

6-http://www.freepatentsonline.com/4331636.html

7-http://www.patentstorm.us/patents/3984521/description.html

8-بررسی مطالعات انجام شده در مورد پروژه تولید آلومینا از نفلین سیانیت و پیشنهاد ادامه آن از شرکت کانی کاوان شرق

سویل دلجوان( کارشناس مواد-سرامیک)

1- تولید آلومینا از بوکسیت

بوکسیت عمده ترین منبع تولید آلومینا یا اکسید آلومینیوم می باشد به طوری که %90 آلومینیوم جهان از این ماده تامین می شود. سنگ معدن بوکسیت یکی از سنگ های کم یاب می باشد که در شرایط جغرافیایی و آب و هوایی خاص شکل می گیرد. این سنگ معدن از جنس هیدروکسید آلومینیوم می باشد که از سه کانی دیاسپور، گیبسیت و بوهمیت و ناخالصی هایی از قبیل سیلیس، اکسید آهن و تیتان تشکیل شده است. نمایی از این سنگ درتصویر 1 آورده شده است .

 

تصویر 1-نمایی از سنگ بوکسیت [R1]

بوکسیت مناسب برای استحصال آلومینا باید میزان آلومینای بالا، اکسید آهن و سیلیس اندک داشته باشد. در جدول زیر ترکیب تقریبی بوکسیت تکلیس شده برای مصارف نسوز آورده شده است.

اجزای ترکیب

درصد

SiO2

Fe2O3

TiO2

AL2O3

ماکزیمم 75%

ماکزیمم 25%

ماکزیمم 35%

ماکزیمم 86.5%

 

 جدول1- ترکیب تقریبی بوکسیت تکلیس شده برای مصارف نسوز[R3]

 

                  

بوکسیت به طور مستقیم در تولید مواد ساینده و در صنایع شیمیایی مورد استفاده قرار می گیرد. منابع بوکسیت ایران بسیار اندک و نامناسب می باشد. ایران با ۳۹ میلیون تن ذخیره، حدود ۰‎/۱ درصد کل ذخایر بوکسیت جهان را در اختیار دارد بنابراین استفاده از نفلین سیانیت رایج تر است. مقدار آلومینا در بوکسیت وارداتی بین 50 تا 75 درصد متغییر است. بزرگترین و مناسب ترین ذخایر بوکسیت جهان در گینه وجود دارد لذا قرارداد 99 ساله بهره برداری از بوکسیت گینه توسط ایران می تواند بسیار سازنده باشد. روشهای گوناگون و متنوعی برای استحصال آلومینا از بوکسیت وجود دارد که از این میان می توان به روش بایر، سینتر با سودا و روش های اسیدی اشاره کرد. از میان روش های نام برده روش بایر به عنوان عمده ترین روش صنعتی تولید آلومینا در سطح جهان بسیارحائز اهمیت است. خلاصه ای از عملیات صورت گرفته در روش بایر در شکل زیر آورده شده است.

 

 

تصویر2- خلاصه ای از عملیات صورت گرفته در روش بایر(R4)

در روش بایر ابتدا بوکسیت در محلول داغ NaOH در دمای 175⁰C شست و شو داده می شود که این فرایند منجر به تولید AL(OH)3  می گردد. این ماده به حالت محلول می باشد و واکنش شیمیایی آن به شکل زیر می باشد:          Al2O3 + 2 OH- + 3 H2O → 2 [Al(OH)4] -                                                                     ترکیبات دیگر بوکسیت به شکل نامحلول با فیلتر کردن از AL(OH)3  محلول جدا می شود. این ناخالصی ها اصطلاحا گل قرمز نامیده می شود. در مرحله بعد محلول هیدروکسید سرد می شود و هیدروکسید آلومینیوم سفید رنگ به جای می گذارد. این ماده در دمای 1050⁰C کلسینه شده و به آلومینا و بخار آب تبدیل می شود.

2 Al(OH)3Al2O3 + 3 H2O

روش بایر یکی از روش هایی است که مصرف آب و انرژی بالایی دارد. از این رو تحقیقات زیادی برای کاهش هزینه های تولید به این روش دردست انجام است.

2- تولید آلومینا از آلونیت

آلونیت یکی از منابع تامین آلومینا می باشد. استفاده از این منبع رواج کم تری در مقایسه با سایر منابع دارد. علل مختلفی باعث می شود تا آلونیت گزینه مناسبی به عنوان ماده اولیه تولید آلومینا نباشد که از این میان می توان به موارد زیر اشاره کرد: ذخایر بسیار محدود این کانی در جهان، درصد پایین آلومینای موجود در این کانی، روش های هزینه بر تولید و از همه مهمتر تولید محصولات جانبی سمی، آلاینده و خطرناک از جمله اسید کلریدریک و گاز های SOX .

آلونیت یا پتاسیم آلومینیوم فسفات هیدراته با فرمول KAl3(SO4)2(OH)6 نمایش داده می شود. اما خلوص این کانی در غنی ترین معادن نیز بسیار پایین است و معمولا به همراه نا خالصی های سیلیسی یافت می شود. دراین کانی یون آلومینیوم با آهن و یون پتاسیم با سدیم جایگزین می گردد. در نتیجه این کانی رنگ های مختلفی به خود می گیرد که در شکل 3 تصویری از این کانی آورده شده است.

  

تصویر3-تصویری از کانی آلونیت با میزان ناخالصی مختلف [R5]

روش های مختلفی برای استحصال آلومینا از آلونیت وجود دارد که روش مناسب با توجه به میزان سیلیس موجود تعیین می شود. دریکی از روش های بسیار رایج، ابتدا آلونیت در برابر کلرید پتاسیم یا کلرید سدیم یا مخلوطی از هر دو در دمای بین ⁰C500 تا ⁰C590 کلسینه می شود. محصول این مرحله آلومینای ناخالص، سولفات ها و..می باشد. سولفات ها با آب داغ شست و شو داده شده و از محیط خارج می شود. آلومینای ناخالص باقی مانده در معرض اسید کلریدریک اسیدشویی می شود. دما در این مرحله بین ⁰C30 تا ⁰C100 می باشد. محصول این مرحله ALCL3.6H2O می باشد که کلسینه شده و در معرض حرارت تولید آلومینا و اسید کلریدریک می کند. در سایر روش ها مراحل مشابه با مواد شیمیایی دیگر انجام می پذیرد. برای مثال دریکی دیگر از روش ها از محلول های حاوی نیترات نقره برای تولید آلومینا و پتاسیم سولفات از آلونیت استفاده می گردد که به ازای تولید 190 کیلوگرم پودر آلومینا،440 کیلوگرم پتاسیم سولفات تولید می شود.

3- تولید آلومینا از نفلین سیانیت

آلومینای تولیدی از نفلین سیانیت در حدود 12/1 تا 25/1 آلومینای تولیدی از بوکسیت است اما اقتصادی بودن تولید آلومینا از نفلین سیانیت به دلیل تامین مواد اولیه سیمان، کربنات سدیم و پتاسیم و سولفات پتاسیم از محصولات جانبی نفلین سیانیت می باشد. نفلین سیانیت مصرفی در صنعت تولید آلومینا به فرمول  (Na,K)2O.AL2O3.2SiO2دارای ترکیبات مفید Na2O، K2O، AL2O3  وسزیم، لیتیم، روبیدیم و ترکیبات غیر مفید Fe2O3، S، CL، SiO2 می باشد. فرایند استحصال آلومینا و محصولات جانبی از سنگ معدن نفلین شامل مراحل زیر می باشد:

1-خردایش سنگ آهک وسنگ نفلین به طور جداگانه توسط سنگ شکن

2-آسیاب کردن مخلوط مواد خام شامل سنگ آهک، نفلین، محلول کربنات و گل برگشتی از مرحله سیلیس زدایی

3-تصحیح ترکیب و نسبت مولی بین عناصر تشکیل دهنده بار به گونه ای که نسبت های مولی زیر درترکیب حاصل شود:

(K2O+Na2O)/AL2O3=1±0.05                   CaO/SiO2=2

4-سینتر کردن ترکیب سنگ آهک و سنگ نفلین و تشکیل آلومینات سدیم پتاسیم (2O.AL2O3 (Na,K)) محلول و سیلیکات دی کلسیم غیر محلول (2CaO.SiO2)

5-خردایش مواد سینتر شده تا ابعاد کمتر از 1 میلیمتر

6-خردایش مواد زینتر شده نفلینی (آلومینات سدیم پتاسیم) و مواد قلیایی در محلول قلیا (لیچ)و ارسال گل بلیت باقی مانده به فرایند سیمان سازی

7-سیلیس زدایی مرحله اول از محلول تولیدی در مرحله قبل (توسط اتوکلاو در دمای 170⁰Cو زمان 2 ساعت)و تشکیل هیدروآلوموسیلیکات سدیم غیر محلول( Na2O.AL2O.1.7SiO2.nH2O) یا گل سفید

8-تقسیم محلول آلومینای سیلیس زدایی شده در مرحله اول به دو قسمت ارسال یک قسمت به شاخه تولید آلومینا و یک قسمت به واحد سیلیس زدایی مرحله دوم (جهت تولید جوانه هیدروآلوموسیلیکات و کربنات ها)

9-سیلیس زدایی مرحله دوم از محلول آلومینای ارسالی به این خط (توسط شیر آهک تشکیل هیدروآلوموسیلیکات کلسیم غیر محلول  (3CaO.AL2O3.mSiO2.(2-6m)H2O) یا گل سفید )

10-جدا سازی گل سفید و ارسال جامد به فرایند سینتر و مایع به فرایند جدا سازی هیدروکسید آلومینیوم

11-جداسازی کریستال های هیدروکسید آلومینیوم توسط فرایند کربونیزاسیون توسط CO2:

2NaOH+CO2→Na2CO3+H2O

NaALO2+2H2O→AL(OH)3+NaOH

12-ارسال جوانه (کریستالهای )ریز دانه هیدروکسیدآلومینیوم به شاخه تولید آلومینا و محلول باقیمانده به واحد تولید کربنات ها

13-جدا سازی هیدروکسید آلومینیوم درشت دانه در خط تولید آلومینا

14-تکلیس هیدرات آلومینیوم (حرارت دهی مرحله ای تا 250⁰C،500⁰C،950⁰C) و تولید آلومینا

AL(OH)3→ALOOH→AL2O3

15-تولید سیمان از گل بلیت تولیدی

 

منابع:

1-http://en.wikipedia.org/wiki/Bauxite

2-http://minerals.usgs.gov/minerals/pubs/commodity/bauxite/

3-Z.Ali Nemati,ceramic refractory,sharif university,2006

4-www.energymanagertraining.co

5-http://en.wikipedia.org/wiki/Alunite

6-http://www.freepatentsonline.com/4331636.html

7-http://www.patentstorm.us/patents/3984521/description.html

8-بررسی مطالعات انجام شده در مورد پروژه تولید آلومینا از نفلین سیانیت و پیشنهاد ادامه آن از شرکت کانی کاوان شرق

سویل دلجوان( کارشناس مواد-سرامیک)

1- تولید آلومینا از بوکسیت

بوکسیت عمده ترین منبع تولید آلومینا یا اکسید آلومینیوم می باشد به طوری که %90 آلومینیوم جهان از این ماده تامین می شود. سنگ معدن بوکسیت یکی از سنگ های کم یاب می باشد که در شرایط جغرافیایی و آب و هوایی خاص شکل می گیرد. این سنگ معدن از جنس هیدروکسید آلومینیوم می باشد که از سه کانی دیاسپور، گیبسیت و بوهمیت و ناخالصی هایی از قبیل سیلیس، اکسید آهن و تیتان تشکیل شده است. نمایی از این سنگ درتصویر 1 آورده شده است .

 

تصویر 1-نمایی از سنگ بوکسیت [R1]

بوکسیت مناسب برای استحصال آلومینا باید میزان آلومینای بالا، اکسید آهن و سیلیس اندک داشته باشد. در جدول زیر ترکیب تقریبی بوکسیت تکلیس شده برای مصارف نسوز آورده شده است.

اجزای ترکیب

درصد

SiO2

Fe2O3

TiO2

AL2O3

ماکزیمم 75%

ماکزیمم 25%

ماکزیمم 35%

ماکزیمم 86.5%

 

 جدول1- ترکیب تقریبی بوکسیت تکلیس شده برای مصارف نسوز[R3]

 

                  

بوکسیت به طور مستقیم در تولید مواد ساینده و در صنایع شیمیایی مورد استفاده قرار می گیرد. منابع بوکسیت ایران بسیار اندک و نامناسب می باشد. ایران با ۳۹ میلیون تن ذخیره، حدود ۰‎/۱ درصد کل ذخایر بوکسیت جهان را در اختیار دارد بنابراین استفاده از نفلین سیانیت رایج تر است. مقدار آلومینا در بوکسیت وارداتی بین 50 تا 75 درصد متغییر است. بزرگترین و مناسب ترین ذخایر بوکسیت جهان در گینه وجود دارد لذا قرارداد 99 ساله بهره برداری از بوکسیت گینه توسط ایران می تواند بسیار سازنده باشد. روشهای گوناگون و متنوعی برای استحصال آلومینا از بوکسیت وجود دارد که از این میان می توان به روش بایر، سینتر با سودا و روش های اسیدی اشاره کرد. از میان روش های نام برده روش بایر به عنوان عمده ترین روش صنعتی تولید آلومینا در سطح جهان بسیارحائز اهمیت است. خلاصه ای از عملیات صورت گرفته در روش بایر در شکل زیر آورده شده است.

 

 

تصویر2- خلاصه ای از عملیات صورت گرفته در روش بایر(R4)

در روش بایر ابتدا بوکسیت در محلول داغ NaOH در دمای 175⁰C شست و شو داده می شود که این فرایند منجر به تولید AL(OH)3  می گردد. این ماده به حالت محلول می باشد و واکنش شیمیایی آن به شکل زیر می باشد:          Al2O3 + 2 OH- + 3 H2O → 2 [Al(OH)4] -                                                                     ترکیبات دیگر بوکسیت به شکل نامحلول با فیلتر کردن از AL(OH)3  محلول جدا می شود. این ناخالصی ها اصطلاحا گل قرمز نامیده می شود. در مرحله بعد محلول هیدروکسید سرد می شود و هیدروکسید آلومینیوم سفید رنگ به جای می گذارد. این ماده در دمای 1050⁰C کلسینه شده و به آلومینا و بخار آب تبدیل می شود.

2 Al(OH)3Al2O3 + 3 H2O

روش بایر یکی از روش هایی است که مصرف آب و انرژی بالایی دارد. از این رو تحقیقات زیادی برای کاهش هزینه های تولید به این روش دردست انجام است.

2- تولید آلومینا از آلونیت

آلونیت یکی از منابع تامین آلومینا می باشد. استفاده از این منبع رواج کم تری در مقایسه با سایر منابع دارد. علل مختلفی باعث می شود تا آلونیت گزینه مناسبی به عنوان ماده اولیه تولید آلومینا نباشد که از این میان می توان به موارد زیر اشاره کرد: ذخایر بسیار محدود این کانی در جهان، درصد پایین آلومینای موجود در این کانی، روش های هزینه بر تولید و از همه مهمتر تولید محصولات جانبی سمی، آلاینده و خطرناک از جمله اسید کلریدریک و گاز های SOX .

آلونیت یا پتاسیم آلومینیوم فسفات هیدراته با فرمول KAl3(SO4)2(OH)6 نمایش داده می شود. اما خلوص این کانی در غنی ترین معادن نیز بسیار پایین است و معمولا به همراه نا خالصی های سیلیسی یافت می شود. دراین کانی یون آلومینیوم با آهن و یون پتاسیم با سدیم جایگزین می گردد. در نتیجه این کانی رنگ های مختلفی به خود می گیرد که در شکل 3 تصویری از این کانی آورده شده است.

  

تصویر3-تصویری از کانی آلونیت با میزان ناخالصی مختلف [R5]

روش های مختلفی برای استحصال آلومینا از آلونیت وجود دارد که روش مناسب با توجه به میزان سیلیس موجود تعیین می شود. دریکی از روش های بسیار رایج، ابتدا آلونیت در برابر کلرید پتاسیم یا کلرید سدیم یا مخلوطی از هر دو در دمای بین ⁰C500 تا ⁰C590 کلسینه می شود. محصول این مرحله آلومینای ناخالص، سولفات ها و..می باشد. سولفات ها با آب داغ شست و شو داده شده و از محیط خارج می شود. آلومینای ناخالص باقی مانده در معرض اسید کلریدریک اسیدشویی می شود. دما در این مرحله بین ⁰C30 تا ⁰C100 می باشد. محصول این مرحله ALCL3.6H2O می باشد که کلسینه شده و در معرض حرارت تولید آلومینا و اسید کلریدریک می کند. در سایر روش ها مراحل مشابه با مواد شیمیایی دیگر انجام می پذیرد. برای مثال دریکی دیگر از روش ها از محلول های حاوی نیترات نقره برای تولید آلومینا و پتاسیم سولفات از آلونیت استفاده می گردد که به ازای تولید 190 کیلوگرم پودر آلومینا،440 کیلوگرم پتاسیم سولفات تولید می شود.

3- تولید آلومینا از نفلین سیانیت

آلومینای تولیدی از نفلین سیانیت در حدود 12/1 تا 25/1 آلومینای تولیدی از بوکسیت است اما اقتصادی بودن تولید آلومینا از نفلین سیانیت به دلیل تامین مواد اولیه سیمان، کربنات سدیم و پتاسیم و سولفات پتاسیم از محصولات جانبی نفلین سیانیت می باشد. نفلین سیانیت مصرفی در صنعت تولید آلومینا به فرمول  (Na,K)2O.AL2O3.2SiO2دارای ترکیبات مفید Na2O، K2O، AL2O3  وسزیم، لیتیم، روبیدیم و ترکیبات غیر مفید Fe2O3، S، CL، SiO2 می باشد. فرایند استحصال آلومینا و محصولات جانبی از سنگ معدن نفلین شامل مراحل زیر می باشد:

1-خردایش سنگ آهک وسنگ نفلین به طور جداگانه توسط سنگ شکن

2-آسیاب کردن مخلوط مواد خام شامل سنگ آهک، نفلین، محلول کربنات و گل برگشتی از مرحله سیلیس زدایی

3-تصحیح ترکیب و نسبت مولی بین عناصر تشکیل دهنده بار به گونه ای که نسبت های مولی زیر درترکیب حاصل شود:

(K2O+Na2O)/AL2O3=1±0.05                   CaO/SiO2=2

4-سینتر کردن ترکیب سنگ آهک و سنگ نفلین و تشکیل آلومینات سدیم پتاسیم (2O.AL2O3 (Na,K)) محلول و سیلیکات دی کلسیم غیر محلول (2CaO.SiO2)

5-خردایش مواد سینتر شده تا ابعاد کمتر از 1 میلیمتر

6-خردایش مواد زینتر شده نفلینی (آلومینات سدیم پتاسیم) و مواد قلیایی در محلول قلیا (لیچ)و ارسال گل بلیت باقی مانده به فرایند سیمان سازی

7-سیلیس زدایی مرحله اول از محلول تولیدی در مرحله قبل (توسط اتوکلاو در دمای 170⁰Cو زمان 2 ساعت)و تشکیل هیدروآلوموسیلیکات سدیم غیر محلول( Na2O.AL2O.1.7SiO2.nH2O) یا گل سفید

8-تقسیم محلول آلومینای سیلیس زدایی شده در مرحله اول به دو قسمت ارسال یک قسمت به شاخه تولید آلومینا و یک قسمت به واحد سیلیس زدایی مرحله دوم (جهت تولید جوانه هیدروآلوموسیلیکات و کربنات ها)

9-سیلیس زدایی مرحله دوم از محلول آلومینای ارسالی به این خط (توسط شیر آهک تشکیل هیدروآلوموسیلیکات کلسیم غیر محلول  (3CaO.AL2O3.mSiO2.(2-6m)H2O) یا گل سفید )

10-جدا سازی گل سفید و ارسال جامد به فرایند سینتر و مایع به فرایند جدا سازی هیدروکسید آلومینیوم

11-جداسازی کریستال های هیدروکسید آلومینیوم توسط فرایند کربونیزاسیون توسط CO2:

2NaOH+CO2→Na2CO3+H2O

NaALO2+2H2O→AL(OH)3+NaOH

12-ارسال جوانه (کریستالهای )ریز دانه هیدروکسیدآلومینیوم به شاخه تولید آلومینا و محلول باقیمانده به واحد تولید کربنات ها

13-جدا سازی هیدروکسید آلومینیوم درشت دانه در خط تولید آلومینا

14-تکلیس هیدرات آلومینیوم (حرارت دهی مرحله ای تا 250⁰C،500⁰C،950⁰C) و تولید آلومینا

AL(OH)3→ALOOH→AL2O3

15-تولید سیمان از گل بلیت تولیدی

 

منابع:

1-http://en.wikipedia.org/wiki/Bauxite

2-http://minerals.usgs.gov/minerals/pubs/commodity/bauxite/

3-Z.Ali Nemati,ceramic refractory,sharif university,2006

4-www.energymanagertraining.co

5-http://en.wikipedia.org/wiki/Alunite

6-http://www.freepatentsonline.com/4331636.html

7-http://www.patentstorm.us/patents/3984521/description.html

8-بررسی مطالعات انجام شده در مورد پروژه تولید آلومینا از نفلین سیانیت و پیشنهاد ادامه آن از شرکت کانی کاوان شرق

سویل دلجوان( کارشناس مواد-سرامیک)

1- تولید آلومینا از بوکسیت

بوکسیت عمده ترین منبع تولید آلومینا یا اکسید آلومینیوم می باشد به طوری که %90 آلومینیوم جهان از این ماده تامین می شود. سنگ معدن بوکسیت یکی از سنگ های کم یاب می باشد که در شرایط جغرافیایی و آب و هوایی خاص شکل می گیرد. این سنگ معدن از جنس هیدروکسید آلومینیوم می باشد که از سه کانی دیاسپور، گیبسیت و بوهمیت و ناخالصی هایی از قبیل سیلیس، اکسید آهن و تیتان تشکیل شده است. نمایی از این سنگ درتصویر 1 آورده شده است .

 

تصویر 1-نمایی از سنگ بوکسیت [R1]

بوکسیت مناسب برای استحصال آلومینا باید میزان آلومینای بالا، اکسید آهن و سیلیس اندک داشته باشد. در جدول زیر ترکیب تقریبی بوکسیت تکلیس شده برای مصارف نسوز آورده شده است.

اجزای ترکیب

درصد

SiO2

Fe2O3

TiO2

AL2O3

ماکزیمم 75%

ماکزیمم 25%

ماکزیمم 35%

ماکزیمم 86.5%

 

 جدول1- ترکیب تقریبی بوکسیت تکلیس شده برای مصارف نسوز[R3]

 

                  

بوکسیت به طور مستقیم در تولید مواد ساینده و در صنایع شیمیایی مورد استفاده قرار می گیرد. منابع بوکسیت ایران بسیار اندک و نامناسب می باشد. ایران با ۳۹ میلیون تن ذخیره، حدود ۰‎/۱ درصد کل ذخایر بوکسیت جهان را در اختیار دارد بنابراین استفاده از نفلین سیانیت رایج تر است. مقدار آلومینا در بوکسیت وارداتی بین 50 تا 75 درصد متغییر است. بزرگترین و مناسب ترین ذخایر بوکسیت جهان در گینه وجود دارد لذا قرارداد 99 ساله بهره برداری از بوکسیت گینه توسط ایران می تواند بسیار سازنده باشد. روشهای گوناگون و متنوعی برای استحصال آلومینا از بوکسیت وجود دارد که از این میان می توان به روش بایر، سینتر با سودا و روش های اسیدی اشاره کرد. از میان روش های نام برده روش بایر به عنوان عمده ترین روش صنعتی تولید آلومینا در سطح جهان بسیارحائز اهمیت است. خلاصه ای از عملیات صورت گرفته در روش بایر در شکل زیر آورده شده است.

 

 

تصویر2- خلاصه ای از عملیات صورت گرفته در روش بایر(R4)

در روش بایر ابتدا بوکسیت در محلول داغ NaOH در دمای 175⁰C شست و شو داده می شود که این فرایند منجر به تولید AL(OH)3  می گردد. این ماده به حالت محلول می باشد و واکنش شیمیایی آن به شکل زیر می باشد:          Al2O3 + 2 OH- + 3 H2O → 2 [Al(OH)4] -                                                                     ترکیبات دیگر بوکسیت به شکل نامحلول با فیلتر کردن از AL(OH)3  محلول جدا می شود. این ناخالصی ها اصطلاحا گل قرمز نامیده می شود. در مرحله بعد محلول هیدروکسید سرد می شود و هیدروکسید آلومینیوم سفید رنگ به جای می گذارد. این ماده در دمای 1050⁰C کلسینه شده و به آلومینا و بخار آب تبدیل می شود.

2 Al(OH)3Al2O3 + 3 H2O

روش بایر یکی از روش هایی است که مصرف آب و انرژی بالایی دارد. از این رو تحقیقات زیادی برای کاهش هزینه های تولید به این روش دردست انجام است.

2- تولید آلومینا از آلونیت

آلونیت یکی از منابع تامین آلومینا می باشد. استفاده از این منبع رواج کم تری در مقایسه با سایر منابع دارد. علل مختلفی باعث می شود تا آلونیت گزینه مناسبی به عنوان ماده اولیه تولید آلومینا نباشد که از این میان می توان به موارد زیر اشاره کرد: ذخایر بسیار محدود این کانی در جهان، درصد پایین آلومینای موجود در این کانی، روش های هزینه بر تولید و از همه مهمتر تولید محصولات جانبی سمی، آلاینده و خطرناک از جمله اسید کلریدریک و گاز های SOX .

آلونیت یا پتاسیم آلومینیوم فسفات هیدراته با فرمول KAl3(SO4)2(OH)6 نمایش داده می شود. اما خلوص این کانی در غنی ترین معادن نیز بسیار پایین است و معمولا به همراه نا خالصی های سیلیسی یافت می شود. دراین کانی یون آلومینیوم با آهن و یون پتاسیم با سدیم جایگزین می گردد. در نتیجه این کانی رنگ های مختلفی به خود می گیرد که در شکل 3 تصویری از این کانی آورده شده است.

  

تصویر3-تصویری از کانی آلونیت با میزان ناخالصی مختلف [R5]

روش های مختلفی برای استحصال آلومینا از آلونیت وجود دارد که روش مناسب با توجه به میزان سیلیس موجود تعیین می شود. دریکی از روش های بسیار رایج، ابتدا آلونیت در برابر کلرید پتاسیم یا کلرید سدیم یا مخلوطی از هر دو در دمای بین ⁰C500 تا ⁰C590 کلسینه می شود. محصول این مرحله آلومینای ناخالص، سولفات ها و..می باشد. سولفات ها با آب داغ شست و شو داده شده و از محیط خارج می شود. آلومینای ناخالص باقی مانده در معرض اسید کلریدریک اسیدشویی می شود. دما در این مرحله بین ⁰C30 تا ⁰C100 می باشد. محصول این مرحله ALCL3.6H2O می باشد که کلسینه شده و در معرض حرارت تولید آلومینا و اسید کلریدریک می کند. در سایر روش ها مراحل مشابه با مواد شیمیایی دیگر انجام می پذیرد. برای مثال دریکی دیگر از روش ها از محلول های حاوی نیترات نقره برای تولید آلومینا و پتاسیم سولفات از آلونیت استفاده می گردد که به ازای تولید 190 کیلوگرم پودر آلومینا،440 کیلوگرم پتاسیم سولفات تولید می شود.

3- تولید آلومینا از نفلین سیانیت

آلومینای تولیدی از نفلین سیانیت در حدود 12/1 تا 25/1 آلومینای تولیدی از بوکسیت است اما اقتصادی بودن تولید آلومینا از نفلین سیانیت به دلیل تامین مواد اولیه سیمان، کربنات سدیم و پتاسیم و سولفات پتاسیم از محصولات جانبی نفلین سیانیت می باشد. نفلین سیانیت مصرفی در صنعت تولید آلومینا به فرمول  (Na,K)2O.AL2O3.2SiO2دارای ترکیبات مفید Na2O، K2O، AL2O3  وسزیم، لیتیم، روبیدیم و ترکیبات غیر مفید Fe2O3، S، CL، SiO2 می باشد. فرایند استحصال آلومینا و محصولات جانبی از سنگ معدن نفلین شامل مراحل زیر می باشد:

1-خردایش سنگ آهک وسنگ نفلین به طور جداگانه توسط سنگ شکن

2-آسیاب کردن مخلوط مواد خام شامل سنگ آهک، نفلین، محلول کربنات و گل برگشتی از مرحله سیلیس زدایی

3-تصحیح ترکیب و نسبت مولی بین عناصر تشکیل دهنده بار به گونه ای که نسبت های مولی زیر درترکیب حاصل شود:

(K2O+Na2O)/AL2O3=1±0.05                   CaO/SiO2=2

4-سینتر کردن ترکیب سنگ آهک و سنگ نفلین و تشکیل آلومینات سدیم پتاسیم (2O.AL2O3 (Na,K)) محلول و سیلیکات دی کلسیم غیر محلول (2CaO.SiO2)

5-خردایش مواد سینتر شده تا ابعاد کمتر از 1 میلیمتر

6-خردایش مواد زینتر شده نفلینی (آلومینات سدیم پتاسیم) و مواد قلیایی در محلول قلیا (لیچ)و ارسال گل بلیت باقی مانده به فرایند سیمان سازی

7-سیلیس زدایی مرحله اول از محلول تولیدی در مرحله قبل (توسط اتوکلاو در دمای 170⁰Cو زمان 2 ساعت)و تشکیل هیدروآلوموسیلیکات سدیم غیر محلول( Na2O.AL2O.1.7SiO2.nH2O) یا گل سفید

8-تقسیم محلول آلومینای سیلیس زدایی شده در مرحله اول به دو قسمت ارسال یک قسمت به شاخه تولید آلومینا و یک قسمت به واحد سیلیس زدایی مرحله دوم (جهت تولید جوانه هیدروآلوموسیلیکات و کربنات ها)

9-سیلیس زدایی مرحله دوم از محلول آلومینای ارسالی به این خط (توسط شیر آهک تشکیل هیدروآلوموسیلیکات کلسیم غیر محلول  (3CaO.AL2O3.mSiO2.(2-6m)H2O) یا گل سفید )

10-جدا سازی گل سفید و ارسال جامد به فرایند سینتر و مایع به فرایند جدا سازی هیدروکسید آلومینیوم

11-جداسازی کریستال های هیدروکسید آلومینیوم توسط فرایند کربونیزاسیون توسط CO2:

2NaOH+CO2→Na2CO3+H2O

NaALO2+2H2O→AL(OH)3+NaOH

12-ارسال جوانه (کریستالهای )ریز دانه هیدروکسیدآلومینیوم به شاخه تولید آلومینا و محلول باقیمانده به واحد تولید کربنات ها

13-جدا سازی هیدروکسید آلومینیوم درشت دانه در خط تولید آلومینا

14-تکلیس هیدرات آلومینیوم (حرارت دهی مرحله ای تا 250⁰C،500⁰C،950⁰C) و تولید آلومینا

AL(OH)3→ALOOH→AL2O3

15-تولید سیمان از گل بلیت تولیدی

 

منابع:

1-http://en.wikipedia.org/wiki/Bauxite

2-http://minerals.usgs.gov/minerals/pubs/commodity/bauxite/

3-Z.Ali Nemati,ceramic refractory,sharif university,2006

4-www.energymanagertraining.co

5-http://en.wikipedia.org/wiki/Alunite

6-http://www.freepatentsonline.com/4331636.html

7-http://www.patentstorm.us/patents/3984521/description.html

8-بررسی مطالعات انجام شده در مورد پروژه تولید آلومینا از نفلین سیانیت و پیشنهاد ادامه آن از شرکت کانی کاوان شرق

سویل دلجوان( کارشناس مواد-سرامیک)

1- تولید آلومینا از بوکسیت

بوکسیت عمده ترین منبع تولید آلومینا یا اکسید آلومینیوم می باشد به طوری که %90 آلومینیوم جهان از این ماده تامین می شود. سنگ معدن بوکسیت یکی از سنگ های کم یاب می باشد که در شرایط جغرافیایی و آب و هوایی خاص شکل می گیرد. این سنگ معدن از جنس هیدروکسید آلومینیوم می باشد که از سه کانی دیاسپور، گیبسیت و بوهمیت و ناخالصی هایی از قبیل سیلیس، اکسید آهن و تیتان تشکیل شده است. نمایی از این سنگ درتصویر 1 آورده شده است .

 

تصویر 1-نمایی از سنگ بوکسیت [R1]

بوکسیت مناسب برای استحصال آلومینا باید میزان آلومینای بالا، اکسید آهن و سیلیس اندک داشته باشد. در جدول زیر ترکیب تقریبی بوکسیت تکلیس شده برای مصارف نسوز آورده شده است.

اجزای ترکیب

درصد

SiO2

Fe2O3

TiO2

AL2O3

ماکزیمم 75%

ماکزیمم 25%

ماکزیمم 35%

ماکزیمم 86.5%

 

 جدول1- ترکیب تقریبی بوکسیت تکلیس شده برای مصارف نسوز[R3]

 

                  

بوکسیت به طور مستقیم در تولید مواد ساینده و در صنایع شیمیایی مورد استفاده قرار می گیرد. منابع بوکسیت ایران بسیار اندک و نامناسب می باشد. ایران با ۳۹ میلیون تن ذخیره، حدود ۰‎/۱ درصد کل ذخایر بوکسیت جهان را در اختیار دارد بنابراین استفاده از نفلین سیانیت رایج تر است. مقدار آلومینا در بوکسیت وارداتی بین 50 تا 75 درصد متغییر است. بزرگترین و مناسب ترین ذخایر بوکسیت جهان در گینه وجود دارد لذا قرارداد 99 ساله بهره برداری از بوکسیت گینه توسط ایران می تواند بسیار سازنده باشد. روشهای گوناگون و متنوعی برای استحصال آلومینا از بوکسیت وجود دارد که از این میان می توان به روش بایر، سینتر با سودا و روش های اسیدی اشاره کرد. از میان روش های نام برده روش بایر به عنوان عمده ترین روش صنعتی تولید آلومینا در سطح جهان بسیارحائز اهمیت است. خلاصه ای از عملیات صورت گرفته در روش بایر در شکل زیر آورده شده است.

 

 

تصویر2- خلاصه ای از عملیات صورت گرفته در روش بایر(R4)

در روش بایر ابتدا بوکسیت در محلول داغ NaOH در دمای 175⁰C شست و شو داده می شود که این فرایند منجر به تولید AL(OH)3  می گردد. این ماده به حالت محلول می باشد و واکنش شیمیایی آن به شکل زیر می باشد:          Al2O3 + 2 OH- + 3 H2O → 2 [Al(OH)4] -                                                                     ترکیبات دیگر بوکسیت به شکل نامحلول با فیلتر کردن از AL(OH)3  محلول جدا می شود. این ناخالصی ها اصطلاحا گل قرمز نامیده می شود. در مرحله بعد محلول هیدروکسید سرد می شود و هیدروکسید آلومینیوم سفید رنگ به جای می گذارد. این ماده در دمای 1050⁰C کلسینه شده و به آلومینا و بخار آب تبدیل می شود.

2 Al(OH)3Al2O3 + 3 H2O

روش بایر یکی از روش هایی است که مصرف آب و انرژی بالایی دارد. از این رو تحقیقات زیادی برای کاهش هزینه های تولید به این روش دردست انجام است.

2- تولید آلومینا از آلونیت

آلونیت یکی از منابع تامین آلومینا می باشد. استفاده از این منبع رواج کم تری در مقایسه با سایر منابع دارد. علل مختلفی باعث می شود تا آلونیت گزینه مناسبی به عنوان ماده اولیه تولید آلومینا نباشد که از این میان می توان به موارد زیر اشاره کرد: ذخایر بسیار محدود این کانی در جهان، درصد پایین آلومینای موجود در این کانی، روش های هزینه بر تولید و از همه مهمتر تولید محصولات جانبی سمی، آلاینده و خطرناک از جمله اسید کلریدریک و گاز های SOX .

آلونیت یا پتاسیم آلومینیوم فسفات هیدراته با فرمول KAl3(SO4)2(OH)6 نمایش داده می شود. اما خلوص این کانی در غنی ترین معادن نیز بسیار پایین است و معمولا به همراه نا خالصی های سیلیسی یافت می شود. دراین کانی یون آلومینیوم با آهن و یون پتاسیم با سدیم جایگزین می گردد. در نتیجه این کانی رنگ های مختلفی به خود می گیرد که در شکل 3 تصویری از این کانی آورده شده است.

  

تصویر3-تصویری از کانی آلونیت با میزان ناخالصی مختلف [R5]

روش های مختلفی برای استحصال آلومینا از آلونیت وجود دارد که روش مناسب با توجه به میزان سیلیس موجود تعیین می شود. دریکی از روش های بسیار رایج، ابتدا آلونیت در برابر کلرید پتاسیم یا کلرید سدیم یا مخلوطی از هر دو در دمای بین ⁰C500 تا ⁰C590 کلسینه می شود. محصول این مرحله آلومینای ناخالص، سولفات ها و..می باشد. سولفات ها با آب داغ شست و شو داده شده و از محیط خارج می شود. آلومینای ناخالص باقی مانده در معرض اسید کلریدریک اسیدشویی می شود. دما در این مرحله بین ⁰C30 تا ⁰C100 می باشد. محصول این مرحله ALCL3.6H2O می باشد که کلسینه شده و در معرض حرارت تولید آلومینا و اسید کلریدریک می کند. در سایر روش ها مراحل مشابه با مواد شیمیایی دیگر انجام می پذیرد. برای مثال دریکی دیگر از روش ها از محلول های حاوی نیترات نقره برای تولید آلومینا و پتاسیم سولفات از آلونیت استفاده می گردد که به ازای تولید 190 کیلوگرم پودر آلومینا،440 کیلوگرم پتاسیم سولفات تولید می شود.

3- تولید آلومینا از نفلین سیانیت

آلومینای تولیدی از نفلین سیانیت در حدود 12/1 تا 25/1 آلومینای تولیدی از بوکسیت است اما اقتصادی بودن تولید آلومینا از نفلین سیانیت به دلیل تامین مواد اولیه سیمان، کربنات سدیم و پتاسیم و سولفات پتاسیم از محصولات جانبی نفلین سیانیت می باشد. نفلین سیانیت مصرفی در صنعت تولید آلومینا به فرمول  (Na,K)2O.AL2O3.2SiO2دارای ترکیبات مفید Na2O، K2O، AL2O3  وسزیم، لیتیم، روبیدیم و ترکیبات غیر مفید Fe2O3، S، CL، SiO2 می باشد. فرایند استحصال آلومینا و محصولات جانبی از سنگ معدن نفلین شامل مراحل زیر می باشد:

1-خردایش سنگ آهک وسنگ نفلین به طور جداگانه توسط سنگ شکن

2-آسیاب کردن مخلوط مواد خام شامل سنگ آهک، نفلین، محلول کربنات و گل برگشتی از مرحله سیلیس زدایی

3-تصحیح ترکیب و نسبت مولی بین عناصر تشکیل دهنده بار به گونه ای که نسبت های مولی زیر درترکیب حاصل شود:

(K2O+Na2O)/AL2O3=1±0.05                   CaO/SiO2=2

4-سینتر کردن ترکیب سنگ آهک و سنگ نفلین و تشکیل آلومینات سدیم پتاسیم (2O.AL2O3 (Na,K)) محلول و سیلیکات دی کلسیم غیر محلول (2CaO.SiO2)

5-خردایش مواد سینتر شده تا ابعاد کمتر از 1 میلیمتر

6-خردایش مواد زینتر شده نفلینی (آلومینات سدیم پتاسیم) و مواد قلیایی در محلول قلیا (لیچ)و ارسال گل بلیت باقی مانده به فرایند سیمان سازی

7-سیلیس زدایی مرحله اول از محلول تولیدی در مرحله قبل (توسط اتوکلاو در دمای 170⁰Cو زمان 2 ساعت)و تشکیل هیدروآلوموسیلیکات سدیم غیر محلول( Na2O.AL2O.1.7SiO2.nH2O) یا گل سفید

8-تقسیم محلول آلومینای سیلیس زدایی شده در مرحله اول به دو قسمت ارسال یک قسمت به شاخه تولید آلومینا و یک قسمت به واحد سیلیس زدایی مرحله دوم (جهت تولید جوانه هیدروآلوموسیلیکات و کربنات ها)

9-سیلیس زدایی مرحله دوم از محلول آلومینای ارسالی به این خط (توسط شیر آهک تشکیل هیدروآلوموسیلیکات کلسیم غیر محلول  (3CaO.AL2O3.mSiO2.(2-6m)H2O) یا گل سفید )

10-جدا سازی گل سفید و ارسال جامد به فرایند سینتر و مایع به فرایند جدا سازی هیدروکسید آلومینیوم

11-جداسازی کریستال های هیدروکسید آلومینیوم توسط فرایند کربونیزاسیون توسط CO2:

2NaOH+CO2→Na2CO3+H2O

NaALO2+2H2O→AL(OH)3+NaOH

12-ارسال جوانه (کریستالهای )ریز دانه هیدروکسیدآلومینیوم به شاخه تولید آلومینا و محلول باقیمانده به واحد تولید کربنات ها

13-جدا سازی هیدروکسید آلومینیوم درشت دانه در خط تولید آلومینا

14-تکلیس هیدرات آلومینیوم (حرارت دهی مرحله ای تا 250⁰C،500⁰C،950⁰C) و تولید آلومینا

AL(OH)3→ALOOH→AL2O3

15-تولید سیمان از گل بلیت تولیدی

 

منابع:

1-http://en.wikipedia.org/wiki/Bauxite

2-http://minerals.usgs.gov/minerals/pubs/commodity/bauxite/

3-Z.Ali Nemati,ceramic refractory,sharif university,2006

4-www.energymanagertraining.co

5-http://en.wikipedia.org/wiki/Alunite

6-http://www.freepatentsonline.com/4331636.html

7-http://www.patentstorm.us/patents/3984521/description.html

8-بررسی مطالعات انجام شده در مورد پروژه تولید آلومینا از نفلین سیانیت و پیشنهاد ادامه آن از شرکت کانی کاوان شرق

شیشه ها

مقدمه:

دراین مقاله ها در مورد انواع مختلف شیشه و برخی از کاربردهای آنها صحبت می کنیم.
شیشه ها یکی از انواع مهم موادمهندسی محسوب می شوند. این مواد در پنجره ها، ساخت بطری، لیزرها، الیاف نوری، عایق ها، لعاب کاری (glazing) ومینا کاری (enamelihg)، چاقوی جراحی، وسایل هنری وتابلوهای راهنمایی - رانندگی استفاده می شوند.
شیشه ها معمولا بازیافت می شوند واز این رو دوستدار محیط زیست هستند.مصریان آثار شیشه ای متنوعی بر جای گذاشته اند ولی آنها اولین کسانی نبودند که از این ماده استفاده می کردند.در دوران های دیرینه سنگی (paleolithic Times) شیشه های اولیه و شیشه های طبیعی (Obsidian: نوعی شیشه ی مصنوعی بدست آمده از آتش فشان ها ) بسیاراهمیت داشتند به خاطر اهمیت زیاد این ماده می توان گفت که شیشه نقش مهمی در شکل دهی تمدن ما داشته است.
به هر حال تعریفات مختلفی برای شیشه ها بیان شده است. دراین مقاله سعی می کنیم بگوییم چرا واژه های شیشه ای (glassy)، زجاجی (Vitreous) و آمورف (amor phous) همگی برای توصیف شیشه استفاده می شوند. همچنین سعی داریم جواب این سوال را بدهیم که: «شیشه چیست؟»
هنگام مطالعه ی این مقاله باید دو ذهنیت را داشته باشید:
1) ادعای Sturkey:"شیشه در دماهای بالا یک محلول شیمیایی است."
2) اگر شیشه که مایع فوق سرد شده است، پس جامد نیست وبنابراین یک ماده ی سرامیکی نیست (اما شیشه یک ماده ی سرامیکی است)

تعریف

تعریف کلاسیک شیشه براساس روش تاریخی تشکیل آن انجام شده است. البته این روش تعریف یک روش بسیار غیر معقولی برای تعریف هر ماده است. این مسئله باعث شده است تا امروز شیشه به چندین روش مختلف تعریف شود:
تعریف کلاسیک: شیشه یک مایع فوق سرد شده است(Supercooled liquid) مشکل بوجود آمده دراین تعریف این است که در برخی موارد می توان یک شیشه ی ویژه را به روشی تولید کرد که هیچگاه درحالت مایع قرار نداشته باشد.
ASTM شیشه را به صورت زیر تعریف کرده است:
"شیشه یک محصول غیر آلی از ترکیبی مذاب است که بدون آنکه کریستالی شود، سرد وصلب می گردد."
این تعریف نیز همان چیزی است که در تعریف کلاسیک آمده است. اما دراین تعریف شیشه ی پلیمری استثناء شده است. به وضوح مشخص است که استناد کردن به روش تولید برای تعریف یک گروه از مواد ایده آل و مناسب نمی باشد.

تعاریف دیگر :

1)" شیشه یک ماده ی جامد است که نظم دوربعد از خود نشان نمی دهد."
نداشتن نظم دوربعد یعنی ساختار شیشه درفواصل یک، دو یا سه برابر فاصله ی اجزای سازنده، دارای نظم نیست. این تعریف براساس مشاهدات حاصله از تفرق اشعه X، میکروسکوپ الکترونی عبوری (TEM) و... استوار است اما این تعریف نیز کمی قراردادی است زیرا به اندازه ی اجزاء تشکیل دهنده بستگی دارد.
2)" شیشه یک مایع است که قابلیت جاری شدن خود را از دست داده است."
این تعریف استوار است اما از تعریفی که بوسیله ی ASTM ارائه شده است فراگیرتر است .همچنین این تعریف از خاصیت مکانیکی برای تعریف شیشه استفاده می کند. درحقیقت این تعریف عملاً با دیدگاه فیزیک مدرن درباره ی شیشه مطابقت دارد.
اکثر شیشه هایی که ما در مورد آنها توضیح می دهیم، شیشه های با شبکه ی اکسیدی است . (مخصوصاً سیلیکات ها) تعریف ما از چنین شیشه هایی عبارتست از:
تجمعی جامد از تتراگونال هایی است که می توانند رئوس خود را به اشتراک گذاشته و البته این مواد نظم دور بعد ندارند.
دراین مقاله ما تنها درمورد شیشه های سرامیکی بحث می کنیم اما باید بدانیم که علاوه بر شیشه های سرامیکی، شیشه های فلزی و پلیمری نیز وجود دارد. شیشه های فلزی ترکیبات پیچیده ای هستند که در آنها عمل کریستالیزاسیون انجام نشده است. این مسئله بوسیله ی سریع سرد کردن فلز مذاب بوجود می آید.(این فرآیند اسپلات کوئنچینگ نامیده می شود). درادامه به بیان ویژگی شیشه ها می پردازیم:

ساختار

شیشه ها در اصل جامد های غیر کریستالی (یا آمورفی) هستند که در اغلب موارد از فریز شدن یک مایع فوق سرد شده بدست می آیند. دراین موارد نظم دور برد در آرایش اتمی وجود ندارد. البته نظم کوتاه برد (زیر 1nm) وجود دارد. این مواد دارای آرایش منظمی از سلولهای واحد نیستند.همانگونه که گفتیم شواهدی وجود دارد که ثابت می کند در شیشه ها نظم کوتاه برد وجود دارد.این نظم کوتاه برد به دلیل آرایش اتمی درمجاورت هر اتم (البته در فاصله ی کوتاه) بدست می آید. تلاش های فراوانی برای توصیف شیشه ها انجام شده است. که به بیان علت تشکیل شدن یا نشدن شیشه ها بحث می کند. دراین زمینه ما ازدو دیدگاه به شیشه ها نگاه می کنیم:
1) توجه به ساختار
2) توجه به مباحث کنیتیکی کریستالیزاسیون
درمورد اول ما به بیان هندسه ی اجزای تشکیل دهنده ی شیشه ها می پردازیم. همچنین دراین زمینه به بیان پیوندهای بین اتمی واستحکام پیوندها می پردازیم . درمورد دوم ما به بیان چگونگی دگرگونی های مایع به جامد در طی فرآیند سرد شدن می پردازیم.
دمای تبدیل شدن شیشه ای ( Tg )
درشکل 1 نموداری نشان داده شده است که در آن حجم ویژه به عنوان تابعی از دما رسم شده است.

شیشه ها (1)

این دیاگرام فرمی از دیاگرام استعاله ی دما – زمان (T.T.T) برای شیشه است. درهنگام سرد شدن مایع از دمای بالا دو پدید ه ممکن است در نقطه ی انجماد (Tm) اتفاق می افتد که عبارتند از :
1) اگر مایع کریستالیزه شود تغییرات حجم و سرعت سرد کردن گسسته است.
2) اگر کریستالیزاسیون اتفاق نیفتد، مایع به حالت فوق سرد شده تبدیل می شود و حجم در نزدیک دمای ذوب کاهش می یابد.
دردمای تبدیل شدن شیشه ای (Tg)، شیب نمودار کاهش می یابد و به شیب جامد کریستالی نزدیک می شود. این شکستگی بوجود آمده در نمودار سرد کردن نشان دهنده ی گذرگاه مایع فوق سرد شده به شیشه است. زیر دمای Tgساختار شیشه درحالت آسایش نیست زیرا این مواد اکنون جامد هستند. دراین ناحیه از Tg ویسکوزیته تقریبا شیشه ها (1) است. ضریب انبساط حالت شیشه ای معمولا نزدیک به ضریب انبساط جامد کریستالی است. اگر از سرعت های سرد کردن پایین تر استفاده شود، میزان آسایش ساختار افزایش می یابد. ومایع فوق سرد شده در دمای پایین تر تشکیل می شود. و شیشه ی حاصله ممکن است دانسیته ی بالاتری بدست آورند. (همانگونه که در شکل 1 دیده می شود)
فیزیک شیشه جنبه ی تردی آن را مورد بررسی قرار می دهد. در واقع این ویژگی یک ویژگی مایعات شیشه ساز در بالای دمای Tgاست واندزه ای از استعکام پیوندهای بین اتمی است. در ادامه ما درمورد شیشه ی نامحلول در آب یا بطری های شیشه ای آب صحبت می کنیم. البته چیزی که آگاهی کمتری از آن است این است که ما می توانیم آب را با سریع سرد کردن در اتاق مایع به حالت شیشه ای در آوریم. ماده ی حاصله یک شیشه ترد است اما این مسئله فهمیده شده است که بیشتر آب موجود در جهان به همین شکل وجود دارد.
تاریخچه
شیشه ماده ای است که پیوندی عمیق با تاریخچه ی انسان دارد. یکی از شواهد این مسئله استفاده از ابسیدیان (obsidian) یک شیشه ی طبیعی توسط بشر است. هیچ کس نمی داند که اولین جسم شیشه ای در چه زمانی ساخته شده است. قدیمی ترین یافته ها به 7000 سال پیش از میلاد برمی گردد. (البته ممکن است یافته هایی پیش از این تاریخ نیز وجود داشته باشد). درکاوش های باستان شناسی در بین النهرین روش های تولید شیشه کشف شده است . این کارها 4500 سال پیش از میلاد مسیح بوده است ومربوط به روش های تولید وسایل شیشه ای بوده است نه لعاب های مورد استفاده در وسایل سفالی. استفاده از شیشه در لعاب کاری سفال حتی به دوران های پیشین می رسد.

شیشه ها (1)

تقریبا در 3000 سال پیش از میلاد مسیح شیشه گران مصری شروع به تولید جواهر آلات شیشه ای و ظروف شیشه ای کوچک کردند. شیشه هم به عنوان یک جسم دکوری وهم به عنوان یک وسیله ی مورد استفاده در زندگی روزمره به شمار می آمد. قطعاتی از جواهر آلات شیشه ای در کاوش های اطراف کوه های مصر پیدا شده است. مثالی از این جواهرآلات شیشه ی فیزوزه ای آبی است که در شکل 2 دیده می شود. تقر یبا 1500 سال پیش از میلاد مسیح شیشه گران مصری ( در دوره ی touthmosis سوم ) روشی برای تولید قطعات تو خالی قابل استفاده، توسعه دادند. یک مثال قابل توجه از این نوع ساختار یک شیشه ی توخالی است که شبیه به سرماهی است (شکل 3) این ظرف بین سال های 1352 و 1336 قبل از میلاد ساخته شده است واین نظریه وجود دارد که برای نگه داری روغن خوش بو استفاده می شده است.

شیشه ها (1)

الگوی موجی این ظرف بسیار خاص است. در واقع این ظرف بوسیله ی کشیده شدن یک جسم تیز به شیشه ی خمیری شده تولید شده است.
نویسنده ی رومیPliny Fhe Elder (23-79 میلادی) اختراع شیشه را به صورت زیر توصیف می کند:
روزی یک کشتی که متعلق به چند تاجر نیتروم (Nitrum) بود در کنار ساحل لبنان کنونی توقف می کند. هنگام پخت غذا به دلیل نبود سنگ در ساحل، خدمه کشتی از کلوخ های نیترومی که در کشتی وجود داشته است. استفاده می کنند تا بتوانند دیگ غذا را در مکان مناسب استقرار دهند. پس از آنکه آتش روش شد، کلوخه ها با ماسه های ساحلی واکنش داده و تشکیل شیشه ی مذاب می دهد. این اولین منشع پدید آمدن شیشه است.
نیتروم (Nitrum) یک نوع سدیم کربنات (Soda) طبیعی است .این ماده یکی از اجزای مهم در شیشه های قدیمی و مدرن است. خاکستر گیاهان نیز یک منبع فقیر از سدیم برای شیشه گران فراهم می کند. گیاهان علف شوره (Saltwort) و رازیانه ی آبی (glass wort) از جمله گیاهانی هستند که برای مهیا شدن سدیم از آنها استفاده می شده است.
یکی از معمولی ترین روش ها برای شکل دهی شیشه روش دمش هوا است. اگر چه این تکنیک بیش از دوهزار سال پیش توسعه یافت، لوله های تولیدی به روش دمش در طی زمان تغییری نکرده است. توسعه ی عمده که دراین زمینه انجام شده است، روش دمش اتوماتیک است که برای تولید شیشه های بطری و حباب های لامپ استفاده می شود. دراین روش به قطعه ای شیشه در داخل قالب هوا دمیده می شود. و بدین شکل شیشه به شکل قالب در می آید. مهمترین مرحله ی رشد در تاریخ شیشه سازی مخصوصا درطی قرن بیستم مربوط به توسعه های اتفاق افتاده در زمینه ی تکنولوژی های تولید می باشد. این توسعه ها منجر به کاهش هزینه ی تولید محصولات شیشه ای می شود

در ادامه به بیان خواص شیشه ها می پردازیم:

ویسکوزیته ( η )

ویسکوزیته یک ویژگی کلیدی شیشه هاست.ما نیاز داریم تا درمورد ویسکوزیته ی شیشه در دماهای مختلف اطلاع داشته باشیم. و بتوانیم دمای مورد نیاز برا ی شکل دهی وآنیلینگ آن را تشخیص دهیم. ویسکوزیته یک ویژگی مکانیکی است. فرمول ویسکوزیتد به صورت زیر است:

شیشه ها (2)

دراین فرمول:
η : ویسکوزیته، F: نیروی مورد نیاز برای کشیدن یکی از صفحات موازی که در میان آنها مایع مورد نظر قرار دارد: ،d: فاصله ی صفحات، A: مساحت صفحات، V: سرعت حرکت صفحه. ویسکوزیته در واقع پاسخ یک مایع دربرابر تنش برشی است. مایعات دارای ویسکوزیته ای هستند که با واحد سانتی پوآز (CP) اندازه گیری می شود. واحد اندازه گیری ویسکوزیته ی گازها میکروپوآز(mp) است.

شیشه ها (2)

جدول 1 لیستی از اعداد ویسکوزیته ای است که برای فرآیندهای شیشه سازی مهم هستند. اعداد داده شده در جدول 2 نیز برای تعریف ویژگی های برجسته ی شیشه (با تأکید بر روی فرآیند) آورده شده است. بسیاری از اعداد آورده شده درجدول ویسکوزیته ها استاندارد هستند مثلا (2003) ASTMC338-93 یک روش تست استاندارد است که نقطه نرم شدگی شیشه بوسیله ی آن تعیین می شود.
محاسبه ی نقطه ی نرم شدگی شیشه بوسیله ی اندازه گیری دمایی که در آن یک فیبر شیشه ای استوانه ای با قطر شیشه ها (2) طول بوسیله ی وزن خودش تغییر طول می دهد. نرخ تغییر طول یک میلی متر بردقیقه است . در این روش 100 میلی متر از بخش بالایی فیبر بوسیله ی کوره ی خاصی با سرعت گرم شدنشیشه ها (2) گرم می شود.

شیشه ها (2)

ویسکوزیته ی برخی ازمایعات عمومی در جدول 2 آورده شده است. توجه کنید که در دمای کارپذیری شیشه ویسکوزیته ای شبیه به عسل در دمای اتاق دارد. به طور نمونه برای یک شیشه ی سیلیکاتی سودالایم این ویسکوزیته در دمایشیشه ها (2) بدست می آید. این جدول همچنین نشان می دهد که یک جامد دارای ویسکوزیته ای بیش ازشیشه ها (2) دسی پو آز است. ویسکوزیته ی به طور نمایی با تغییر دما ، تغییر می کند ( همانگونه که در شکل 1 برای انواع شیشه ی سیلیکاتی دیده می شود.) دمای فیکتیو (fictive temperature) دمایی است که در آن ساختار مایع به حالت شیشه ای تبدیل می شود. این دما بوسیله ی تقاطع منحنی های برونیابی شده در حالت دما بالا و دما پایین در نمودار ویسکوزیته – دما بدست می آید. دمای فیکتیو (Tf) مانند Tg به تبدیلات ساختاری شیشه بستگی دارد. البته Tg اندکی کمتر از Tf است.

شیشه ها (2)

شکل 2 وابستگی ویسکوزیته به دما را برای اکسیدهای شیشه ساز نشان می دهد. شما باید توجه کنید که بوسیله ی شیب این خطوط می توان انرژی اکتیواسیون جریان ویسکوز (EV) را بدست آوریم.

شیشه ها (2)

جدول 3 اعداد ویسکوزیته وسرعت های کریستالیزاسیون (v) برخی شیشه ها را نشان می دهد. سرعت کریستالیزاسیون مربوط می شود به سرعت تبادل مایع/جامد. V بسیار کم بیان کننده ی قابلیت شیشه سازی استثنایی ماده است.البته کریستالیزاسیون مذاب جامد شده ی سیلیس بسیار مشکل است.

شیشه ها (2)

روش های متعددی برای اندازه گیری ویسکوزیته وجود دارد. این روش ها با توجه به میزان ویسکوزیته انتخاب می شود.

شیشه ها (2)

شماتیک دو روش اول اندازه گیری ویسکوزیته در شکل 3 نشان داده شده است:

شیشه ها (2)

شیشه ( خلاصه ای از خواص )
 

شیشه ماده ای خنثی است. این مسئله به محیط بستگی دارد. اگر شیشه یک ماده ی سیلیکاتی باشد، این مسئله درست است . البته همه ی شیشه ها خنثی نیستند. مثلا بیوگلاس (bioglass)
شیشه یک ماده ی هموژن است. این مسئله نیز به نحوه ی شکل دهی و ترکیب شیمیایی شیشه بستگی دارد. ما می توانیم با استفاده از فرآیندهای خاص شیشه را به صورت غیر هموژن در آوریم.
شیشه می تواند تغییر شکل دهد. این مسئله عموماً درست می باشد و دلیلی است برای قابلیت بازیافت شیشه ها. برخی از شیشه ها به نحوه ای ساخته می شوند که بوسیله ی نور، انتشار نور در داخل آن وتابش نور و...تغییر ماهیت می دهد.
شیشه دارای ضریب انبساط کوچک است. البته همه ی شیشه ها مناسب استفاده شدن در کاربردهای حرارتی مانند ظروف پیرکس نیستند.
شیشه ها شفاف اند (trans Parent) این خاصیت برای الیاف نوری ضروری است. البته ما می توانیم با انجام عملیات های خاص شیشه به صورت اپک یا مات در آوریم.
بسیاری از شیشه های اولیه شفافیت کامل نداشتند زیرا در ساختار آنها ناخالصی وحباب هوا وجود داشت.
شیشه ارزان است. البته این مسئله برای شیشه های پنجره صحیح است. اما درمورد فیلم های نازک شیشه ای این مسئله صحیح نمی باشد. برخی از شیشه های قرمز رنگ بوسیله ی دپینگ (doping) طلا در آنها تولید می شود. که قیمت برخی از ظروف تولیدی از آن به پیش از 50 دلار می رسد.
شیشه یک ماده ی بالک است مگر در حالتی که آن را به صورت یک فیلم نازک ، یک فیلم انیتر گرانولار (IGF) یا یک سرامیک کریستالی رشد دهیم.

برخی از خواص مکانیکی شیشه

استحکام تئوریک شیشه ی سیلیکاتی درحدود 10GPa است. البته با حضور عیوب سطحی (ترک ها وجوانه ها ) این استحکام کاهش می یابد. شیشه ها موادی الاستیک هستند اما تحت کشش می شکنند. می توان استحکام این مواد را بوسیله ی ایجاد لایه های سطحی فشرده و یا بوسیله ی از بین بردن ترک های سطحی (با اسید شوئی یا پدید آوردن پوشش محافظ) افزایش داد. مثالی از این روش ها پدید آوردن ترک های اضافی در ساختار قطعات شیشه ای تزئینی به منظور بهبود خواص مکانیکی آنهاست. در این روش از سرد کردن شیشه ی مذاب در آب جهت ایجاد تنش های اضافه بهره برده می شود . در این حالت سطح قطعه ی شیشه ای مذاب زودتر از مرکز آن سرد می شود و بنابراین تنش های اضافی پدید می آید. قطعات جامد شده به این شیوه را می توان با چکش و بدون اینکه بشکنند چکش کاری کرد.

برخی از ویژگی های الکتریکی شیشه

شیشه معمولا دارای مقاومت الکتریکی بالایی است. که علت آن تفاوت زیاد میان باندهای انرژی (گپ بزرگ) در این ماده است. در مواردی که شیشه رساناست . بار بوسیله ی یون ها منتقل می شود.(در این مورد یون های قلیایی مانندشیشه ها (2) دارای سرعت انتقال بار بالایی هستند). در واقع به همین دلیل است که با افزایش دما رسانایی به شدت افزایش می یابد. رسانایی درشیشه های مختلف، متفاوت است.علت آن متفاوت بودن نوع شبکه ی این شیشه هاست. در شیشه هایی که دارای بیش از یک یون قلیایی هستند. پدیده ی جالبی رخ می دهد. رسانایی تولیدی در این نوع شیشه ها به طور مشخصی از شیشه های دارای یک یون کمتر است. این نوع شیشه ها در کاربردهای مختلف مانند لامپ های با توان بالا استفاده می شوند. ثابت دی الکتریک شیشه واقعاً بالاست اما نه به حدی که بتوان از آن در کاربردهای حافظه ای پیشرفته مانند حافظه ی با دستیابی دینامیک و رندوم (DRAMS) استفاده کرد. ظرفیت الکتریکی یک ماده میزان بار ذخیره شده در داخل ماده است. این خاصیت به ضخامت دی الکتریک بستگی دارد. همانطور که ضخامت دی الکتریک کمتر می شود، ظرفیت الکتریکی افزایش می یابد. اما کم کردن ضخامت نیز مشکلاتی به همراه دارد. مثلا با کاهش ضخامت احتمال شکست دی الکتریک بیشتر می شود. شیشه ی سیلیسی دارای مقاومت دی الکتریک بالاتری نسبت به سایر شیشه هاست. اما مقاومت این دی الکتریک نیز در حد دی الکتریک های پلیمری مانند رزین فنولیک نیست.

برخی از خواص اپتیکی شیشه

شفافیت دربرابر نور فرا بنفش ، مرئی و فرو سرخ به چندین فاکتور بستگی دارد. یکی از این فاکتورها طول موج تفرق است که بوسیله ی ناخالصی ها تغییر می کند. لبه ی فرو سرخ (IRedge) و لبه ی فرا بنفش ((uv edge اعدادی هستند که نشان دهنده ی فرکانس قطع شدن عبور این موج ها هستند. یک مانع لبه UV edge blocker)UV) از عبور UV جلوگیری می کند و این در حالی است که یک عبور دهنده ی لبه یUV (UV edge tran Smitter) اجازه ی عبور نور UV را می دهد.

عیوب در شیشه ها

اگر چه شیشه یک ماده ی آمورف است ولی مانند مواد کریستالی دارای عیوب و رسوبات است. و همچنین دچار جدایش فاز می شود. شیشه را می توان برای حبس کردن عناصر رادیو اکتیو استفاده کرد .در این عناصر مانند عیوب نقطه ای یا فاز ثانویه تشکیل می شوند. همچنین سرعت نفوذ این عناصر از میان شیشه بر روی میزان آن ها در شیشه تأثیر دارند. این مسئله استفاده می شود تا بتوان مواد رادیو اکتیو یا سایر مواد را کنترل کرد.

شیشه ی غیر هموژن

به دلیل آنکه شیشه یک مایع فوق سرد شده است. نمی توان گفت که این ماده حتما باید هموژن باشد. شیشه های خاص می توانند بدون نیاز به فرآیند کریستالیزاسیون به دو فاز تبدیل شوند. هنگامی که این دو فاز شیشه ای باشند این مسأله باعث می شود که سدی در برابر جدایش فازی پدید نیاید. در مورد فرآیند جدایش فازی مایع – مایع ممکن است مرحله ای برای جوانه زنی وجود داشته باشد. البته در این نوع تبدیلات ممکن است استعاله ی اسپینودال (Spinodal) نیز رخ می دهد. که هر دوی این استعاله ها به نفوذ وابسته اند.
قوانین امتزاج ناپذیری در شیشه ها بسیار مهم است. این مسئله مخصوصاً در شیشه های تولید شده با تکنولوژی روز نمود دارد. برای مثال امتزاج ناپذیری در شکل دهی شیشه – سرامیک ها ، تولید شیشه ی وایکور (Vycor) و شیشه های اپتیکی و تشکیل رسوب در شیشه ها مهم می باشد. بسیاری از اکسیدهای دوتایی و سه تایی در کنار سیلیس از خود مشکلات امتزاج پذیری نشان می دهند.
در دیاگرام فازی ناحیه ای وجود دارد که یک مایع به دو مایع با ترکیب شیمیایی متفاوت تبدیل می شود. این ناحیه گپ امتزاج پذیری (imisciblity gap) نامیده می شود. در زیر برخی از سیستم هایی که مشکل امتزاج پذیری دارند را نام برده ایم:

شیشه ها (2)

شیشه ها (2)

شکل 4 دیاگرام فازیشیشه ها (2) را نشان می دهد. در دمای پایین و در گوشه ی غنی از سیلیس دیاگرام ، فاز مایع به دو بخش مایع با ترکیب شیمیایی متفاوت تبدیل می شود. این دو مایع به صورت دو شکل گنبد مانند در شکل نشان داده شده اند. خط تیره نشان دهنده ی خط تقریبی ناحیه ی امتزاج ناپذیری است. مشکلی که در اندازه گیری این خط وجود دارد. این است که این پدیده در دمای پایین رخ می دهد و از این رو سرعت آن پایین است . و از این رو اندازه گیری آن مشکل است. دراین وضعیت میل جدایش فازی بیشتر از میل به کریستالیزاسیون است . البته کریستالیزاسیون مساعد تر از جدایش فازی است اما به دلیل آنکه جدایش فازی نیازی به باز آرایی اتم ها ندارد، این پدیده رخ می دهد. به عنوان یک قانون کلی برای سیلیس باید گفت که امتزاج ناپذیری با افزودنشیشه ها (2) افزایش می یابد اما با افزودنشیشه ها (2) کم می شود. در شیشه های وایکور از قوانین جدایش فازی استفاده می شود. در فرآیند تولید شیشه وایکور، شیشه ای پدید می آید که دارایشیشه ها (2) و 4 درصد تخلخل است.این نوع شیشه به عنوان فیلتر وبیومواد مخصوصا در جاهایی که تخلخل مهم می باشد، استفاده می شود. در فرآیند تولید وایکور، شیشه ای تولید می شود که پس از فرآیند شکل دهی دنس می گردد و شیشه ای با سیلیس خالص پدید می آید که در دمای پایین تر نسبت به کوارتز خالص شکل دهی گشته است

شیشه ی آلومینیوم – ایتریمی

شیشه های آلومینیوم –ایتریایی (YA) دارای درصد آلومینایی در گسترده ی تقریبی 75.6- 59.8 هستند. با این درصد آلومینایک شیشه ی دو فازی تشکیل می شود که در آن یک فاز قطره مانند در فاز دیگر تشکیل شده است. این شیشه به طور خود بخودی به صورت شیشه ی آلومینیوم – ایتریمی یا مخلوطی ازشیشه ها (3) تبدیل می شود. درشیشه های YA پدیده ای به نام پلی مورفیزم (Polymorphism) رخ می دهد

شیشه ی رنگی

اگر چه در بیشتر کاربردهای شیشه نیاز است تا این ماده بی رنگ باشد اما در برخی از کاربردها نیاز است شیشه رنگی باشد. هنگامی که پنجره های یک کلیسا رنگی باشد، تأثیر پذیری ازمحیط بیشتر می شود . درشیشه ها معمولا بوسیله ی افزودن اکسیدهای انتقالی و یا اکسیدهای عناصر خاک های کمیاب (rave –eavth) به بچ ماده ی اولیه ی آنها، رنگی می شوند. جدول 1 لیستی از رنگ های تولیدی بوسیله ی مواد رنگی کننده ی شیشه هاست . زرد کم رنگ، نارنجی و رنگ های قرمز بوسیله ی فلزات گران بها درحالت کلوئیدی تولید می شود. طلا (Au) رنگ قرمز، یا قوتی تولید می کند. (البته این شیشه ها گران قیمت هستند). سولفید کادمیم (cds) محصولاتی با رنگ زرد تولید می کند. اما هنگامی که علاوه بر se ، cds نیز استفاده شود. محصولاتی با رنگ قرمز یا قوتی با شدت رنگ بالا تولید می شود.

شیشه ها (3)

شیشه بوسیله ی افزودن دوپانت ها (dopants) رنگرزی می شوند. در واقع با افزودن این دو پانت ها در شیشه عیوب نقطه ای پدید می آوریم. رنگ شیشه به نوع دو پانت و حالت اکسیداسیون آن بستگی دارد.
دو پانت ها می توانند اثر بی رنگ کننده (decdorizo) ، پوشش دهنده (mask) یا اصلاح کننده (modify) داشته باشند. ما می توانیم اثرات رنگی آهن را بوسیله ی افزایش cr خنثی کنیم؛ البته اگر درصدشیشه ها (3) زیاد باشد اضافی به صورتشیشه ها (3) خارج می شود. اگر این شیشه به روش دمیدن شکل دهی شود، این پلیت لت هایشیشه ها (3) منظم گشته و شیشه ای اپک به نام آونتورین کرومی (chromium aventurine) تولید می کنند. مس (cu) برای تولید شیشه ی آبی مصری (Egyptian Blue glass) استفاده می شود.
CO (کبالت ) دربرخی از شیشه های پالایش یافته ی تولید در قرن دوازدهم استفاده می شده است. البته Co در تولید لعاب های پرسلانی مورد استفاده در چین ( در دوره ی سلسله ی منیگ وتانگ) استفاده می شده است. کبالت مورد استفاده در این لعاب ها رنگ آبی کبالتی تولید می کند.
با افزودن Se به شیشه های دپ شده با Cds باعث پدید آمدن رنگ یاقوتی سلینومی (Selenium Ruby) می شود. جزئیات پدید آمده ازهر کدام از این رنگ ها به ترکیب شیمیایی و شرایط پخت شیشه بستگی دارد.
شرکت کورینگ (Cornig) میکرو بارکدهایی با شیشه دپ شده با خاکهای کم یاب تولید کرده است. خاکهای کم یاب دارای باندهای نشر کم پهنا هستند و از میان 13 عنصر خاکهای قلیایی که مورد آزمایش قرار گرفته ، تنها 4 عنصر (Tm,Ce,Tb و Dy) می توانند در برابر تابش UV برانگیخته شوند. و لذا می توان از آنها در شناسایی بوسیله ی UV استفاده کرد. این نوع بارکدها همچنین مشکلات تداخل با سایر بارکدها را نیز ندارد. از این بارکدها در کاربردهای بیولوژیکی استفاده می شود زیرا سمی نیستند.(البته بر چسب زنی با کوانتوم دات ها خطرات کمتری دارد) و می توان از آنها در کاربردهای ژنتیکی استفاده کرد. با استفاده از چند عنصر خاکی کمیاب می توان ترکیب رنگی بیشتر پدید آورد.
شیشه های رنگی خاص شامل موارد زیر می شود :

شیشه ی یاقوتی یا کرانبری ( Cranberry )
 

شیشه ی یاقوتی با افزودن Au به شیشه سربی با حضور Sn پدید می آید. شیشه ی کرانبری که اولین بار در سال 1685 گزارش شده است، یک نوع شیشه ی بی رنگ (معمولاً صورتی کم رنگ ) است. علت پدید آمدن این رنگ در صد کم طلای موجود در آن است . راز تولید شیشه قرمز رنگ برای قرن ها ی زیادی گم شده بود و در قرن هفدهم دوباره کشف شد.

شیشه ی اورانیومی یا وازلینی

محصولات اورانیومی هنگامی که در شیشه ی با سرب بالا استفاده شود، رنگ قرمز تیره تولید می کند. البته شیشه های اورانیومی دیگری نیز وجود دارد که با صطلاح به آنها شیشه های وازلینی (Vaseline glass) می گویند. این نوع شیشه ها دارای رنگ سبز هستند. مسأله ای که این نوع شیشه ها را خاص کرده است این است که این نوع شیشه ها هنگام تابش اشعه ی UV به آنها ، خاصیت فلئورسانس پیدا می کنند. از سال 1940 تنها اورانیوم تهی شده (uranium depleted) به عنوان دو پانت استفاده می شود. علت استفاده از این نوع دو پانت، فراوانی آن است. اما از 100 سال گذشته به بعد اورانیوم طبیعی (natural uranium) استفاده می شود.

شیشه ها (3)

شکل 1 مثالی از یک شیشه ی وازلینی است.

لیزر شیشه ای

عناصر خاکهای کم یاب (rave – earth elements) مانند Nd در تولید شیشه های لیزر و سایر وسایل اپتیکی کاربرد دارند. (شکل 2) . لیزر شیشه ای دپ شده با Nd (Nd-doped glass laser) مانند یک لیزر یاقوتی (ruby laser) کار می کند . اگر چه نوع شیشه ای دارای تفاوت هایی است . میله ی لیزر قطری بینشیشه ها (1) اینچ دارد و معمولا بوسیله ی یک لامپ حلزونی تخلیه می شود. علت استفاده از لامپ های حلزونی این است که طول غیر بار دار این نوع لامپ ها از لامپ های خطی طولانی تر است. لیزر شیشه ای دپ شده با Nd دارای بازدهی بیش از 2% است. این بازده 4 برابر بازده یک لیزر یاقوتی است. به دلیل آنکه رسانایی گرمایی شیشه پایین است بنابراین نیاز به زمان بیشتری برای خنک سازی است.

شیشه ها (3)

رسوبات در شیشه

وجود رسوبات در شیشه عموما اجتناب ناپذیر است. سوال این است که چه زمانی طول می کشد تا رسوبات تشکیل شود. (مخصوصا اگر جوانه زنی هموژن باشد). ما ممکن است عوامل هسته زا برای تسریع جوانه زنی به شیشه اضافه کنیم. جوانه زنی کریستال ها در شیشه از تئوری کلاسیک پیروی می کند. رسوبات تشکیل شده در شیشه می تواند موجب رنگی شدن شیشه شود.

شیشه به عنوان لعاب

لعاب ها مانند شیشه ها در همه جا دیده می شوند. لعاب کاری (glazing) استفاده از ویژگی های ویسکوز شیشه و تشکیل یک لایه ی یک پارچه و صاف بر روی یک زیر لایه ی سرامیکی است.
مینا کاری (enameling) تشکیل همان لایه بر روی یک زیر لایه ی فلزی است. چیزی که باید به آن توجه کرد این است که عموما لعاب ها قدمت زیادتری دارند. در ادامه به بیان برخی از اصطلاحات لعاب می پردازیم:

زیر لعاب ( underglaze )

هنگامی که یک بیسکوییت سرامیکی را می خواهیم مورد عملیات دکور قرار دهیم باید قبل از آن یک لعاب کاری بر روی آن انجام دهیم که این نوع لعاب را زیر لعاب گویند. این لایه به علت تشکیل بهتر دکور بر روی بدنه اعمال می شود. پس از آن که فرآیند دکوراسیون جسم سرامیکی انجام شود برروی آن یک لعاب دیگر اعمال می شود. البته این لعاب پیش از پخت دکور اعمال می شود.
عیب کراولینگ لعاب ( glaze craweling ) این عیب که در لعاب اتفاق می افتد بدین صورت است که لعاب از لایه ی سرامیکی زیرین جدا می گردد. این پدیده به دلیل عدم ترشوندگی بیسکوییت سرامیکی بالعاب در طی فرآیند پخت اتفاق می افتد.
لعاب ترک خورده ( crackle glaze )اگر انبساط گرماییشیشه ها (3) لعاب از سرامیک بستر بزرگ تر باشد، لعاب ممکن است در طی فرآیند سرد کردن (در طی پخت) بشکند. هنگامی که غلظت یون سدیم و پتاسیم در لعاب بیشتر باشد، ترک ها بیشتر پدید می آیند. هنگامی که سرعت سرد کردن بالا رود ترک های حاصل ریزتر می شوند.
لعابهای سلادون (celadon )، تنموکو (tenmoku)، راکو (raku) و کوپر ( copper) لعاب های ویژه ای هستند که در دنیای هنر سرامیک یافت می شوند.
لعاب های سلادوناین لعاب ها اولین بار در حدود 3500 سال پیش تولید شده اند. این لعاب ها دارای گستره ی رنگی از آبی کم رنگ تا سبز مایل به زرد هستند و می توانند رنگی کاملا تیره پدید آورند. رنگ تولیدی در این لعاب ها بوسیله ی آهن تولید می شود(3.o - o.5 در صدشیشه ها (3) به لعاب افزوده می شود). ظروف لعاب خورده توسط این نوع لعاب سپس در دمای تقریباًشیشه ها (3) پخت می گردند. ظروف تولید شده با این لعاب ها زیبایی خاصی داشته و در کاربردهای تزئینی استفاده می شوند. مثلا کوزه ی لعاب خورده با این لعاب که درکشور کره تولید شده است، درسال 1946 از سوی کشور کره به هاری ترومن رئیس جمهور آمریکا هدیه شد. امروزه این ظرف که 23cm ارتفاع دارد قیمتی برابر با 3 میلیون دلار دارد.
لعاب تنموکواین نوع لعاب در زمان سلسله ی سونگ (sung Dynasty) بوجود آمده است. و دارای رنگ قهوه ای تیره یا حتی سیاه است. برای ایجاد این رنگ میزان 8-5 درصد وزنیشیشه ها (3) به لعاب افزوده می شود. تشکیل مناسب این نوع لعاب به شرایط اکسایش – کاهش اتمسفر پخت بستگی دارد. و در شرایط مختلف اکسایش و کاهش رنگ های متنوعی پدید می آید. در لعاب های کوپرنیز از کربنات مس به عنوان منبع Cuاستفاده می شود. البته در طی فرآیند پختشیشه ها (3) تجزیه گشته و Cuoباقی می ماند. Cuo تولید نیز با مونواکسیدکربن (CO) موجود در کوره واکنش داده تا ذرات مس در لعاب تشکیل شوند. این ذرات رنگ قرمز به لعاب می دهند.
لعاب های راکولعاب های راکو اغلباً لعاب هایی فلزی به نظر می رسند. (اگر بوسیله ی یک لایه از فلز Ti پوشش داده شده باشند)
یک روش پیشرفته در تولید لعاب های راکو بدین صورت است که ظروف سرامیکی به شیوه ی معمولی پخت می شوند سپس آنها را در داخل یک محیط کاهنده مانند خاک اره وارد می کنند و سپس آنها را قبل از آنکه بتوانند اکسید شوند، به سرعت سرد می کنند. این نوع لعاب ها اغلبا حالت استثنا داشته و می توانند با زمان تغییر کنند. این مسئله ساده است. زیرا آنها در طی فرآیندهای بعدی تولید اکسید می شوند. این نوع لعاب بر خلاف سایر لعاب ها خنثی نبوده و تنها برای دکوراسیون استفاده می شوند.
لعاب های کریستالی ( crystalline glaze )این نوع لعاب ها ، لعاب هایی دکوراسیونی هستند اما به طور مستقیم با تکنولوژی تشکیل شیشه – سرامیک در ارتباطند. کریستال ها بوسیله ی سرد کردن آهسته لعاب ایجاد می شوند. این سرد کردن آهسته به کریستال های لعاب اجازه ی رشد کردن می دهند. رشد این کریستال ها مد نظر است؛ زیرا لعاب ضخامت کمی داشته و از این رو کریستال ها باید به صورت پلیت لت (platelets) در آیند. برای آنکه عمل رشد کریستال ها بهتر انجام شود از جوانه زاهای تیتانیایی استفاده می شود. این نوع جوانه زاها در لعاب های باویسکوزیته ی پایین استفاده می شوند و در آنهاشیشه ها (3) تشکیل می شود. ترکیب شیمیایی این نوع لعاب ها بسیار مهم است. در آن شیشه ها (3) وشیشه ها (3) به میزان کم و Pbo به میزان 10-8 درصد وزنی استفاده می شود. رشد کریستال با اضافه شدن fe به لعاب افزایش می یابد. اما این اضافه شدن می تواند همچنین موجب پدید آمدن اثراتی بر سایر دو پانت های اضافه شده به لعاب شود.
سفالگران امروزی ازشیشه ها (3) به عنوان اصلاح کننده و تولید کننده ی کریستال های ویلمایت (Crystals Willemite) استفاده می کنند. (ویلمایت یک مینرال کمیاب از روی است). این تکنیک نیازمند مهارت ویژه است. زیرا افزودن مقادیر زیادشیشه ها (3) به لعاب باعث می شود ویسکوزیته ی آن حتی در دماهای پایین نیز کم باشد، بنابراین این مسئله باعث می شود که لعاب از روی سطح سفالی جریان پیدا کند. رشد اسفرولیتی (Spherulite growth) از جوانه زا در لعاب در شکل 3 نشان داده شده است. هر اسفرولیت در واقع توده ای از کریستال های شعاعی است که با توجه به مرکز اسفرولیت دورهم گرد آمده اند.

شیشه ها (1)

لعاب های اپک ( opaque glazes ) اگر به لعاب مذاب کریستال هایی افزوده شود، لعاب می تواند اپک شود. برای این کار می توان ازO_2 S_n یا زیر کن استفاده کرد. که زیر کن ارزان تر است .شیشه ها (3) برای تولید رنگ سفید در لعاب های زیرکنی (Zircon glaze) استفاده می شود. برای اپک کردن کمتر ازشیشه ها (3) استفاده می شود زیرا کریستال های روتایل طلایی رنگ هستند. و بنابراین لعاب را به رنگ زرد در می آورند. ما همچنین می توانیم با تشکیل کریستال لعاب را اپک کنیم (مثلا ولاستونیت:شیشه ها (3). این کار بوسیله ی عملیات حرارتی مناسب، حبس کردن گاز (هوا یاشیشه ها (3) ) ) و یا بوسیله ی جدایش فازی مایع – مایع انجام می شود. لعاب های مات (Matt glazes) بوسیله ی تشکیل کریستال های بسیار کوچک در لعاب بوجود می آیند (مثلا کریستال های ولاستونیت برای لعاب های مات – آهکی و وبلیمایت (شیشه ها (3):Willemite ) برای لعاب های مات – زینک). کریستال های ریز ولاستونیت بوسیله ی افزودن کلسیت به لعاب پایه سیلیس تشکیل می شود. یک روش دیگر برای این کار افزودن مقادیر زیادی از ماده ی کریستالی به لعاب است تا در طی فرآیند پخت درصدی از آن به صورت کریستالی باقی بماند

رنگ در لعاب و لعاب موضوعاتی هستند که امروزه تحقیقات فراوانی بر روی آنها به عمل آورده شده است. امروزه رنگ های جدیدی بوسیله ی افزودن نانو ذرات در لعاب پدید می آید. عموما نانو ذرات نقره و طلا رنگ طلایی بوجود می آورند. و نانو ذرات مس رنگ قرمز بوجود می آورند. توضیح در مورد نحوه ی پدید آمدن رنگ در لعاب واقعاً پیچیده تر از نحوه ی پدید آمدن رنگ در شیشه هاست. زیرا لعاب بر روی یک لایه اعمال می شود و از این سو نباید ترانسپارنت باشد. همچنین لعاب یک لایه ی نازک است و در اتمسفر مختلف (کاهنده – اکسید کننده) بوجود می آید از این دو بررسی عوامل موثر بر تشکیل یک لعاب مشکل است.

لعاب های رنگی ( Colored glazes )

در لعاب های رنگی باید از پیگمنت های سرامیکی با پایداری مناسب بهره برد. از اکسیدهای رنگ زای ارزان قیمت می توان برای ایجاد رنگ در محصولات متنوع سفالی بهره برد. البته بسیاری از مواد رنگ زا برای لعاب همانهایی هستند که ما برای رنگرزی شیشه از آنها استفاده می کنیم
اکسید کبالت شیشه ها (4) یک اکسید سیاه رنگ است اما کمتر از یک درصد وزنی از آن در لعاب ایجاد رنگ آبی تیره می کند (اگر چه در بیشتر موارد از کربنات کبالت استفاده می شود).
به دلیل آنکه شیشه ها (4) در این گونه لعاب ها بوجود می آید، ویسکوزیته ی لعاب تغییر می کند.
اکسید کروم که تا 3-2% وزنی نیز می تواند به لعاب افزوده شود به جای رنگ سبز، رنگهای زرد، صورتی یا قهوه ای بوجود می آورد (رنگ قرمز در حضور سرب در ترکیب لعاب اولیه پدید می آید. اگر Zn در لعاب اولیه وجود داشته باشد، رنگ لعاب قهوه ای می شود مگر آنکه سرب ها هم وجود داشته باشد. که در صورت وجود سرب و روی در لعاب اولیه رنگ زرد پدید می آید).
شیشه ها (4)که به صورت کربنات به لعاب افزوده می شود، رنگ لعاب را به صورت قهوه ای در آورده البته این ماده می تواند رنگ قرمز، بنفش و حتی سیاه نیز تولید کند. که این تغییر رنگ به درصد سدیم موجود در لعاب اولیه بستگی دارد. افزودن Cuo به اندازه ی %2-1 وزنی به یک لعاب با سدیم بسیار کم سبب پدید آمدن رنگ فیروزه ای می شود. این درحالی است که افزودن بیش از 3% از این رنگ زا باعث پدید آمدن رنگ سبز یا آبی می شود. اگر درصد Cuo در لعاب افزایش یابد، لعاب ظاهری فلزی مانند مفرغ به خود می گیرد. اگر لعاب دارای 0.3– 2 درصد وزنی Cuo در اتمسفر کاهنده پخت شود، رنگ قرمز مسی پدید می آید. این رنگ به دلیل حضور ذرات کلوئیدی CU درلعاب بوجود می آید.
اگر یک لعاب رنگ زرد داشته باشد، این رنگ ممکن است بوسیله ی افزودن Cds یا Cdse بوجود آمده باشد. البته این نوع افزودنی های رنگ زا ممکن است رنگ های قرمز یا نارنجی را نیز پدید آورند. درصورت حضور سرب در این نوع لعاب ها ، Pds تشکیل می شود که باعث سیاه شدن لعاب می شود. زیرکن در صنعت برای کمک کردن به پایدار شدن این نوع رنگ ها (برپایه ی cd) استفاده می شود. درحقیقت شیشه ها (4) (زیر کن وانادیومی آبی رنگ) و شیشه ها (4)(pr,zr) (زیر کن پراسئودیومی زرد رنگ) مهم ترین تثبیت کننده های مورد استفاده در این رنگ هاست. هنگامی که اورانیوم به لعاب اضافه شود، به جای پدید آوردن رنگ زرد کم رنگ، رنگ قهوه ای تیره پدید می آید. (اورانیوم در شیشه های وازلینی تولید رنگ زرد کم رنگ می کند). البته بسته به ترکیب لعاب ، اورانیوم می تواند رنگ های قرمز یا نارنجی روشن نیز بدهد.

لعاب نمکی ( saltglaze )

دراین نوع فرآیند لعاب کاری سفال در کوره های با دمای بالا با نمک واکنش می دهد. در واقع سفالگر نمک را بر روی سفال اعمال می کند. این فرآیند هنگامی اتفاق می افتد که سفال در داخل کوره است. این فن بوسیله ی سفالگران ایرانی وانگلیسی در دهه ی 1700 ابداع گشته است. همچنین شما می توانید مثال های فراوانی از فرآیند رنگ آمیزی بوسیله ی اکسیدهای فلزی را در آلمان ببنید. در این نوع لعاب ها نمک با رس واکنش داده و تشکیل لایه ای شیشه ای بر روی سطح می دهد. این تکنیک دقیقاً فرآیند خوردگی خاک نسوز در دمای بالاست (بوسیله ی سود سوز آور).
واژه ی مینا (enamel) معمولا در هنگامی استفاده می شود که یک لایه ی لعابی بر روی فلز اعمال می شود. البته این واژه در هنگامی که یک لایه لعابی بر روی لعاب اولیه اعمال می شود نیز استفاده می شود. بازار مصرف مینا بسیار بزرگ است. این بازار از لوازم بهداشتی تا جواهر آلات گسترده است.

خوردگی شیشه و لعاب

این تصور وجود دارد که شیشه خنثی است اما باید بدانید که اسید سیتریک و اسید استیک موجود در غذاها و میوه ها می توانند بایون های موجود در شیشه واکنش دهند و ترکیبات کمپلکس پدید آورند. با خروج یون های قلیایی از داخل شیشه یون های هیدروژن مثبت جایگزین آنها می شود. هنگامی که بخواهیم استحکام سطح شیشه را افزایش دهیم باید یون های پتاسیم و سدیم مثبت را با لیتیم مثبت ( شیشه ها (4) ) جایگزین کنیم. در شیشه ی آلایش یافته (Stain glass) می توان یون نقره ی مثبت و مس را جایگزین شیشه ها (4) کرد.
همانند مواد کریستالی ، شیشه ها نیز دارای عیوب کریستالی اند. یکی از چالش هایی که ما با آنها روبرو هستیم محاسبه ی خواص بوجود آمده ازعیوب (مانند نفوذ) در شیشه هاست. زیرا در شیشه ها شبکه ی مرجع وجود ندارد.

انواع شیشه های سرامیکی

همه ی شیشه ها براساس تتراهدرال های سیلیسی ایجاد نمی شوند؛ واحدهای ساختاری این شیشه ها در جدول 1 آورده شده است. برخی از ترکیبات این شیشه ها نیز در جدول 2 آورده شده است.

شیشه ها (4)

شیشه ها (4)

شیشه ی سیلیکاتی ( سودالایم )

این شیشه ها بر پایه ی شیشه ها (4) هستند. (معمولا این نوع شیشه ها علاوه بر این مواد دارای شیشه ها (4) نیز هستند.) این نوع شیشه نستبا ارزان هستند و دارای دوام خوبی نیز هستند همچنین از این نوع شیشه به طور فراوان در صنعت بسته بندی و ساختمان استفاده می شود. ضریب انبساط حرارتی شیشه ها (4) این نوع شیشه ها ناچیز نیست. همچنین این نوع از شیشه ها عایق های خوبی نیستند. استفاده های عمده از این نوع شیشه در صفحات شیشه ای ،بطری ها ، وسایل غذا خوری و صنعت الکترونیک (حباب لامپ) است. شیشه های آلومینو سیلیکاتی قلیایی (شیشه ها (4)= عنصر قلیایی) دارای ضریب انبساط حرارتی پایینی است. این نوع شیشه دارای دوام و خواص عایق کاری بهتری است. وهمچنین نسبت به سایر شیشه های هم گروه استحکام بالاتری دارد. استفاده های این نوع شیشه عبارتست از تیوپ های اختراق، حباب های لامپ هالوژن و به عنوان بسترهای صنعت الکترونیک کاربرد دارد.

شیشه ی سربی

ترکیب عمومی این شیشه ها سیلیکات های قلیایی سربی استشیشه ها (4). در این نوع شیشه ها Pbo به جای CaO در شیشه ی سودالایمی قرار گرفته است. این نوع شیشه دارای مقاومت بالایی است. همچنین ضریب انبساط حرارتی آن بالاست. و دمای نرم شوندگی پایینی دارد. دلیل آنکه از این نوع شیشه ها در تولید ظروف کریستال استفاده می شود این است که ضریب شکست این نوع شیشه بالاست و علاوه بر این که از این شیشه ها در ظروف تزئینی استفاده می شود، از آنها در ساخت تیوپ های لامپ، لامپ تصویر تلویزیون و تیوپ های ترمومترها استفاده می شود. در ظروف کریستال انگلیسی که به صورت سنتی تولید می شوند، میزان Pbo حداقل 30% است. برطبق رهنمود اتحادیه ی اروپا میزان Pbo باید بیش از 24 درصد باشد. همچنین بر طبق استاندارد اروپا شیشه های کریستال سربی باز یافت نمی شوند. شیشه های سربی که برای ساخت حفاظ های تابشی استفاده می شوند ممکن است دارای بیش از 65% Pbo باشند. کاربرد این گونه شیشه ها در لامپ تصویر تلویزیون است اگر چه شیشه های باریمی برای ساخت صفحه و تابلوهای تلویزیون استفاده می شود. (تفنگ الکترونی تلویزیون اشعه ی x ساتع می کند که این نوع شیشه باید این تابش ها را جذب کند.)شیشه های سرب – بوراتی می توانند به عنوان لحیم های شیشه ای استفاده شوند. این نوع شیشه ها دارای در صد کمیشیشه ها (4) است و کاملا خنثی است.
شیشه های فیلنیتی (flint glass) دارای تفرق بالایی است. در واقع این نوع شیشه ها از نوع شیشه های سیلیکاتی قلیایی ـ سربی است که از ذوب سنگ های فیلنیتی ساخته شده اند(فیلنیت فرم خالص سیلیس است) .لازم به توضیح است که این نوع سنگ کلسینه شده و به طور فراوان در ساخت بدنه های سرامیکی استفاده می شود.

شیشه ی بورانی ( شیشه ی بورو سیلیکاتی )

شیشه های بوروسیلیکاتی قلیاییشیشه ها (4) به خاطر ضریب انبساط حرارتیشیشه ها (4) کوچکشان ویژه هستند. این نوع شیشه دوام بالایی داشته و خواص الکتریکی مفیدی دارند. پیرکس (Pyrex) که یک نوع ماده در تولید وسایل پخت و پز است . از جنس بروسیلیکات است .شیشه ی بروسیلیکاتی به طور وسیع در فرآیندهای شیمیایی استفاده می شود. برخی از شیشه های براتی دارای دمای ذوب پایینیشیشه ها (4) هستند از این رو آنها را می توان به همراه سایر شیشه ها استفاده کرد. شیشه ی بروسیلیکاتی – زنیکی به شیشه های منفعل شهرت دارند. این شیشه ها مواد قلیایی ندارند و از این رو از آنها می توان در ساخت اجزای الکترونیکی سیلیسیمی استفاده کرد.

سیلیس فیوزد

این نوع شیشه از نوع سیلیس خالص است. این شیشه ها ، شیشه های سیلیکاتی برای کاربردهای دما بالا هستند. ضریب انبساط حرارتی این نوع شیشه ها نزدیک به صفر است. این نوع شیشه ها برای تولید آینه های تلسکوپ و زیر لایه ها (Substrates) استفاده می شود. به خاطر داشتن ضریب انبساط حرارتی نزدیک به صفر به این شیشه ها ، شیشه های با انبساط حرارتی بسیار پایین (VLE Silica) می گویند .
شیشه های VLE دارای 7 درصد وزنیشیشه ها (4) برای تولید لفافه های لیتوگرافی نوری (masks photolithography) استفاده می شود. البته به خاطر دمای بالای فرآیند شکل دهی این شیشه ها ؛ می توان به جای آنها از شیشه های وایکور استفاده کرد.

شیشه ی فسفاتی ( phosphate – glass )
 

شیشه های فسفاتی شیشه های مهمی هستند زیرا این نوع شیشه ها خاصیت نیمه رسانایی دارند. یکی از کاربرد این مواد در ساخت تقویت کننده های الکترون (electron multipliers) است . در این نوع وسایل با استفاده از دپ کردن Er (افزودنشیشه ها (4) ) ، این تقویت کننده ها ساخته می شود. کایتون های موجود در این نوع شیشه ها معمولا V و P هستند اما لابراتوار ملی او آ ک ریچ (Oak Ridge National labroatory) یک نوع شیشه ی فسفاتی اندیوم – سربی تولید کرده است که دارای ضریب شکست بالایی است. از ویژگی های دیگر این شیشه می توان به دمای ذوب پایین و خاصیت ترانسپارنتی در برابر گسترده ی وسیعی از طول موج ها را نام برد. به دلیل آنکه این نوع شیشه می تواند درصد بالایی از عناصر خاکهای کم یاب را در خود حل کنند، از آنها در تولید وسایل نوری اکتیو مانند آمپلی فایرهای فیبر اپتیک و لیزرها استفاده می شود. شیشه های فسفاتی دپ شده با Nd در لیزرهای حالت جامد استفاده می شوند. ترکیب شیمیایی نمونه وار از این نوع شیشه عبارتست ازشیشه ها (4) است. که در صد Nd بین O.2-2.O درصد مولی است.

شیشه ی چالکوژیندی ( Chalcogenide glass )

این نوع شیشه براساس Se,As و Te بوجود می آید. این شیشه ها نور فرو سرخ را از خود عبور می دهند و نیمه رسانا های غیر اکسیدی هستند. از این نوع شیشه در وسایل و لنزهای الکترونیکی ویژه استفاده می شود. در این وسایل هنگامی که ولتاژ اعمالی به آنها از میزان بحرانی فراتر رود، به طور ناگهانی تغییر رسانایی رخ می دهد. کاربرد این نوع شیشه ها بسیار خاص است زیرا این شیشه ها دوام پایینی داشته و دمای نرم شوندگی شان پایین است.

شیشه ی فلورایدی ( fluoride glass )

عموماً شیشه های هالیدی بر پایه یشیشه ها (4) را شیشه های فلورایدی می گویند. کاربرد این نوع شیشه ها در وسایل همسو کننده نوری (optical waveguides) است. و درجاهایی که قیمت توجیه پذیر باشد استفاده می شوند.

شیشه ی طبیعی

این مسئله که شیشه در طبیعت بوجود می آید حتی این پدیده یک امر نسبتاً معمولی است، باعث شگفتی بسیاری از مردم می شود. تکتیت ها (tektites) درهنگام برخورد شهاب سنگ ها به زمین و در دهانه ی حاصله از برخورد شهاب سنگ پدید می آیند. مولد اویت (Moldavite) نیز یک شیشه ی سبز رنگ است که در مولداوی (Moldavia) یافت می شود . فولگلاریت (fulgarite) نیز تیوپ های شکننده از شیشه هستند که در هنگام برخورد برق آسمان به خاکهای ماسه ای پدید می آید. ابسیدیان (obsidian) نیز یک نوع شیشه است که در جریان های آتش فشانی تشکیل می شود. رنگ سیاه رنگ این نوع شیشه به خاطر ناخالصی پدید می آید. در طی دوره ی پارینه سنگی از ابسیدیان در ساخت وسایل استفاده می شده است. سنگ پا (Pamice) یکی دیگر از شیشه هایی است که از فوران های آتش فشانی تشکیل می شود. این ماده می تواند تخلخل های فراوانی داشته باشد. (درصورتی که ماده ی اولیه ی تشکیل دهنده ی آن دارای مواد گازی فراوانی باشد). سنگ پا شکل متخلخل ابسیدیان است

شیشه ها

مقدمه:

دراین مقاله ها در مورد انواع مختلف شیشه و برخی از کاربردهای آنها صحبت می کنیم.
شیشه ها یکی از انواع مهم موادمهندسی محسوب می شوند. این مواد در پنجره ها، ساخت بطری، لیزرها، الیاف نوری، عایق ها، لعاب کاری (glazing) ومینا کاری (enamelihg)، چاقوی جراحی، وسایل هنری وتابلوهای راهنمایی - رانندگی استفاده می شوند.
شیشه ها معمولا بازیافت می شوند واز این رو دوستدار محیط زیست هستند.مصریان آثار شیشه ای متنوعی بر جای گذاشته اند ولی آنها اولین کسانی نبودند که از این ماده استفاده می کردند.در دوران های دیرینه سنگی (paleolithic Times) شیشه های اولیه و شیشه های طبیعی (Obsidian: نوعی شیشه ی مصنوعی بدست آمده از آتش فشان ها ) بسیاراهمیت داشتند به خاطر اهمیت زیاد این ماده می توان گفت که شیشه نقش مهمی در شکل دهی تمدن ما داشته است.
به هر حال تعریفات مختلفی برای شیشه ها بیان شده است. دراین مقاله سعی می کنیم بگوییم چرا واژه های شیشه ای (glassy)، زجاجی (Vitreous) و آمورف (amor phous) همگی برای توصیف شیشه استفاده می شوند. همچنین سعی داریم جواب این سوال را بدهیم که: «شیشه چیست؟»
هنگام مطالعه ی این مقاله باید دو ذهنیت را داشته باشید:
1) ادعای Sturkey:"شیشه در دماهای بالا یک محلول شیمیایی است."
2) اگر شیشه که مایع فوق سرد شده است، پس جامد نیست وبنابراین یک ماده ی سرامیکی نیست (اما شیشه یک ماده ی سرامیکی است)

تعریف

تعریف کلاسیک شیشه براساس روش تاریخی تشکیل آن انجام شده است. البته این روش تعریف یک روش بسیار غیر معقولی برای تعریف هر ماده است. این مسئله باعث شده است تا امروز شیشه به چندین روش مختلف تعریف شود:
تعریف کلاسیک: شیشه یک مایع فوق سرد شده است(Supercooled liquid) مشکل بوجود آمده دراین تعریف این است که در برخی موارد می توان یک شیشه ی ویژه را به روشی تولید کرد که هیچگاه درحالت مایع قرار نداشته باشد.
ASTM شیشه را به صورت زیر تعریف کرده است:
"شیشه یک محصول غیر آلی از ترکیبی مذاب است که بدون آنکه کریستالی شود، سرد وصلب می گردد."
این تعریف نیز همان چیزی است که در تعریف کلاسیک آمده است. اما دراین تعریف شیشه ی پلیمری استثناء شده است. به وضوح مشخص است که استناد کردن به روش تولید برای تعریف یک گروه از مواد ایده آل و مناسب نمی باشد.

تعاریف دیگر :

1)" شیشه یک ماده ی جامد است که نظم دوربعد از خود نشان نمی دهد."
نداشتن نظم دوربعد یعنی ساختار شیشه درفواصل یک، دو یا سه برابر فاصله ی اجزای سازنده، دارای نظم نیست. این تعریف براساس مشاهدات حاصله از تفرق اشعه X، میکروسکوپ الکترونی عبوری (TEM) و... استوار است اما این تعریف نیز کمی قراردادی است زیرا به اندازه ی اجزاء تشکیل دهنده بستگی دارد.
2)" شیشه یک مایع است که قابلیت جاری شدن خود را از دست داده است."
این تعریف استوار است اما از تعریفی که بوسیله ی ASTM ارائه شده است فراگیرتر است .همچنین این تعریف از خاصیت مکانیکی برای تعریف شیشه استفاده می کند. درحقیقت این تعریف عملاً با دیدگاه فیزیک مدرن درباره ی شیشه مطابقت دارد.
اکثر شیشه هایی که ما در مورد آنها توضیح می دهیم، شیشه های با شبکه ی اکسیدی است . (مخصوصاً سیلیکات ها) تعریف ما از چنین شیشه هایی عبارتست از:
تجمعی جامد از تتراگونال هایی است که می توانند رئوس خود را به اشتراک گذاشته و البته این مواد نظم دور بعد ندارند.
دراین مقاله ما تنها درمورد شیشه های سرامیکی بحث می کنیم اما باید بدانیم که علاوه بر شیشه های سرامیکی، شیشه های فلزی و پلیمری نیز وجود دارد. شیشه های فلزی ترکیبات پیچیده ای هستند که در آنها عمل کریستالیزاسیون انجام نشده است. این مسئله بوسیله ی سریع سرد کردن فلز مذاب بوجود می آید.(این فرآیند اسپلات کوئنچینگ نامیده می شود). درادامه به بیان ویژگی شیشه ها می پردازیم:

ساختار

شیشه ها در اصل جامد های غیر کریستالی (یا آمورفی) هستند که در اغلب موارد از فریز شدن یک مایع فوق سرد شده بدست می آیند. دراین موارد نظم دور برد در آرایش اتمی وجود ندارد. البته نظم کوتاه برد (زیر 1nm) وجود دارد. این مواد دارای آرایش منظمی از سلولهای واحد نیستند.همانگونه که گفتیم شواهدی وجود دارد که ثابت می کند در شیشه ها نظم کوتاه برد وجود دارد.این نظم کوتاه برد به دلیل آرایش اتمی درمجاورت هر اتم (البته در فاصله ی کوتاه) بدست می آید. تلاش های فراوانی برای توصیف شیشه ها انجام شده است. که به بیان علت تشکیل شدن یا نشدن شیشه ها بحث می کند. دراین زمینه ما ازدو دیدگاه به شیشه ها نگاه می کنیم:
1) توجه به ساختار
2) توجه به مباحث کنیتیکی کریستالیزاسیون
درمورد اول ما به بیان هندسه ی اجزای تشکیل دهنده ی شیشه ها می پردازیم. همچنین دراین زمینه به بیان پیوندهای بین اتمی واستحکام پیوندها می پردازیم . درمورد دوم ما به بیان چگونگی دگرگونی های مایع به جامد در طی فرآیند سرد شدن می پردازیم.
دمای تبدیل شدن شیشه ای ( Tg )
درشکل 1 نموداری نشان داده شده است که در آن حجم ویژه به عنوان تابعی از دما رسم شده است.

شیشه ها (1)

این دیاگرام فرمی از دیاگرام استعاله ی دما – زمان (T.T.T) برای شیشه است. درهنگام سرد شدن مایع از دمای بالا دو پدید ه ممکن است در نقطه ی انجماد (Tm) اتفاق می افتد که عبارتند از :
1) اگر مایع کریستالیزه شود تغییرات حجم و سرعت سرد کردن گسسته است.
2) اگر کریستالیزاسیون اتفاق نیفتد، مایع به حالت فوق سرد شده تبدیل می شود و حجم در نزدیک دمای ذوب کاهش می یابد.
دردمای تبدیل شدن شیشه ای (Tg)، شیب نمودار کاهش می یابد و به شیب جامد کریستالی نزدیک می شود. این شکستگی بوجود آمده در نمودار سرد کردن نشان دهنده ی گذرگاه مایع فوق سرد شده به شیشه است. زیر دمای Tgساختار شیشه درحالت آسایش نیست زیرا این مواد اکنون جامد هستند. دراین ناحیه از Tg ویسکوزیته تقریبا شیشه ها (1) است. ضریب انبساط حالت شیشه ای معمولا نزدیک به ضریب انبساط جامد کریستالی است. اگر از سرعت های سرد کردن پایین تر استفاده شود، میزان آسایش ساختار افزایش می یابد. ومایع فوق سرد شده در دمای پایین تر تشکیل می شود. و شیشه ی حاصله ممکن است دانسیته ی بالاتری بدست آورند. (همانگونه که در شکل 1 دیده می شود)
فیزیک شیشه جنبه ی تردی آن را مورد بررسی قرار می دهد. در واقع این ویژگی یک ویژگی مایعات شیشه ساز در بالای دمای Tgاست واندزه ای از استعکام پیوندهای بین اتمی است. در ادامه ما درمورد شیشه ی نامحلول در آب یا بطری های شیشه ای آب صحبت می کنیم. البته چیزی که آگاهی کمتری از آن است این است که ما می توانیم آب را با سریع سرد کردن در اتاق مایع به حالت شیشه ای در آوریم. ماده ی حاصله یک شیشه ترد است اما این مسئله فهمیده شده است که بیشتر آب موجود در جهان به همین شکل وجود دارد.
تاریخچه
شیشه ماده ای است که پیوندی عمیق با تاریخچه ی انسان دارد. یکی از شواهد این مسئله استفاده از ابسیدیان (obsidian) یک شیشه ی طبیعی توسط بشر است. هیچ کس نمی داند که اولین جسم شیشه ای در چه زمانی ساخته شده است. قدیمی ترین یافته ها به 7000 سال پیش از میلاد برمی گردد. (البته ممکن است یافته هایی پیش از این تاریخ نیز وجود داشته باشد). درکاوش های باستان شناسی در بین النهرین روش های تولید شیشه کشف شده است . این کارها 4500 سال پیش از میلاد مسیح بوده است ومربوط به روش های تولید وسایل شیشه ای بوده است نه لعاب های مورد استفاده در وسایل سفالی. استفاده از شیشه در لعاب کاری سفال حتی به دوران های پیشین می رسد.

شیشه ها (1)

تقریبا در 3000 سال پیش از میلاد مسیح شیشه گران مصری شروع به تولید جواهر آلات شیشه ای و ظروف شیشه ای کوچک کردند. شیشه هم به عنوان یک جسم دکوری وهم به عنوان یک وسیله ی مورد استفاده در زندگی روزمره به شمار می آمد. قطعاتی از جواهر آلات شیشه ای در کاوش های اطراف کوه های مصر پیدا شده است. مثالی از این جواهرآلات شیشه ی فیزوزه ای آبی است که در شکل 2 دیده می شود. تقر یبا 1500 سال پیش از میلاد مسیح شیشه گران مصری ( در دوره ی touthmosis سوم ) روشی برای تولید قطعات تو خالی قابل استفاده، توسعه دادند. یک مثال قابل توجه از این نوع ساختار یک شیشه ی توخالی است که شبیه به سرماهی است (شکل 3) این ظرف بین سال های 1352 و 1336 قبل از میلاد ساخته شده است واین نظریه وجود دارد که برای نگه داری روغن خوش بو استفاده می شده است.

شیشه ها (1)

الگوی موجی این ظرف بسیار خاص است. در واقع این ظرف بوسیله ی کشیده شدن یک جسم تیز به شیشه ی خمیری شده تولید شده است.
نویسنده ی رومیPliny Fhe Elder (23-79 میلادی) اختراع شیشه را به صورت زیر توصیف می کند:
روزی یک کشتی که متعلق به چند تاجر نیتروم (Nitrum) بود در کنار ساحل لبنان کنونی توقف می کند. هنگام پخت غذا به دلیل نبود سنگ در ساحل، خدمه کشتی از کلوخ های نیترومی که در کشتی وجود داشته است. استفاده می کنند تا بتوانند دیگ غذا را در مکان مناسب استقرار دهند. پس از آنکه آتش روش شد، کلوخه ها با ماسه های ساحلی واکنش داده و تشکیل شیشه ی مذاب می دهد. این اولین منشع پدید آمدن شیشه است.
نیتروم (Nitrum) یک نوع سدیم کربنات (Soda) طبیعی است .این ماده یکی از اجزای مهم در شیشه های قدیمی و مدرن است. خاکستر گیاهان نیز یک منبع فقیر از سدیم برای شیشه گران فراهم می کند. گیاهان علف شوره (Saltwort) و رازیانه ی آبی (glass wort) از جمله گیاهانی هستند که برای مهیا شدن سدیم از آنها استفاده می شده است.
یکی از معمولی ترین روش ها برای شکل دهی شیشه روش دمش هوا است. اگر چه این تکنیک بیش از دوهزار سال پیش توسعه یافت، لوله های تولیدی به روش دمش در طی زمان تغییری نکرده است. توسعه ی عمده که دراین زمینه انجام شده است، روش دمش اتوماتیک است که برای تولید شیشه های بطری و حباب های لامپ استفاده می شود. دراین روش به قطعه ای شیشه در داخل قالب هوا دمیده می شود. و بدین شکل شیشه به شکل قالب در می آید. مهمترین مرحله ی رشد در تاریخ شیشه سازی مخصوصا درطی قرن بیستم مربوط به توسعه های اتفاق افتاده در زمینه ی تکنولوژی های تولید می باشد. این توسعه ها منجر به کاهش هزینه ی تولید محصولات شیشه ای می شود

در ادامه به بیان خواص شیشه ها می پردازیم:

ویسکوزیته ( η )

ویسکوزیته یک ویژگی کلیدی شیشه هاست.ما نیاز داریم تا درمورد ویسکوزیته ی شیشه در دماهای مختلف اطلاع داشته باشیم. و بتوانیم دمای مورد نیاز برا ی شکل دهی وآنیلینگ آن را تشخیص دهیم. ویسکوزیته یک ویژگی مکانیکی است. فرمول ویسکوزیتد به صورت زیر است:

شیشه ها (2)

دراین فرمول:
η : ویسکوزیته، F: نیروی مورد نیاز برای کشیدن یکی از صفحات موازی که در میان آنها مایع مورد نظر قرار دارد: ،d: فاصله ی صفحات، A: مساحت صفحات، V: سرعت حرکت صفحه. ویسکوزیته در واقع پاسخ یک مایع دربرابر تنش برشی است. مایعات دارای ویسکوزیته ای هستند که با واحد سانتی پوآز (CP) اندازه گیری می شود. واحد اندازه گیری ویسکوزیته ی گازها میکروپوآز(mp) است.

شیشه ها (2)

جدول 1 لیستی از اعداد ویسکوزیته ای است که برای فرآیندهای شیشه سازی مهم هستند. اعداد داده شده در جدول 2 نیز برای تعریف ویژگی های برجسته ی شیشه (با تأکید بر روی فرآیند) آورده شده است. بسیاری از اعداد آورده شده درجدول ویسکوزیته ها استاندارد هستند مثلا (2003) ASTMC338-93 یک روش تست استاندارد است که نقطه نرم شدگی شیشه بوسیله ی آن تعیین می شود.
محاسبه ی نقطه ی نرم شدگی شیشه بوسیله ی اندازه گیری دمایی که در آن یک فیبر شیشه ای استوانه ای با قطر شیشه ها (2) طول بوسیله ی وزن خودش تغییر طول می دهد. نرخ تغییر طول یک میلی متر بردقیقه است . در این روش 100 میلی متر از بخش بالایی فیبر بوسیله ی کوره ی خاصی با سرعت گرم شدنشیشه ها (2) گرم می شود.

شیشه ها (2)

ویسکوزیته ی برخی ازمایعات عمومی در جدول 2 آورده شده است. توجه کنید که در دمای کارپذیری شیشه ویسکوزیته ای شبیه به عسل در دمای اتاق دارد. به طور نمونه برای یک شیشه ی سیلیکاتی سودالایم این ویسکوزیته در دمایشیشه ها (2) بدست می آید. این جدول همچنین نشان می دهد که یک جامد دارای ویسکوزیته ای بیش ازشیشه ها (2) دسی پو آز است. ویسکوزیته ی به طور نمایی با تغییر دما ، تغییر می کند ( همانگونه که در شکل 1 برای انواع شیشه ی سیلیکاتی دیده می شود.) دمای فیکتیو (fictive temperature) دمایی است که در آن ساختار مایع به حالت شیشه ای تبدیل می شود. این دما بوسیله ی تقاطع منحنی های برونیابی شده در حالت دما بالا و دما پایین در نمودار ویسکوزیته – دما بدست می آید. دمای فیکتیو (Tf) مانند Tg به تبدیلات ساختاری شیشه بستگی دارد. البته Tg اندکی کمتر از Tf است.

شیشه ها (2)

شکل 2 وابستگی ویسکوزیته به دما را برای اکسیدهای شیشه ساز نشان می دهد. شما باید توجه کنید که بوسیله ی شیب این خطوط می توان انرژی اکتیواسیون جریان ویسکوز (EV) را بدست آوریم.

شیشه ها (2)

جدول 3 اعداد ویسکوزیته وسرعت های کریستالیزاسیون (v) برخی شیشه ها را نشان می دهد. سرعت کریستالیزاسیون مربوط می شود به سرعت تبادل مایع/جامد. V بسیار کم بیان کننده ی قابلیت شیشه سازی استثنایی ماده است.البته کریستالیزاسیون مذاب جامد شده ی سیلیس بسیار مشکل است.

شیشه ها (2)

روش های متعددی برای اندازه گیری ویسکوزیته وجود دارد. این روش ها با توجه به میزان ویسکوزیته انتخاب می شود.

شیشه ها (2)

شماتیک دو روش اول اندازه گیری ویسکوزیته در شکل 3 نشان داده شده است:

شیشه ها (2)

شیشه ( خلاصه ای از خواص )
 

شیشه ماده ای خنثی است. این مسئله به محیط بستگی دارد. اگر شیشه یک ماده ی سیلیکاتی باشد، این مسئله درست است . البته همه ی شیشه ها خنثی نیستند. مثلا بیوگلاس (bioglass)
شیشه یک ماده ی هموژن است. این مسئله نیز به نحوه ی شکل دهی و ترکیب شیمیایی شیشه بستگی دارد. ما می توانیم با استفاده از فرآیندهای خاص شیشه را به صورت غیر هموژن در آوریم.
شیشه می تواند تغییر شکل دهد. این مسئله عموماً درست می باشد و دلیلی است برای قابلیت بازیافت شیشه ها. برخی از شیشه ها به نحوه ای ساخته می شوند که بوسیله ی نور، انتشار نور در داخل آن وتابش نور و...تغییر ماهیت می دهد.
شیشه دارای ضریب انبساط کوچک است. البته همه ی شیشه ها مناسب استفاده شدن در کاربردهای حرارتی مانند ظروف پیرکس نیستند.
شیشه ها شفاف اند (trans Parent) این خاصیت برای الیاف نوری ضروری است. البته ما می توانیم با انجام عملیات های خاص شیشه به صورت اپک یا مات در آوریم.
بسیاری از شیشه های اولیه شفافیت کامل نداشتند زیرا در ساختار آنها ناخالصی وحباب هوا وجود داشت.
شیشه ارزان است. البته این مسئله برای شیشه های پنجره صحیح است. اما درمورد فیلم های نازک شیشه ای این مسئله صحیح نمی باشد. برخی از شیشه های قرمز رنگ بوسیله ی دپینگ (doping) طلا در آنها تولید می شود. که قیمت برخی از ظروف تولیدی از آن به پیش از 50 دلار می رسد.
شیشه یک ماده ی بالک است مگر در حالتی که آن را به صورت یک فیلم نازک ، یک فیلم انیتر گرانولار (IGF) یا یک سرامیک کریستالی رشد دهیم.

برخی از خواص مکانیکی شیشه

استحکام تئوریک شیشه ی سیلیکاتی درحدود 10GPa است. البته با حضور عیوب سطحی (ترک ها وجوانه ها ) این استحکام کاهش می یابد. شیشه ها موادی الاستیک هستند اما تحت کشش می شکنند. می توان استحکام این مواد را بوسیله ی ایجاد لایه های سطحی فشرده و یا بوسیله ی از بین بردن ترک های سطحی (با اسید شوئی یا پدید آوردن پوشش محافظ) افزایش داد. مثالی از این روش ها پدید آوردن ترک های اضافی در ساختار قطعات شیشه ای تزئینی به منظور بهبود خواص مکانیکی آنهاست. در این روش از سرد کردن شیشه ی مذاب در آب جهت ایجاد تنش های اضافه بهره برده می شود . در این حالت سطح قطعه ی شیشه ای مذاب زودتر از مرکز آن سرد می شود و بنابراین تنش های اضافی پدید می آید. قطعات جامد شده به این شیوه را می توان با چکش و بدون اینکه بشکنند چکش کاری کرد.

برخی از ویژگی های الکتریکی شیشه

شیشه معمولا دارای مقاومت الکتریکی بالایی است. که علت آن تفاوت زیاد میان باندهای انرژی (گپ بزرگ) در این ماده است. در مواردی که شیشه رساناست . بار بوسیله ی یون ها منتقل می شود.(در این مورد یون های قلیایی مانندشیشه ها (2) دارای سرعت انتقال بار بالایی هستند). در واقع به همین دلیل است که با افزایش دما رسانایی به شدت افزایش می یابد. رسانایی درشیشه های مختلف، متفاوت است.علت آن متفاوت بودن نوع شبکه ی این شیشه هاست. در شیشه هایی که دارای بیش از یک یون قلیایی هستند. پدیده ی جالبی رخ می دهد. رسانایی تولیدی در این نوع شیشه ها به طور مشخصی از شیشه های دارای یک یون کمتر است. این نوع شیشه ها در کاربردهای مختلف مانند لامپ های با توان بالا استفاده می شوند. ثابت دی الکتریک شیشه واقعاً بالاست اما نه به حدی که بتوان از آن در کاربردهای حافظه ای پیشرفته مانند حافظه ی با دستیابی دینامیک و رندوم (DRAMS) استفاده کرد. ظرفیت الکتریکی یک ماده میزان بار ذخیره شده در داخل ماده است. این خاصیت به ضخامت دی الکتریک بستگی دارد. همانطور که ضخامت دی الکتریک کمتر می شود، ظرفیت الکتریکی افزایش می یابد. اما کم کردن ضخامت نیز مشکلاتی به همراه دارد. مثلا با کاهش ضخامت احتمال شکست دی الکتریک بیشتر می شود. شیشه ی سیلیسی دارای مقاومت دی الکتریک بالاتری نسبت به سایر شیشه هاست. اما مقاومت این دی الکتریک نیز در حد دی الکتریک های پلیمری مانند رزین فنولیک نیست.

برخی از خواص اپتیکی شیشه

شفافیت دربرابر نور فرا بنفش ، مرئی و فرو سرخ به چندین فاکتور بستگی دارد. یکی از این فاکتورها طول موج تفرق است که بوسیله ی ناخالصی ها تغییر می کند. لبه ی فرو سرخ (IRedge) و لبه ی فرا بنفش ((uv edge اعدادی هستند که نشان دهنده ی فرکانس قطع شدن عبور این موج ها هستند. یک مانع لبه UV edge blocker)UV) از عبور UV جلوگیری می کند و این در حالی است که یک عبور دهنده ی لبه یUV (UV edge tran Smitter) اجازه ی عبور نور UV را می دهد.

عیوب در شیشه ها

اگر چه شیشه یک ماده ی آمورف است ولی مانند مواد کریستالی دارای عیوب و رسوبات است. و همچنین دچار جدایش فاز می شود. شیشه را می توان برای حبس کردن عناصر رادیو اکتیو استفاده کرد .در این عناصر مانند عیوب نقطه ای یا فاز ثانویه تشکیل می شوند. همچنین سرعت نفوذ این عناصر از میان شیشه بر روی میزان آن ها در شیشه تأثیر دارند. این مسئله استفاده می شود تا بتوان مواد رادیو اکتیو یا سایر مواد را کنترل کرد.

شیشه ی غیر هموژن

به دلیل آنکه شیشه یک مایع فوق سرد شده است. نمی توان گفت که این ماده حتما باید هموژن باشد. شیشه های خاص می توانند بدون نیاز به فرآیند کریستالیزاسیون به دو فاز تبدیل شوند. هنگامی که این دو فاز شیشه ای باشند این مسأله باعث می شود که سدی در برابر جدایش فازی پدید نیاید. در مورد فرآیند جدایش فازی مایع – مایع ممکن است مرحله ای برای جوانه زنی وجود داشته باشد. البته در این نوع تبدیلات ممکن است استعاله ی اسپینودال (Spinodal) نیز رخ می دهد. که هر دوی این استعاله ها به نفوذ وابسته اند.
قوانین امتزاج ناپذیری در شیشه ها بسیار مهم است. این مسئله مخصوصاً در شیشه های تولید شده با تکنولوژی روز نمود دارد. برای مثال امتزاج ناپذیری در شکل دهی شیشه – سرامیک ها ، تولید شیشه ی وایکور (Vycor) و شیشه های اپتیکی و تشکیل رسوب در شیشه ها مهم می باشد. بسیاری از اکسیدهای دوتایی و سه تایی در کنار سیلیس از خود مشکلات امتزاج پذیری نشان می دهند.
در دیاگرام فازی ناحیه ای وجود دارد که یک مایع به دو مایع با ترکیب شیمیایی متفاوت تبدیل می شود. این ناحیه گپ امتزاج پذیری (imisciblity gap) نامیده می شود. در زیر برخی از سیستم هایی که مشکل امتزاج پذیری دارند را نام برده ایم:

شیشه ها (2)

شیشه ها (2)

شکل 4 دیاگرام فازیشیشه ها (2) را نشان می دهد. در دمای پایین و در گوشه ی غنی از سیلیس دیاگرام ، فاز مایع به دو بخش مایع با ترکیب شیمیایی متفاوت تبدیل می شود. این دو مایع به صورت دو شکل گنبد مانند در شکل نشان داده شده اند. خط تیره نشان دهنده ی خط تقریبی ناحیه ی امتزاج ناپذیری است. مشکلی که در اندازه گیری این خط وجود دارد. این است که این پدیده در دمای پایین رخ می دهد و از این رو سرعت آن پایین است . و از این رو اندازه گیری آن مشکل است. دراین وضعیت میل جدایش فازی بیشتر از میل به کریستالیزاسیون است . البته کریستالیزاسیون مساعد تر از جدایش فازی است اما به دلیل آنکه جدایش فازی نیازی به باز آرایی اتم ها ندارد، این پدیده رخ می دهد. به عنوان یک قانون کلی برای سیلیس باید گفت که امتزاج ناپذیری با افزودنشیشه ها (2) افزایش می یابد اما با افزودنشیشه ها (2) کم می شود. در شیشه های وایکور از قوانین جدایش فازی استفاده می شود. در فرآیند تولید شیشه وایکور، شیشه ای پدید می آید که دارایشیشه ها (2) و 4 درصد تخلخل است.این نوع شیشه به عنوان فیلتر وبیومواد مخصوصا در جاهایی که تخلخل مهم می باشد، استفاده می شود. در فرآیند تولید وایکور، شیشه ای تولید می شود که پس از فرآیند شکل دهی دنس می گردد و شیشه ای با سیلیس خالص پدید می آید که در دمای پایین تر نسبت به کوارتز خالص شکل دهی گشته است

شیشه ی آلومینیوم – ایتریمی

شیشه های آلومینیوم –ایتریایی (YA) دارای درصد آلومینایی در گسترده ی تقریبی 75.6- 59.8 هستند. با این درصد آلومینایک شیشه ی دو فازی تشکیل می شود که در آن یک فاز قطره مانند در فاز دیگر تشکیل شده است. این شیشه به طور خود بخودی به صورت شیشه ی آلومینیوم – ایتریمی یا مخلوطی ازشیشه ها (3) تبدیل می شود. درشیشه های YA پدیده ای به نام پلی مورفیزم (Polymorphism) رخ می دهد

شیشه ی رنگی

اگر چه در بیشتر کاربردهای شیشه نیاز است تا این ماده بی رنگ باشد اما در برخی از کاربردها نیاز است شیشه رنگی باشد. هنگامی که پنجره های یک کلیسا رنگی باشد، تأثیر پذیری ازمحیط بیشتر می شود . درشیشه ها معمولا بوسیله ی افزودن اکسیدهای انتقالی و یا اکسیدهای عناصر خاک های کمیاب (rave –eavth) به بچ ماده ی اولیه ی آنها، رنگی می شوند. جدول 1 لیستی از رنگ های تولیدی بوسیله ی مواد رنگی کننده ی شیشه هاست . زرد کم رنگ، نارنجی و رنگ های قرمز بوسیله ی فلزات گران بها درحالت کلوئیدی تولید می شود. طلا (Au) رنگ قرمز، یا قوتی تولید می کند. (البته این شیشه ها گران قیمت هستند). سولفید کادمیم (cds) محصولاتی با رنگ زرد تولید می کند. اما هنگامی که علاوه بر se ، cds نیز استفاده شود. محصولاتی با رنگ قرمز یا قوتی با شدت رنگ بالا تولید می شود.

شیشه ها (3)

شیشه بوسیله ی افزودن دوپانت ها (dopants) رنگرزی می شوند. در واقع با افزودن این دو پانت ها در شیشه عیوب نقطه ای پدید می آوریم. رنگ شیشه به نوع دو پانت و حالت اکسیداسیون آن بستگی دارد.
دو پانت ها می توانند اثر بی رنگ کننده (decdorizo) ، پوشش دهنده (mask) یا اصلاح کننده (modify) داشته باشند. ما می توانیم اثرات رنگی آهن را بوسیله ی افزایش cr خنثی کنیم؛ البته اگر درصدشیشه ها (3) زیاد باشد اضافی به صورتشیشه ها (3) خارج می شود. اگر این شیشه به روش دمیدن شکل دهی شود، این پلیت لت هایشیشه ها (3) منظم گشته و شیشه ای اپک به نام آونتورین کرومی (chromium aventurine) تولید می کنند. مس (cu) برای تولید شیشه ی آبی مصری (Egyptian Blue glass) استفاده می شود.
CO (کبالت ) دربرخی از شیشه های پالایش یافته ی تولید در قرن دوازدهم استفاده می شده است. البته Co در تولید لعاب های پرسلانی مورد استفاده در چین ( در دوره ی سلسله ی منیگ وتانگ) استفاده می شده است. کبالت مورد استفاده در این لعاب ها رنگ آبی کبالتی تولید می کند.
با افزودن Se به شیشه های دپ شده با Cds باعث پدید آمدن رنگ یاقوتی سلینومی (Selenium Ruby) می شود. جزئیات پدید آمده ازهر کدام از این رنگ ها به ترکیب شیمیایی و شرایط پخت شیشه بستگی دارد.
شرکت کورینگ (Cornig) میکرو بارکدهایی با شیشه دپ شده با خاکهای کم یاب تولید کرده است. خاکهای کم یاب دارای باندهای نشر کم پهنا هستند و از میان 13 عنصر خاکهای قلیایی که مورد آزمایش قرار گرفته ، تنها 4 عنصر (Tm,Ce,Tb و Dy) می توانند در برابر تابش UV برانگیخته شوند. و لذا می توان از آنها در شناسایی بوسیله ی UV استفاده کرد. این نوع بارکدها همچنین مشکلات تداخل با سایر بارکدها را نیز ندارد. از این بارکدها در کاربردهای بیولوژیکی استفاده می شود زیرا سمی نیستند.(البته بر چسب زنی با کوانتوم دات ها خطرات کمتری دارد) و می توان از آنها در کاربردهای ژنتیکی استفاده کرد. با استفاده از چند عنصر خاکی کمیاب می توان ترکیب رنگی بیشتر پدید آورد.
شیشه های رنگی خاص شامل موارد زیر می شود :

شیشه ی یاقوتی یا کرانبری ( Cranberry )
 

شیشه ی یاقوتی با افزودن Au به شیشه سربی با حضور Sn پدید می آید. شیشه ی کرانبری که اولین بار در سال 1685 گزارش شده است، یک نوع شیشه ی بی رنگ (معمولاً صورتی کم رنگ ) است. علت پدید آمدن این رنگ در صد کم طلای موجود در آن است . راز تولید شیشه قرمز رنگ برای قرن ها ی زیادی گم شده بود و در قرن هفدهم دوباره کشف شد.

شیشه ی اورانیومی یا وازلینی

محصولات اورانیومی هنگامی که در شیشه ی با سرب بالا استفاده شود، رنگ قرمز تیره تولید می کند. البته شیشه های اورانیومی دیگری نیز وجود دارد که با صطلاح به آنها شیشه های وازلینی (Vaseline glass) می گویند. این نوع شیشه ها دارای رنگ سبز هستند. مسأله ای که این نوع شیشه ها را خاص کرده است این است که این نوع شیشه ها هنگام تابش اشعه ی UV به آنها ، خاصیت فلئورسانس پیدا می کنند. از سال 1940 تنها اورانیوم تهی شده (uranium depleted) به عنوان دو پانت استفاده می شود. علت استفاده از این نوع دو پانت، فراوانی آن است. اما از 100 سال گذشته به بعد اورانیوم طبیعی (natural uranium) استفاده می شود.

شیشه ها (3)

شکل 1 مثالی از یک شیشه ی وازلینی است.

لیزر شیشه ای

عناصر خاکهای کم یاب (rave – earth elements) مانند Nd در تولید شیشه های لیزر و سایر وسایل اپتیکی کاربرد دارند. (شکل 2) . لیزر شیشه ای دپ شده با Nd (Nd-doped glass laser) مانند یک لیزر یاقوتی (ruby laser) کار می کند . اگر چه نوع شیشه ای دارای تفاوت هایی است . میله ی لیزر قطری بینشیشه ها (1) اینچ دارد و معمولا بوسیله ی یک لامپ حلزونی تخلیه می شود. علت استفاده از لامپ های حلزونی این است که طول غیر بار دار این نوع لامپ ها از لامپ های خطی طولانی تر است. لیزر شیشه ای دپ شده با Nd دارای بازدهی بیش از 2% است. این بازده 4 برابر بازده یک لیزر یاقوتی است. به دلیل آنکه رسانایی گرمایی شیشه پایین است بنابراین نیاز به زمان بیشتری برای خنک سازی است.

شیشه ها (3)

رسوبات در شیشه

وجود رسوبات در شیشه عموما اجتناب ناپذیر است. سوال این است که چه زمانی طول می کشد تا رسوبات تشکیل شود. (مخصوصا اگر جوانه زنی هموژن باشد). ما ممکن است عوامل هسته زا برای تسریع جوانه زنی به شیشه اضافه کنیم. جوانه زنی کریستال ها در شیشه از تئوری کلاسیک پیروی می کند. رسوبات تشکیل شده در شیشه می تواند موجب رنگی شدن شیشه شود.

شیشه به عنوان لعاب

لعاب ها مانند شیشه ها در همه جا دیده می شوند. لعاب کاری (glazing) استفاده از ویژگی های ویسکوز شیشه و تشکیل یک لایه ی یک پارچه و صاف بر روی یک زیر لایه ی سرامیکی است.
مینا کاری (enameling) تشکیل همان لایه بر روی یک زیر لایه ی فلزی است. چیزی که باید به آن توجه کرد این است که عموما لعاب ها قدمت زیادتری دارند. در ادامه به بیان برخی از اصطلاحات لعاب می پردازیم:

زیر لعاب ( underglaze )

هنگامی که یک بیسکوییت سرامیکی را می خواهیم مورد عملیات دکور قرار دهیم باید قبل از آن یک لعاب کاری بر روی آن انجام دهیم که این نوع لعاب را زیر لعاب گویند. این لایه به علت تشکیل بهتر دکور بر روی بدنه اعمال می شود. پس از آن که فرآیند دکوراسیون جسم سرامیکی انجام شود برروی آن یک لعاب دیگر اعمال می شود. البته این لعاب پیش از پخت دکور اعمال می شود.
عیب کراولینگ لعاب ( glaze craweling ) این عیب که در لعاب اتفاق می افتد بدین صورت است که لعاب از لایه ی سرامیکی زیرین جدا می گردد. این پدیده به دلیل عدم ترشوندگی بیسکوییت سرامیکی بالعاب در طی فرآیند پخت اتفاق می افتد.
لعاب ترک خورده ( crackle glaze )اگر انبساط گرماییشیشه ها (3) لعاب از سرامیک بستر بزرگ تر باشد، لعاب ممکن است در طی فرآیند سرد کردن (در طی پخت) بشکند. هنگامی که غلظت یون سدیم و پتاسیم در لعاب بیشتر باشد، ترک ها بیشتر پدید می آیند. هنگامی که سرعت سرد کردن بالا رود ترک های حاصل ریزتر می شوند.
لعابهای سلادون (celadon )، تنموکو (tenmoku)، راکو (raku) و کوپر ( copper) لعاب های ویژه ای هستند که در دنیای هنر سرامیک یافت می شوند.
لعاب های سلادوناین لعاب ها اولین بار در حدود 3500 سال پیش تولید شده اند. این لعاب ها دارای گستره ی رنگی از آبی کم رنگ تا سبز مایل به زرد هستند و می توانند رنگی کاملا تیره پدید آورند. رنگ تولیدی در این لعاب ها بوسیله ی آهن تولید می شود(3.o - o.5 در صدشیشه ها (3) به لعاب افزوده می شود). ظروف لعاب خورده توسط این نوع لعاب سپس در دمای تقریباًشیشه ها (3) پخت می گردند. ظروف تولید شده با این لعاب ها زیبایی خاصی داشته و در کاربردهای تزئینی استفاده می شوند. مثلا کوزه ی لعاب خورده با این لعاب که درکشور کره تولید شده است، درسال 1946 از سوی کشور کره به هاری ترومن رئیس جمهور آمریکا هدیه شد. امروزه این ظرف که 23cm ارتفاع دارد قیمتی برابر با 3 میلیون دلار دارد.
لعاب تنموکواین نوع لعاب در زمان سلسله ی سونگ (sung Dynasty) بوجود آمده است. و دارای رنگ قهوه ای تیره یا حتی سیاه است. برای ایجاد این رنگ میزان 8-5 درصد وزنیشیشه ها (3) به لعاب افزوده می شود. تشکیل مناسب این نوع لعاب به شرایط اکسایش – کاهش اتمسفر پخت بستگی دارد. و در شرایط مختلف اکسایش و کاهش رنگ های متنوعی پدید می آید. در لعاب های کوپرنیز از کربنات مس به عنوان منبع Cuاستفاده می شود. البته در طی فرآیند پختشیشه ها (3) تجزیه گشته و Cuoباقی می ماند. Cuo تولید نیز با مونواکسیدکربن (CO) موجود در کوره واکنش داده تا ذرات مس در لعاب تشکیل شوند. این ذرات رنگ قرمز به لعاب می دهند.
لعاب های راکولعاب های راکو اغلباً لعاب هایی فلزی به نظر می رسند. (اگر بوسیله ی یک لایه از فلز Ti پوشش داده شده باشند)
یک روش پیشرفته در تولید لعاب های راکو بدین صورت است که ظروف سرامیکی به شیوه ی معمولی پخت می شوند سپس آنها را در داخل یک محیط کاهنده مانند خاک اره وارد می کنند و سپس آنها را قبل از آنکه بتوانند اکسید شوند، به سرعت سرد می کنند. این نوع لعاب ها اغلبا حالت استثنا داشته و می توانند با زمان تغییر کنند. این مسئله ساده است. زیرا آنها در طی فرآیندهای بعدی تولید اکسید می شوند. این نوع لعاب بر خلاف سایر لعاب ها خنثی نبوده و تنها برای دکوراسیون استفاده می شوند.
لعاب های کریستالی ( crystalline glaze )این نوع لعاب ها ، لعاب هایی دکوراسیونی هستند اما به طور مستقیم با تکنولوژی تشکیل شیشه – سرامیک در ارتباطند. کریستال ها بوسیله ی سرد کردن آهسته لعاب ایجاد می شوند. این سرد کردن آهسته به کریستال های لعاب اجازه ی رشد کردن می دهند. رشد این کریستال ها مد نظر است؛ زیرا لعاب ضخامت کمی داشته و از این رو کریستال ها باید به صورت پلیت لت (platelets) در آیند. برای آنکه عمل رشد کریستال ها بهتر انجام شود از جوانه زاهای تیتانیایی استفاده می شود. این نوع جوانه زاها در لعاب های باویسکوزیته ی پایین استفاده می شوند و در آنهاشیشه ها (3) تشکیل می شود. ترکیب شیمیایی این نوع لعاب ها بسیار مهم است. در آن شیشه ها (3) وشیشه ها (3) به میزان کم و Pbo به میزان 10-8 درصد وزنی استفاده می شود. رشد کریستال با اضافه شدن fe به لعاب افزایش می یابد. اما این اضافه شدن می تواند همچنین موجب پدید آمدن اثراتی بر سایر دو پانت های اضافه شده به لعاب شود.
سفالگران امروزی ازشیشه ها (3) به عنوان اصلاح کننده و تولید کننده ی کریستال های ویلمایت (Crystals Willemite) استفاده می کنند. (ویلمایت یک مینرال کمیاب از روی است). این تکنیک نیازمند مهارت ویژه است. زیرا افزودن مقادیر زیادشیشه ها (3) به لعاب باعث می شود ویسکوزیته ی آن حتی در دماهای پایین نیز کم باشد، بنابراین این مسئله باعث می شود که لعاب از روی سطح سفالی جریان پیدا کند. رشد اسفرولیتی (Spherulite growth) از جوانه زا در لعاب در شکل 3 نشان داده شده است. هر اسفرولیت در واقع توده ای از کریستال های شعاعی است که با توجه به مرکز اسفرولیت دورهم گرد آمده اند.

شیشه ها (1)

لعاب های اپک ( opaque glazes ) اگر به لعاب مذاب کریستال هایی افزوده شود، لعاب می تواند اپک شود. برای این کار می توان ازO_2 S_n یا زیر کن استفاده کرد. که زیر کن ارزان تر است .شیشه ها (3) برای تولید رنگ سفید در لعاب های زیرکنی (Zircon glaze) استفاده می شود. برای اپک کردن کمتر ازشیشه ها (3) استفاده می شود زیرا کریستال های روتایل طلایی رنگ هستند. و بنابراین لعاب را به رنگ زرد در می آورند. ما همچنین می توانیم با تشکیل کریستال لعاب را اپک کنیم (مثلا ولاستونیت:شیشه ها (3). این کار بوسیله ی عملیات حرارتی مناسب، حبس کردن گاز (هوا یاشیشه ها (3) ) ) و یا بوسیله ی جدایش فازی مایع – مایع انجام می شود. لعاب های مات (Matt glazes) بوسیله ی تشکیل کریستال های بسیار کوچک در لعاب بوجود می آیند (مثلا کریستال های ولاستونیت برای لعاب های مات – آهکی و وبلیمایت (شیشه ها (3):Willemite ) برای لعاب های مات – زینک). کریستال های ریز ولاستونیت بوسیله ی افزودن کلسیت به لعاب پایه سیلیس تشکیل می شود. یک روش دیگر برای این کار افزودن مقادیر زیادی از ماده ی کریستالی به لعاب است تا در طی فرآیند پخت درصدی از آن به صورت کریستالی باقی بماند

رنگ در لعاب و لعاب موضوعاتی هستند که امروزه تحقیقات فراوانی بر روی آنها به عمل آورده شده است. امروزه رنگ های جدیدی بوسیله ی افزودن نانو ذرات در لعاب پدید می آید. عموما نانو ذرات نقره و طلا رنگ طلایی بوجود می آورند. و نانو ذرات مس رنگ قرمز بوجود می آورند. توضیح در مورد نحوه ی پدید آمدن رنگ در لعاب واقعاً پیچیده تر از نحوه ی پدید آمدن رنگ در شیشه هاست. زیرا لعاب بر روی یک لایه اعمال می شود و از این سو نباید ترانسپارنت باشد. همچنین لعاب یک لایه ی نازک است و در اتمسفر مختلف (کاهنده – اکسید کننده) بوجود می آید از این دو بررسی عوامل موثر بر تشکیل یک لعاب مشکل است.

لعاب های رنگی ( Colored glazes )

در لعاب های رنگی باید از پیگمنت های سرامیکی با پایداری مناسب بهره برد. از اکسیدهای رنگ زای ارزان قیمت می توان برای ایجاد رنگ در محصولات متنوع سفالی بهره برد. البته بسیاری از مواد رنگ زا برای لعاب همانهایی هستند که ما برای رنگرزی شیشه از آنها استفاده می کنیم
اکسید کبالت شیشه ها (4) یک اکسید سیاه رنگ است اما کمتر از یک درصد وزنی از آن در لعاب ایجاد رنگ آبی تیره می کند (اگر چه در بیشتر موارد از کربنات کبالت استفاده می شود).
به دلیل آنکه شیشه ها (4) در این گونه لعاب ها بوجود می آید، ویسکوزیته ی لعاب تغییر می کند.
اکسید کروم که تا 3-2% وزنی نیز می تواند به لعاب افزوده شود به جای رنگ سبز، رنگهای زرد، صورتی یا قهوه ای بوجود می آورد (رنگ قرمز در حضور سرب در ترکیب لعاب اولیه پدید می آید. اگر Zn در لعاب اولیه وجود داشته باشد، رنگ لعاب قهوه ای می شود مگر آنکه سرب ها هم وجود داشته باشد. که در صورت وجود سرب و روی در لعاب اولیه رنگ زرد پدید می آید).
شیشه ها (4)که به صورت کربنات به لعاب افزوده می شود، رنگ لعاب را به صورت قهوه ای در آورده البته این ماده می تواند رنگ قرمز، بنفش و حتی سیاه نیز تولید کند. که این تغییر رنگ به درصد سدیم موجود در لعاب اولیه بستگی دارد. افزودن Cuo به اندازه ی %2-1 وزنی به یک لعاب با سدیم بسیار کم سبب پدید آمدن رنگ فیروزه ای می شود. این درحالی است که افزودن بیش از 3% از این رنگ زا باعث پدید آمدن رنگ سبز یا آبی می شود. اگر درصد Cuo در لعاب افزایش یابد، لعاب ظاهری فلزی مانند مفرغ به خود می گیرد. اگر لعاب دارای 0.3– 2 درصد وزنی Cuo در اتمسفر کاهنده پخت شود، رنگ قرمز مسی پدید می آید. این رنگ به دلیل حضور ذرات کلوئیدی CU درلعاب بوجود می آید.
اگر یک لعاب رنگ زرد داشته باشد، این رنگ ممکن است بوسیله ی افزودن Cds یا Cdse بوجود آمده باشد. البته این نوع افزودنی های رنگ زا ممکن است رنگ های قرمز یا نارنجی را نیز پدید آورند. درصورت حضور سرب در این نوع لعاب ها ، Pds تشکیل می شود که باعث سیاه شدن لعاب می شود. زیرکن در صنعت برای کمک کردن به پایدار شدن این نوع رنگ ها (برپایه ی cd) استفاده می شود. درحقیقت شیشه ها (4) (زیر کن وانادیومی آبی رنگ) و شیشه ها (4)(pr,zr) (زیر کن پراسئودیومی زرد رنگ) مهم ترین تثبیت کننده های مورد استفاده در این رنگ هاست. هنگامی که اورانیوم به لعاب اضافه شود، به جای پدید آوردن رنگ زرد کم رنگ، رنگ قهوه ای تیره پدید می آید. (اورانیوم در شیشه های وازلینی تولید رنگ زرد کم رنگ می کند). البته بسته به ترکیب لعاب ، اورانیوم می تواند رنگ های قرمز یا نارنجی روشن نیز بدهد.

لعاب نمکی ( saltglaze )

دراین نوع فرآیند لعاب کاری سفال در کوره های با دمای بالا با نمک واکنش می دهد. در واقع سفالگر نمک را بر روی سفال اعمال می کند. این فرآیند هنگامی اتفاق می افتد که سفال در داخل کوره است. این فن بوسیله ی سفالگران ایرانی وانگلیسی در دهه ی 1700 ابداع گشته است. همچنین شما می توانید مثال های فراوانی از فرآیند رنگ آمیزی بوسیله ی اکسیدهای فلزی را در آلمان ببنید. در این نوع لعاب ها نمک با رس واکنش داده و تشکیل لایه ای شیشه ای بر روی سطح می دهد. این تکنیک دقیقاً فرآیند خوردگی خاک نسوز در دمای بالاست (بوسیله ی سود سوز آور).
واژه ی مینا (enamel) معمولا در هنگامی استفاده می شود که یک لایه ی لعابی بر روی فلز اعمال می شود. البته این واژه در هنگامی که یک لایه لعابی بر روی لعاب اولیه اعمال می شود نیز استفاده می شود. بازار مصرف مینا بسیار بزرگ است. این بازار از لوازم بهداشتی تا جواهر آلات گسترده است.

خوردگی شیشه و لعاب

این تصور وجود دارد که شیشه خنثی است اما باید بدانید که اسید سیتریک و اسید استیک موجود در غذاها و میوه ها می توانند بایون های موجود در شیشه واکنش دهند و ترکیبات کمپلکس پدید آورند. با خروج یون های قلیایی از داخل شیشه یون های هیدروژن مثبت جایگزین آنها می شود. هنگامی که بخواهیم استحکام سطح شیشه را افزایش دهیم باید یون های پتاسیم و سدیم مثبت را با لیتیم مثبت ( شیشه ها (4) ) جایگزین کنیم. در شیشه ی آلایش یافته (Stain glass) می توان یون نقره ی مثبت و مس را جایگزین شیشه ها (4) کرد.
همانند مواد کریستالی ، شیشه ها نیز دارای عیوب کریستالی اند. یکی از چالش هایی که ما با آنها روبرو هستیم محاسبه ی خواص بوجود آمده ازعیوب (مانند نفوذ) در شیشه هاست. زیرا در شیشه ها شبکه ی مرجع وجود ندارد.

انواع شیشه های سرامیکی

همه ی شیشه ها براساس تتراهدرال های سیلیسی ایجاد نمی شوند؛ واحدهای ساختاری این شیشه ها در جدول 1 آورده شده است. برخی از ترکیبات این شیشه ها نیز در جدول 2 آورده شده است.

شیشه ها (4)

شیشه ها (4)

شیشه ی سیلیکاتی ( سودالایم )

این شیشه ها بر پایه ی شیشه ها (4) هستند. (معمولا این نوع شیشه ها علاوه بر این مواد دارای شیشه ها (4) نیز هستند.) این نوع شیشه نستبا ارزان هستند و دارای دوام خوبی نیز هستند همچنین از این نوع شیشه به طور فراوان در صنعت بسته بندی و ساختمان استفاده می شود. ضریب انبساط حرارتی شیشه ها (4) این نوع شیشه ها ناچیز نیست. همچنین این نوع از شیشه ها عایق های خوبی نیستند. استفاده های عمده از این نوع شیشه در صفحات شیشه ای ،بطری ها ، وسایل غذا خوری و صنعت الکترونیک (حباب لامپ) است. شیشه های آلومینو سیلیکاتی قلیایی (شیشه ها (4)= عنصر قلیایی) دارای ضریب انبساط حرارتی پایینی است. این نوع شیشه دارای دوام و خواص عایق کاری بهتری است. وهمچنین نسبت به سایر شیشه های هم گروه استحکام بالاتری دارد. استفاده های این نوع شیشه عبارتست از تیوپ های اختراق، حباب های لامپ هالوژن و به عنوان بسترهای صنعت الکترونیک کاربرد دارد.

شیشه ی سربی

ترکیب عمومی این شیشه ها سیلیکات های قلیایی سربی استشیشه ها (4). در این نوع شیشه ها Pbo به جای CaO در شیشه ی سودالایمی قرار گرفته است. این نوع شیشه دارای مقاومت بالایی است. همچنین ضریب انبساط حرارتی آن بالاست. و دمای نرم شوندگی پایینی دارد. دلیل آنکه از این نوع شیشه ها در تولید ظروف کریستال استفاده می شود این است که ضریب شکست این نوع شیشه بالاست و علاوه بر این که از این شیشه ها در ظروف تزئینی استفاده می شود، از آنها در ساخت تیوپ های لامپ، لامپ تصویر تلویزیون و تیوپ های ترمومترها استفاده می شود. در ظروف کریستال انگلیسی که به صورت سنتی تولید می شوند، میزان Pbo حداقل 30% است. برطبق رهنمود اتحادیه ی اروپا میزان Pbo باید بیش از 24 درصد باشد. همچنین بر طبق استاندارد اروپا شیشه های کریستال سربی باز یافت نمی شوند. شیشه های سربی که برای ساخت حفاظ های تابشی استفاده می شوند ممکن است دارای بیش از 65% Pbo باشند. کاربرد این گونه شیشه ها در لامپ تصویر تلویزیون است اگر چه شیشه های باریمی برای ساخت صفحه و تابلوهای تلویزیون استفاده می شود. (تفنگ الکترونی تلویزیون اشعه ی x ساتع می کند که این نوع شیشه باید این تابش ها را جذب کند.)شیشه های سرب – بوراتی می توانند به عنوان لحیم های شیشه ای استفاده شوند. این نوع شیشه ها دارای در صد کمیشیشه ها (4) است و کاملا خنثی است.
شیشه های فیلنیتی (flint glass) دارای تفرق بالایی است. در واقع این نوع شیشه ها از نوع شیشه های سیلیکاتی قلیایی ـ سربی است که از ذوب سنگ های فیلنیتی ساخته شده اند(فیلنیت فرم خالص سیلیس است) .لازم به توضیح است که این نوع سنگ کلسینه شده و به طور فراوان در ساخت بدنه های سرامیکی استفاده می شود.

شیشه ی بورانی ( شیشه ی بورو سیلیکاتی )

شیشه های بوروسیلیکاتی قلیاییشیشه ها (4) به خاطر ضریب انبساط حرارتیشیشه ها (4) کوچکشان ویژه هستند. این نوع شیشه دوام بالایی داشته و خواص الکتریکی مفیدی دارند. پیرکس (Pyrex) که یک نوع ماده در تولید وسایل پخت و پز است . از جنس بروسیلیکات است .شیشه ی بروسیلیکاتی به طور وسیع در فرآیندهای شیمیایی استفاده می شود. برخی از شیشه های براتی دارای دمای ذوب پایینیشیشه ها (4) هستند از این رو آنها را می توان به همراه سایر شیشه ها استفاده کرد. شیشه ی بروسیلیکاتی – زنیکی به شیشه های منفعل شهرت دارند. این شیشه ها مواد قلیایی ندارند و از این رو از آنها می توان در ساخت اجزای الکترونیکی سیلیسیمی استفاده کرد.

سیلیس فیوزد

این نوع شیشه از نوع سیلیس خالص است. این شیشه ها ، شیشه های سیلیکاتی برای کاربردهای دما بالا هستند. ضریب انبساط حرارتی این نوع شیشه ها نزدیک به صفر است. این نوع شیشه ها برای تولید آینه های تلسکوپ و زیر لایه ها (Substrates) استفاده می شود. به خاطر داشتن ضریب انبساط حرارتی نزدیک به صفر به این شیشه ها ، شیشه های با انبساط حرارتی بسیار پایین (VLE Silica) می گویند .
شیشه های VLE دارای 7 درصد وزنیشیشه ها (4) برای تولید لفافه های لیتوگرافی نوری (masks photolithography) استفاده می شود. البته به خاطر دمای بالای فرآیند شکل دهی این شیشه ها ؛ می توان به جای آنها از شیشه های وایکور استفاده کرد.

شیشه ی فسفاتی ( phosphate – glass )
 

شیشه های فسفاتی شیشه های مهمی هستند زیرا این نوع شیشه ها خاصیت نیمه رسانایی دارند. یکی از کاربرد این مواد در ساخت تقویت کننده های الکترون (electron multipliers) است . در این نوع وسایل با استفاده از دپ کردن Er (افزودنشیشه ها (4) ) ، این تقویت کننده ها ساخته می شود. کایتون های موجود در این نوع شیشه ها معمولا V و P هستند اما لابراتوار ملی او آ ک ریچ (Oak Ridge National labroatory) یک نوع شیشه ی فسفاتی اندیوم – سربی تولید کرده است که دارای ضریب شکست بالایی است. از ویژگی های دیگر این شیشه می توان به دمای ذوب پایین و خاصیت ترانسپارنتی در برابر گسترده ی وسیعی از طول موج ها را نام برد. به دلیل آنکه این نوع شیشه می تواند درصد بالایی از عناصر خاکهای کم یاب را در خود حل کنند، از آنها در تولید وسایل نوری اکتیو مانند آمپلی فایرهای فیبر اپتیک و لیزرها استفاده می شود. شیشه های فسفاتی دپ شده با Nd در لیزرهای حالت جامد استفاده می شوند. ترکیب شیمیایی نمونه وار از این نوع شیشه عبارتست ازشیشه ها (4) است. که در صد Nd بین O.2-2.O درصد مولی است.

شیشه ی چالکوژیندی ( Chalcogenide glass )

این نوع شیشه براساس Se,As و Te بوجود می آید. این شیشه ها نور فرو سرخ را از خود عبور می دهند و نیمه رسانا های غیر اکسیدی هستند. از این نوع شیشه در وسایل و لنزهای الکترونیکی ویژه استفاده می شود. در این وسایل هنگامی که ولتاژ اعمالی به آنها از میزان بحرانی فراتر رود، به طور ناگهانی تغییر رسانایی رخ می دهد. کاربرد این نوع شیشه ها بسیار خاص است زیرا این شیشه ها دوام پایینی داشته و دمای نرم شوندگی شان پایین است.

شیشه ی فلورایدی ( fluoride glass )

عموماً شیشه های هالیدی بر پایه یشیشه ها (4) را شیشه های فلورایدی می گویند. کاربرد این نوع شیشه ها در وسایل همسو کننده نوری (optical waveguides) است. و درجاهایی که قیمت توجیه پذیر باشد استفاده می شوند.

شیشه ی طبیعی

این مسئله که شیشه در طبیعت بوجود می آید حتی این پدیده یک امر نسبتاً معمولی است، باعث شگفتی بسیاری از مردم می شود. تکتیت ها (tektites) درهنگام برخورد شهاب سنگ ها به زمین و در دهانه ی حاصله از برخورد شهاب سنگ پدید می آیند. مولد اویت (Moldavite) نیز یک شیشه ی سبز رنگ است که در مولداوی (Moldavia) یافت می شود . فولگلاریت (fulgarite) نیز تیوپ های شکننده از شیشه هستند که در هنگام برخورد برق آسمان به خاکهای ماسه ای پدید می آید. ابسیدیان (obsidian) نیز یک نوع شیشه است که در جریان های آتش فشانی تشکیل می شود. رنگ سیاه رنگ این نوع شیشه به خاطر ناخالصی پدید می آید. در طی دوره ی پارینه سنگی از ابسیدیان در ساخت وسایل استفاده می شده است. سنگ پا (Pamice) یکی دیگر از شیشه هایی است که از فوران های آتش فشانی تشکیل می شود. این ماده می تواند تخلخل های فراوانی داشته باشد. (درصورتی که ماده ی اولیه ی تشکیل دهنده ی آن دارای مواد گازی فراوانی باشد). سنگ پا شکل متخلخل ابسیدیان است

شیشه ها

مقدمه:

دراین مقاله ها در مورد انواع مختلف شیشه و برخی از کاربردهای آنها صحبت می کنیم.
شیشه ها یکی از انواع مهم موادمهندسی محسوب می شوند. این مواد در پنجره ها، ساخت بطری، لیزرها، الیاف نوری، عایق ها، لعاب کاری (glazing) ومینا کاری (enamelihg)، چاقوی جراحی، وسایل هنری وتابلوهای راهنمایی - رانندگی استفاده می شوند.
شیشه ها معمولا بازیافت می شوند واز این رو دوستدار محیط زیست هستند.مصریان آثار شیشه ای متنوعی بر جای گذاشته اند ولی آنها اولین کسانی نبودند که از این ماده استفاده می کردند.در دوران های دیرینه سنگی (paleolithic Times) شیشه های اولیه و شیشه های طبیعی (Obsidian: نوعی شیشه ی مصنوعی بدست آمده از آتش فشان ها ) بسیاراهمیت داشتند به خاطر اهمیت زیاد این ماده می توان گفت که شیشه نقش مهمی در شکل دهی تمدن ما داشته است.
به هر حال تعریفات مختلفی برای شیشه ها بیان شده است. دراین مقاله سعی می کنیم بگوییم چرا واژه های شیشه ای (glassy)، زجاجی (Vitreous) و آمورف (amor phous) همگی برای توصیف شیشه استفاده می شوند. همچنین سعی داریم جواب این سوال را بدهیم که: «شیشه چیست؟»
هنگام مطالعه ی این مقاله باید دو ذهنیت را داشته باشید:
1) ادعای Sturkey:"شیشه در دماهای بالا یک محلول شیمیایی است."
2) اگر شیشه که مایع فوق سرد شده است، پس جامد نیست وبنابراین یک ماده ی سرامیکی نیست (اما شیشه یک ماده ی سرامیکی است)

تعریف

تعریف کلاسیک شیشه براساس روش تاریخی تشکیل آن انجام شده است. البته این روش تعریف یک روش بسیار غیر معقولی برای تعریف هر ماده است. این مسئله باعث شده است تا امروز شیشه به چندین روش مختلف تعریف شود:
تعریف کلاسیک: شیشه یک مایع فوق سرد شده است(Supercooled liquid) مشکل بوجود آمده دراین تعریف این است که در برخی موارد می توان یک شیشه ی ویژه را به روشی تولید کرد که هیچگاه درحالت مایع قرار نداشته باشد.
ASTM شیشه را به صورت زیر تعریف کرده است:
"شیشه یک محصول غیر آلی از ترکیبی مذاب است که بدون آنکه کریستالی شود، سرد وصلب می گردد."
این تعریف نیز همان چیزی است که در تعریف کلاسیک آمده است. اما دراین تعریف شیشه ی پلیمری استثناء شده است. به وضوح مشخص است که استناد کردن به روش تولید برای تعریف یک گروه از مواد ایده آل و مناسب نمی باشد.

تعاریف دیگر :

1)" شیشه یک ماده ی جامد است که نظم دوربعد از خود نشان نمی دهد."
نداشتن نظم دوربعد یعنی ساختار شیشه درفواصل یک، دو یا سه برابر فاصله ی اجزای سازنده، دارای نظم نیست. این تعریف براساس مشاهدات حاصله از تفرق اشعه X، میکروسکوپ الکترونی عبوری (TEM) و... استوار است اما این تعریف نیز کمی قراردادی است زیرا به اندازه ی اجزاء تشکیل دهنده بستگی دارد.
2)" شیشه یک مایع است که قابلیت جاری شدن خود را از دست داده است."
این تعریف استوار است اما از تعریفی که بوسیله ی ASTM ارائه شده است فراگیرتر است .همچنین این تعریف از خاصیت مکانیکی برای تعریف شیشه استفاده می کند. درحقیقت این تعریف عملاً با دیدگاه فیزیک مدرن درباره ی شیشه مطابقت دارد.
اکثر شیشه هایی که ما در مورد آنها توضیح می دهیم، شیشه های با شبکه ی اکسیدی است . (مخصوصاً سیلیکات ها) تعریف ما از چنین شیشه هایی عبارتست از:
تجمعی جامد از تتراگونال هایی است که می توانند رئوس خود را به اشتراک گذاشته و البته این مواد نظم دور بعد ندارند.
دراین مقاله ما تنها درمورد شیشه های سرامیکی بحث می کنیم اما باید بدانیم که علاوه بر شیشه های سرامیکی، شیشه های فلزی و پلیمری نیز وجود دارد. شیشه های فلزی ترکیبات پیچیده ای هستند که در آنها عمل کریستالیزاسیون انجام نشده است. این مسئله بوسیله ی سریع سرد کردن فلز مذاب بوجود می آید.(این فرآیند اسپلات کوئنچینگ نامیده می شود). درادامه به بیان ویژگی شیشه ها می پردازیم:

ساختار

شیشه ها در اصل جامد های غیر کریستالی (یا آمورفی) هستند که در اغلب موارد از فریز شدن یک مایع فوق سرد شده بدست می آیند. دراین موارد نظم دور برد در آرایش اتمی وجود ندارد. البته نظم کوتاه برد (زیر 1nm) وجود دارد. این مواد دارای آرایش منظمی از سلولهای واحد نیستند.همانگونه که گفتیم شواهدی وجود دارد که ثابت می کند در شیشه ها نظم کوتاه برد وجود دارد.این نظم کوتاه برد به دلیل آرایش اتمی درمجاورت هر اتم (البته در فاصله ی کوتاه) بدست می آید. تلاش های فراوانی برای توصیف شیشه ها انجام شده است. که به بیان علت تشکیل شدن یا نشدن شیشه ها بحث می کند. دراین زمینه ما ازدو دیدگاه به شیشه ها نگاه می کنیم:
1) توجه به ساختار
2) توجه به مباحث کنیتیکی کریستالیزاسیون
درمورد اول ما به بیان هندسه ی اجزای تشکیل دهنده ی شیشه ها می پردازیم. همچنین دراین زمینه به بیان پیوندهای بین اتمی واستحکام پیوندها می پردازیم . درمورد دوم ما به بیان چگونگی دگرگونی های مایع به جامد در طی فرآیند سرد شدن می پردازیم.
دمای تبدیل شدن شیشه ای ( Tg )
درشکل 1 نموداری نشان داده شده است که در آن حجم ویژه به عنوان تابعی از دما رسم شده است.

شیشه ها (1)

این دیاگرام فرمی از دیاگرام استعاله ی دما – زمان (T.T.T) برای شیشه است. درهنگام سرد شدن مایع از دمای بالا دو پدید ه ممکن است در نقطه ی انجماد (Tm) اتفاق می افتد که عبارتند از :
1) اگر مایع کریستالیزه شود تغییرات حجم و سرعت سرد کردن گسسته است.
2) اگر کریستالیزاسیون اتفاق نیفتد، مایع به حالت فوق سرد شده تبدیل می شود و حجم در نزدیک دمای ذوب کاهش می یابد.
دردمای تبدیل شدن شیشه ای (Tg)، شیب نمودار کاهش می یابد و به شیب جامد کریستالی نزدیک می شود. این شکستگی بوجود آمده در نمودار سرد کردن نشان دهنده ی گذرگاه مایع فوق سرد شده به شیشه است. زیر دمای Tgساختار شیشه درحالت آسایش نیست زیرا این مواد اکنون جامد هستند. دراین ناحیه از Tg ویسکوزیته تقریبا شیشه ها (1) است. ضریب انبساط حالت شیشه ای معمولا نزدیک به ضریب انبساط جامد کریستالی است. اگر از سرعت های سرد کردن پایین تر استفاده شود، میزان آسایش ساختار افزایش می یابد. ومایع فوق سرد شده در دمای پایین تر تشکیل می شود. و شیشه ی حاصله ممکن است دانسیته ی بالاتری بدست آورند. (همانگونه که در شکل 1 دیده می شود)
فیزیک شیشه جنبه ی تردی آن را مورد بررسی قرار می دهد. در واقع این ویژگی یک ویژگی مایعات شیشه ساز در بالای دمای Tgاست واندزه ای از استعکام پیوندهای بین اتمی است. در ادامه ما درمورد شیشه ی نامحلول در آب یا بطری های شیشه ای آب صحبت می کنیم. البته چیزی که آگاهی کمتری از آن است این است که ما می توانیم آب را با سریع سرد کردن در اتاق مایع به حالت شیشه ای در آوریم. ماده ی حاصله یک شیشه ترد است اما این مسئله فهمیده شده است که بیشتر آب موجود در جهان به همین شکل وجود دارد.
تاریخچه
شیشه ماده ای است که پیوندی عمیق با تاریخچه ی انسان دارد. یکی از شواهد این مسئله استفاده از ابسیدیان (obsidian) یک شیشه ی طبیعی توسط بشر است. هیچ کس نمی داند که اولین جسم شیشه ای در چه زمانی ساخته شده است. قدیمی ترین یافته ها به 7000 سال پیش از میلاد برمی گردد. (البته ممکن است یافته هایی پیش از این تاریخ نیز وجود داشته باشد). درکاوش های باستان شناسی در بین النهرین روش های تولید شیشه کشف شده است . این کارها 4500 سال پیش از میلاد مسیح بوده است ومربوط به روش های تولید وسایل شیشه ای بوده است نه لعاب های مورد استفاده در وسایل سفالی. استفاده از شیشه در لعاب کاری سفال حتی به دوران های پیشین می رسد.

شیشه ها (1)

تقریبا در 3000 سال پیش از میلاد مسیح شیشه گران مصری شروع به تولید جواهر آلات شیشه ای و ظروف شیشه ای کوچک کردند. شیشه هم به عنوان یک جسم دکوری وهم به عنوان یک وسیله ی مورد استفاده در زندگی روزمره به شمار می آمد. قطعاتی از جواهر آلات شیشه ای در کاوش های اطراف کوه های مصر پیدا شده است. مثالی از این جواهرآلات شیشه ی فیزوزه ای آبی است که در شکل 2 دیده می شود. تقر یبا 1500 سال پیش از میلاد مسیح شیشه گران مصری ( در دوره ی touthmosis سوم ) روشی برای تولید قطعات تو خالی قابل استفاده، توسعه دادند. یک مثال قابل توجه از این نوع ساختار یک شیشه ی توخالی است که شبیه به سرماهی است (شکل 3) این ظرف بین سال های 1352 و 1336 قبل از میلاد ساخته شده است واین نظریه وجود دارد که برای نگه داری روغن خوش بو استفاده می شده است.

شیشه ها (1)

الگوی موجی این ظرف بسیار خاص است. در واقع این ظرف بوسیله ی کشیده شدن یک جسم تیز به شیشه ی خمیری شده تولید شده است.
نویسنده ی رومیPliny Fhe Elder (23-79 میلادی) اختراع شیشه را به صورت زیر توصیف می کند:
روزی یک کشتی که متعلق به چند تاجر نیتروم (Nitrum) بود در کنار ساحل لبنان کنونی توقف می کند. هنگام پخت غذا به دلیل نبود سنگ در ساحل، خدمه کشتی از کلوخ های نیترومی که در کشتی وجود داشته است. استفاده می کنند تا بتوانند دیگ غذا را در مکان مناسب استقرار دهند. پس از آنکه آتش روش شد، کلوخه ها با ماسه های ساحلی واکنش داده و تشکیل شیشه ی مذاب می دهد. این اولین منشع پدید آمدن شیشه است.
نیتروم (Nitrum) یک نوع سدیم کربنات (Soda) طبیعی است .این ماده یکی از اجزای مهم در شیشه های قدیمی و مدرن است. خاکستر گیاهان نیز یک منبع فقیر از سدیم برای شیشه گران فراهم می کند. گیاهان علف شوره (Saltwort) و رازیانه ی آبی (glass wort) از جمله گیاهانی هستند که برای مهیا شدن سدیم از آنها استفاده می شده است.
یکی از معمولی ترین روش ها برای شکل دهی شیشه روش دمش هوا است. اگر چه این تکنیک بیش از دوهزار سال پیش توسعه یافت، لوله های تولیدی به روش دمش در طی زمان تغییری نکرده است. توسعه ی عمده که دراین زمینه انجام شده است، روش دمش اتوماتیک است که برای تولید شیشه های بطری و حباب های لامپ استفاده می شود. دراین روش به قطعه ای شیشه در داخل قالب هوا دمیده می شود. و بدین شکل شیشه به شکل قالب در می آید. مهمترین مرحله ی رشد در تاریخ شیشه سازی مخصوصا درطی قرن بیستم مربوط به توسعه های اتفاق افتاده در زمینه ی تکنولوژی های تولید می باشد. این توسعه ها منجر به کاهش هزینه ی تولید محصولات شیشه ای می شود

در ادامه به بیان خواص شیشه ها می پردازیم:

ویسکوزیته ( η )

ویسکوزیته یک ویژگی کلیدی شیشه هاست.ما نیاز داریم تا درمورد ویسکوزیته ی شیشه در دماهای مختلف اطلاع داشته باشیم. و بتوانیم دمای مورد نیاز برا ی شکل دهی وآنیلینگ آن را تشخیص دهیم. ویسکوزیته یک ویژگی مکانیکی است. فرمول ویسکوزیتد به صورت زیر است:

شیشه ها (2)

دراین فرمول:
η : ویسکوزیته، F: نیروی مورد نیاز برای کشیدن یکی از صفحات موازی که در میان آنها مایع مورد نظر قرار دارد: ،d: فاصله ی صفحات، A: مساحت صفحات، V: سرعت حرکت صفحه. ویسکوزیته در واقع پاسخ یک مایع دربرابر تنش برشی است. مایعات دارای ویسکوزیته ای هستند که با واحد سانتی پوآز (CP) اندازه گیری می شود. واحد اندازه گیری ویسکوزیته ی گازها میکروپوآز(mp) است.

شیشه ها (2)

جدول 1 لیستی از اعداد ویسکوزیته ای است که برای فرآیندهای شیشه سازی مهم هستند. اعداد داده شده در جدول 2 نیز برای تعریف ویژگی های برجسته ی شیشه (با تأکید بر روی فرآیند) آورده شده است. بسیاری از اعداد آورده شده درجدول ویسکوزیته ها استاندارد هستند مثلا (2003) ASTMC338-93 یک روش تست استاندارد است که نقطه نرم شدگی شیشه بوسیله ی آن تعیین می شود.
محاسبه ی نقطه ی نرم شدگی شیشه بوسیله ی اندازه گیری دمایی که در آن یک فیبر شیشه ای استوانه ای با قطر شیشه ها (2) طول بوسیله ی وزن خودش تغییر طول می دهد. نرخ تغییر طول یک میلی متر بردقیقه است . در این روش 100 میلی متر از بخش بالایی فیبر بوسیله ی کوره ی خاصی با سرعت گرم شدنشیشه ها (2) گرم می شود.

شیشه ها (2)

ویسکوزیته ی برخی ازمایعات عمومی در جدول 2 آورده شده است. توجه کنید که در دمای کارپذیری شیشه ویسکوزیته ای شبیه به عسل در دمای اتاق دارد. به طور نمونه برای یک شیشه ی سیلیکاتی سودالایم این ویسکوزیته در دمایشیشه ها (2) بدست می آید. این جدول همچنین نشان می دهد که یک جامد دارای ویسکوزیته ای بیش ازشیشه ها (2) دسی پو آز است. ویسکوزیته ی به طور نمایی با تغییر دما ، تغییر می کند ( همانگونه که در شکل 1 برای انواع شیشه ی سیلیکاتی دیده می شود.) دمای فیکتیو (fictive temperature) دمایی است که در آن ساختار مایع به حالت شیشه ای تبدیل می شود. این دما بوسیله ی تقاطع منحنی های برونیابی شده در حالت دما بالا و دما پایین در نمودار ویسکوزیته – دما بدست می آید. دمای فیکتیو (Tf) مانند Tg به تبدیلات ساختاری شیشه بستگی دارد. البته Tg اندکی کمتر از Tf است.

شیشه ها (2)

شکل 2 وابستگی ویسکوزیته به دما را برای اکسیدهای شیشه ساز نشان می دهد. شما باید توجه کنید که بوسیله ی شیب این خطوط می توان انرژی اکتیواسیون جریان ویسکوز (EV) را بدست آوریم.

شیشه ها (2)

جدول 3 اعداد ویسکوزیته وسرعت های کریستالیزاسیون (v) برخی شیشه ها را نشان می دهد. سرعت کریستالیزاسیون مربوط می شود به سرعت تبادل مایع/جامد. V بسیار کم بیان کننده ی قابلیت شیشه سازی استثنایی ماده است.البته کریستالیزاسیون مذاب جامد شده ی سیلیس بسیار مشکل است.

شیشه ها (2)

روش های متعددی برای اندازه گیری ویسکوزیته وجود دارد. این روش ها با توجه به میزان ویسکوزیته انتخاب می شود.

شیشه ها (2)

شماتیک دو روش اول اندازه گیری ویسکوزیته در شکل 3 نشان داده شده است:

شیشه ها (2)

شیشه ( خلاصه ای از خواص )
 

شیشه ماده ای خنثی است. این مسئله به محیط بستگی دارد. اگر شیشه یک ماده ی سیلیکاتی باشد، این مسئله درست است . البته همه ی شیشه ها خنثی نیستند. مثلا بیوگلاس (bioglass)
شیشه یک ماده ی هموژن است. این مسئله نیز به نحوه ی شکل دهی و ترکیب شیمیایی شیشه بستگی دارد. ما می توانیم با استفاده از فرآیندهای خاص شیشه را به صورت غیر هموژن در آوریم.
شیشه می تواند تغییر شکل دهد. این مسئله عموماً درست می باشد و دلیلی است برای قابلیت بازیافت شیشه ها. برخی از شیشه ها به نحوه ای ساخته می شوند که بوسیله ی نور، انتشار نور در داخل آن وتابش نور و...تغییر ماهیت می دهد.
شیشه دارای ضریب انبساط کوچک است. البته همه ی شیشه ها مناسب استفاده شدن در کاربردهای حرارتی مانند ظروف پیرکس نیستند.
شیشه ها شفاف اند (trans Parent) این خاصیت برای الیاف نوری ضروری است. البته ما می توانیم با انجام عملیات های خاص شیشه به صورت اپک یا مات در آوریم.
بسیاری از شیشه های اولیه شفافیت کامل نداشتند زیرا در ساختار آنها ناخالصی وحباب هوا وجود داشت.
شیشه ارزان است. البته این مسئله برای شیشه های پنجره صحیح است. اما درمورد فیلم های نازک شیشه ای این مسئله صحیح نمی باشد. برخی از شیشه های قرمز رنگ بوسیله ی دپینگ (doping) طلا در آنها تولید می شود. که قیمت برخی از ظروف تولیدی از آن به پیش از 50 دلار می رسد.
شیشه یک ماده ی بالک است مگر در حالتی که آن را به صورت یک فیلم نازک ، یک فیلم انیتر گرانولار (IGF) یا یک سرامیک کریستالی رشد دهیم.

برخی از خواص مکانیکی شیشه

استحکام تئوریک شیشه ی سیلیکاتی درحدود 10GPa است. البته با حضور عیوب سطحی (ترک ها وجوانه ها ) این استحکام کاهش می یابد. شیشه ها موادی الاستیک هستند اما تحت کشش می شکنند. می توان استحکام این مواد را بوسیله ی ایجاد لایه های سطحی فشرده و یا بوسیله ی از بین بردن ترک های سطحی (با اسید شوئی یا پدید آوردن پوشش محافظ) افزایش داد. مثالی از این روش ها پدید آوردن ترک های اضافی در ساختار قطعات شیشه ای تزئینی به منظور بهبود خواص مکانیکی آنهاست. در این روش از سرد کردن شیشه ی مذاب در آب جهت ایجاد تنش های اضافه بهره برده می شود . در این حالت سطح قطعه ی شیشه ای مذاب زودتر از مرکز آن سرد می شود و بنابراین تنش های اضافی پدید می آید. قطعات جامد شده به این شیوه را می توان با چکش و بدون اینکه بشکنند چکش کاری کرد.

برخی از ویژگی های الکتریکی شیشه

شیشه معمولا دارای مقاومت الکتریکی بالایی است. که علت آن تفاوت زیاد میان باندهای انرژی (گپ بزرگ) در این ماده است. در مواردی که شیشه رساناست . بار بوسیله ی یون ها منتقل می شود.(در این مورد یون های قلیایی مانندشیشه ها (2) دارای سرعت انتقال بار بالایی هستند). در واقع به همین دلیل است که با افزایش دما رسانایی به شدت افزایش می یابد. رسانایی درشیشه های مختلف، متفاوت است.علت آن متفاوت بودن نوع شبکه ی این شیشه هاست. در شیشه هایی که دارای بیش از یک یون قلیایی هستند. پدیده ی جالبی رخ می دهد. رسانایی تولیدی در این نوع شیشه ها به طور مشخصی از شیشه های دارای یک یون کمتر است. این نوع شیشه ها در کاربردهای مختلف مانند لامپ های با توان بالا استفاده می شوند. ثابت دی الکتریک شیشه واقعاً بالاست اما نه به حدی که بتوان از آن در کاربردهای حافظه ای پیشرفته مانند حافظه ی با دستیابی دینامیک و رندوم (DRAMS) استفاده کرد. ظرفیت الکتریکی یک ماده میزان بار ذخیره شده در داخل ماده است. این خاصیت به ضخامت دی الکتریک بستگی دارد. همانطور که ضخامت دی الکتریک کمتر می شود، ظرفیت الکتریکی افزایش می یابد. اما کم کردن ضخامت نیز مشکلاتی به همراه دارد. مثلا با کاهش ضخامت احتمال شکست دی الکتریک بیشتر می شود. شیشه ی سیلیسی دارای مقاومت دی الکتریک بالاتری نسبت به سایر شیشه هاست. اما مقاومت این دی الکتریک نیز در حد دی الکتریک های پلیمری مانند رزین فنولیک نیست.

برخی از خواص اپتیکی شیشه

شفافیت دربرابر نور فرا بنفش ، مرئی و فرو سرخ به چندین فاکتور بستگی دارد. یکی از این فاکتورها طول موج تفرق است که بوسیله ی ناخالصی ها تغییر می کند. لبه ی فرو سرخ (IRedge) و لبه ی فرا بنفش ((uv edge اعدادی هستند که نشان دهنده ی فرکانس قطع شدن عبور این موج ها هستند. یک مانع لبه UV edge blocker)UV) از عبور UV جلوگیری می کند و این در حالی است که یک عبور دهنده ی لبه یUV (UV edge tran Smitter) اجازه ی عبور نور UV را می دهد.

عیوب در شیشه ها

اگر چه شیشه یک ماده ی آمورف است ولی مانند مواد کریستالی دارای عیوب و رسوبات است. و همچنین دچار جدایش فاز می شود. شیشه را می توان برای حبس کردن عناصر رادیو اکتیو استفاده کرد .در این عناصر مانند عیوب نقطه ای یا فاز ثانویه تشکیل می شوند. همچنین سرعت نفوذ این عناصر از میان شیشه بر روی میزان آن ها در شیشه تأثیر دارند. این مسئله استفاده می شود تا بتوان مواد رادیو اکتیو یا سایر مواد را کنترل کرد.

شیشه ی غیر هموژن

به دلیل آنکه شیشه یک مایع فوق سرد شده است. نمی توان گفت که این ماده حتما باید هموژن باشد. شیشه های خاص می توانند بدون نیاز به فرآیند کریستالیزاسیون به دو فاز تبدیل شوند. هنگامی که این دو فاز شیشه ای باشند این مسأله باعث می شود که سدی در برابر جدایش فازی پدید نیاید. در مورد فرآیند جدایش فازی مایع – مایع ممکن است مرحله ای برای جوانه زنی وجود داشته باشد. البته در این نوع تبدیلات ممکن است استعاله ی اسپینودال (Spinodal) نیز رخ می دهد. که هر دوی این استعاله ها به نفوذ وابسته اند.
قوانین امتزاج ناپذیری در شیشه ها بسیار مهم است. این مسئله مخصوصاً در شیشه های تولید شده با تکنولوژی روز نمود دارد. برای مثال امتزاج ناپذیری در شکل دهی شیشه – سرامیک ها ، تولید شیشه ی وایکور (Vycor) و شیشه های اپتیکی و تشکیل رسوب در شیشه ها مهم می باشد. بسیاری از اکسیدهای دوتایی و سه تایی در کنار سیلیس از خود مشکلات امتزاج پذیری نشان می دهند.
در دیاگرام فازی ناحیه ای وجود دارد که یک مایع به دو مایع با ترکیب شیمیایی متفاوت تبدیل می شود. این ناحیه گپ امتزاج پذیری (imisciblity gap) نامیده می شود. در زیر برخی از سیستم هایی که مشکل امتزاج پذیری دارند را نام برده ایم:

شیشه ها (2)

شیشه ها (2)

شکل 4 دیاگرام فازیشیشه ها (2) را نشان می دهد. در دمای پایین و در گوشه ی غنی از سیلیس دیاگرام ، فاز مایع به دو بخش مایع با ترکیب شیمیایی متفاوت تبدیل می شود. این دو مایع به صورت دو شکل گنبد مانند در شکل نشان داده شده اند. خط تیره نشان دهنده ی خط تقریبی ناحیه ی امتزاج ناپذیری است. مشکلی که در اندازه گیری این خط وجود دارد. این است که این پدیده در دمای پایین رخ می دهد و از این رو سرعت آن پایین است . و از این رو اندازه گیری آن مشکل است. دراین وضعیت میل جدایش فازی بیشتر از میل به کریستالیزاسیون است . البته کریستالیزاسیون مساعد تر از جدایش فازی است اما به دلیل آنکه جدایش فازی نیازی به باز آرایی اتم ها ندارد، این پدیده رخ می دهد. به عنوان یک قانون کلی برای سیلیس باید گفت که امتزاج ناپذیری با افزودنشیشه ها (2) افزایش می یابد اما با افزودنشیشه ها (2) کم می شود. در شیشه های وایکور از قوانین جدایش فازی استفاده می شود. در فرآیند تولید شیشه وایکور، شیشه ای پدید می آید که دارایشیشه ها (2) و 4 درصد تخلخل است.این نوع شیشه به عنوان فیلتر وبیومواد مخصوصا در جاهایی که تخلخل مهم می باشد، استفاده می شود. در فرآیند تولید وایکور، شیشه ای تولید می شود که پس از فرآیند شکل دهی دنس می گردد و شیشه ای با سیلیس خالص پدید می آید که در دمای پایین تر نسبت به کوارتز خالص شکل دهی گشته است

شیشه ی آلومینیوم – ایتریمی

شیشه های آلومینیوم –ایتریایی (YA) دارای درصد آلومینایی در گسترده ی تقریبی 75.6- 59.8 هستند. با این درصد آلومینایک شیشه ی دو فازی تشکیل می شود که در آن یک فاز قطره مانند در فاز دیگر تشکیل شده است. این شیشه به طور خود بخودی به صورت شیشه ی آلومینیوم – ایتریمی یا مخلوطی ازشیشه ها (3) تبدیل می شود. درشیشه های YA پدیده ای به نام پلی مورفیزم (Polymorphism) رخ می دهد

شیشه ی رنگی

اگر چه در بیشتر کاربردهای شیشه نیاز است تا این ماده بی رنگ باشد اما در برخی از کاربردها نیاز است شیشه رنگی باشد. هنگامی که پنجره های یک کلیسا رنگی باشد، تأثیر پذیری ازمحیط بیشتر می شود . درشیشه ها معمولا بوسیله ی افزودن اکسیدهای انتقالی و یا اکسیدهای عناصر خاک های کمیاب (rave –eavth) به بچ ماده ی اولیه ی آنها، رنگی می شوند. جدول 1 لیستی از رنگ های تولیدی بوسیله ی مواد رنگی کننده ی شیشه هاست . زرد کم رنگ، نارنجی و رنگ های قرمز بوسیله ی فلزات گران بها درحالت کلوئیدی تولید می شود. طلا (Au) رنگ قرمز، یا قوتی تولید می کند. (البته این شیشه ها گران قیمت هستند). سولفید کادمیم (cds) محصولاتی با رنگ زرد تولید می کند. اما هنگامی که علاوه بر se ، cds نیز استفاده شود. محصولاتی با رنگ قرمز یا قوتی با شدت رنگ بالا تولید می شود.

شیشه ها (3)

شیشه بوسیله ی افزودن دوپانت ها (dopants) رنگرزی می شوند. در واقع با افزودن این دو پانت ها در شیشه عیوب نقطه ای پدید می آوریم. رنگ شیشه به نوع دو پانت و حالت اکسیداسیون آن بستگی دارد.
دو پانت ها می توانند اثر بی رنگ کننده (decdorizo) ، پوشش دهنده (mask) یا اصلاح کننده (modify) داشته باشند. ما می توانیم اثرات رنگی آهن را بوسیله ی افزایش cr خنثی کنیم؛ البته اگر درصدشیشه ها (3) زیاد باشد اضافی به صورتشیشه ها (3) خارج می شود. اگر این شیشه به روش دمیدن شکل دهی شود، این پلیت لت هایشیشه ها (3) منظم گشته و شیشه ای اپک به نام آونتورین کرومی (chromium aventurine) تولید می کنند. مس (cu) برای تولید شیشه ی آبی مصری (Egyptian Blue glass) استفاده می شود.
CO (کبالت ) دربرخی از شیشه های پالایش یافته ی تولید در قرن دوازدهم استفاده می شده است. البته Co در تولید لعاب های پرسلانی مورد استفاده در چین ( در دوره ی سلسله ی منیگ وتانگ) استفاده می شده است. کبالت مورد استفاده در این لعاب ها رنگ آبی کبالتی تولید می کند.
با افزودن Se به شیشه های دپ شده با Cds باعث پدید آمدن رنگ یاقوتی سلینومی (Selenium Ruby) می شود. جزئیات پدید آمده ازهر کدام از این رنگ ها به ترکیب شیمیایی و شرایط پخت شیشه بستگی دارد.
شرکت کورینگ (Cornig) میکرو بارکدهایی با شیشه دپ شده با خاکهای کم یاب تولید کرده است. خاکهای کم یاب دارای باندهای نشر کم پهنا هستند و از میان 13 عنصر خاکهای قلیایی که مورد آزمایش قرار گرفته ، تنها 4 عنصر (Tm,Ce,Tb و Dy) می توانند در برابر تابش UV برانگیخته شوند. و لذا می توان از آنها در شناسایی بوسیله ی UV استفاده کرد. این نوع بارکدها همچنین مشکلات تداخل با سایر بارکدها را نیز ندارد. از این بارکدها در کاربردهای بیولوژیکی استفاده می شود زیرا سمی نیستند.(البته بر چسب زنی با کوانتوم دات ها خطرات کمتری دارد) و می توان از آنها در کاربردهای ژنتیکی استفاده کرد. با استفاده از چند عنصر خاکی کمیاب می توان ترکیب رنگی بیشتر پدید آورد.
شیشه های رنگی خاص شامل موارد زیر می شود :

شیشه ی یاقوتی یا کرانبری ( Cranberry )
 

شیشه ی یاقوتی با افزودن Au به شیشه سربی با حضور Sn پدید می آید. شیشه ی کرانبری که اولین بار در سال 1685 گزارش شده است، یک نوع شیشه ی بی رنگ (معمولاً صورتی کم رنگ ) است. علت پدید آمدن این رنگ در صد کم طلای موجود در آن است . راز تولید شیشه قرمز رنگ برای قرن ها ی زیادی گم شده بود و در قرن هفدهم دوباره کشف شد.

شیشه ی اورانیومی یا وازلینی

محصولات اورانیومی هنگامی که در شیشه ی با سرب بالا استفاده شود، رنگ قرمز تیره تولید می کند. البته شیشه های اورانیومی دیگری نیز وجود دارد که با صطلاح به آنها شیشه های وازلینی (Vaseline glass) می گویند. این نوع شیشه ها دارای رنگ سبز هستند. مسأله ای که این نوع شیشه ها را خاص کرده است این است که این نوع شیشه ها هنگام تابش اشعه ی UV به آنها ، خاصیت فلئورسانس پیدا می کنند. از سال 1940 تنها اورانیوم تهی شده (uranium depleted) به عنوان دو پانت استفاده می شود. علت استفاده از این نوع دو پانت، فراوانی آن است. اما از 100 سال گذشته به بعد اورانیوم طبیعی (natural uranium) استفاده می شود.

شیشه ها (3)

شکل 1 مثالی از یک شیشه ی وازلینی است.

لیزر شیشه ای

عناصر خاکهای کم یاب (rave – earth elements) مانند Nd در تولید شیشه های لیزر و سایر وسایل اپتیکی کاربرد دارند. (شکل 2) . لیزر شیشه ای دپ شده با Nd (Nd-doped glass laser) مانند یک لیزر یاقوتی (ruby laser) کار می کند . اگر چه نوع شیشه ای دارای تفاوت هایی است . میله ی لیزر قطری بینشیشه ها (1) اینچ دارد و معمولا بوسیله ی یک لامپ حلزونی تخلیه می شود. علت استفاده از لامپ های حلزونی این است که طول غیر بار دار این نوع لامپ ها از لامپ های خطی طولانی تر است. لیزر شیشه ای دپ شده با Nd دارای بازدهی بیش از 2% است. این بازده 4 برابر بازده یک لیزر یاقوتی است. به دلیل آنکه رسانایی گرمایی شیشه پایین است بنابراین نیاز به زمان بیشتری برای خنک سازی است.

شیشه ها (3)

رسوبات در شیشه

وجود رسوبات در شیشه عموما اجتناب ناپذیر است. سوال این است که چه زمانی طول می کشد تا رسوبات تشکیل شود. (مخصوصا اگر جوانه زنی هموژن باشد). ما ممکن است عوامل هسته زا برای تسریع جوانه زنی به شیشه اضافه کنیم. جوانه زنی کریستال ها در شیشه از تئوری کلاسیک پیروی می کند. رسوبات تشکیل شده در شیشه می تواند موجب رنگی شدن شیشه شود.

شیشه به عنوان لعاب

لعاب ها مانند شیشه ها در همه جا دیده می شوند. لعاب کاری (glazing) استفاده از ویژگی های ویسکوز شیشه و تشکیل یک لایه ی یک پارچه و صاف بر روی یک زیر لایه ی سرامیکی است.
مینا کاری (enameling) تشکیل همان لایه بر روی یک زیر لایه ی فلزی است. چیزی که باید به آن توجه کرد این است که عموما لعاب ها قدمت زیادتری دارند. در ادامه به بیان برخی از اصطلاحات لعاب می پردازیم:

زیر لعاب ( underglaze )

هنگامی که یک بیسکوییت سرامیکی را می خواهیم مورد عملیات دکور قرار دهیم باید قبل از آن یک لعاب کاری بر روی آن انجام دهیم که این نوع لعاب را زیر لعاب گویند. این لایه به علت تشکیل بهتر دکور بر روی بدنه اعمال می شود. پس از آن که فرآیند دکوراسیون جسم سرامیکی انجام شود برروی آن یک لعاب دیگر اعمال می شود. البته این لعاب پیش از پخت دکور اعمال می شود.
عیب کراولینگ لعاب ( glaze craweling ) این عیب که در لعاب اتفاق می افتد بدین صورت است که لعاب از لایه ی سرامیکی زیرین جدا می گردد. این پدیده به دلیل عدم ترشوندگی بیسکوییت سرامیکی بالعاب در طی فرآیند پخت اتفاق می افتد.
لعاب ترک خورده ( crackle glaze )اگر انبساط گرماییشیشه ها (3) لعاب از سرامیک بستر بزرگ تر باشد، لعاب ممکن است در طی فرآیند سرد کردن (در طی پخت) بشکند. هنگامی که غلظت یون سدیم و پتاسیم در لعاب بیشتر باشد، ترک ها بیشتر پدید می آیند. هنگامی که سرعت سرد کردن بالا رود ترک های حاصل ریزتر می شوند.
لعابهای سلادون (celadon )، تنموکو (tenmoku)، راکو (raku) و کوپر ( copper) لعاب های ویژه ای هستند که در دنیای هنر سرامیک یافت می شوند.
لعاب های سلادوناین لعاب ها اولین بار در حدود 3500 سال پیش تولید شده اند. این لعاب ها دارای گستره ی رنگی از آبی کم رنگ تا سبز مایل به زرد هستند و می توانند رنگی کاملا تیره پدید آورند. رنگ تولیدی در این لعاب ها بوسیله ی آهن تولید می شود(3.o - o.5 در صدشیشه ها (3) به لعاب افزوده می شود). ظروف لعاب خورده توسط این نوع لعاب سپس در دمای تقریباًشیشه ها (3) پخت می گردند. ظروف تولید شده با این لعاب ها زیبایی خاصی داشته و در کاربردهای تزئینی استفاده می شوند. مثلا کوزه ی لعاب خورده با این لعاب که درکشور کره تولید شده است، درسال 1946 از سوی کشور کره به هاری ترومن رئیس جمهور آمریکا هدیه شد. امروزه این ظرف که 23cm ارتفاع دارد قیمتی برابر با 3 میلیون دلار دارد.
لعاب تنموکواین نوع لعاب در زمان سلسله ی سونگ (sung Dynasty) بوجود آمده است. و دارای رنگ قهوه ای تیره یا حتی سیاه است. برای ایجاد این رنگ میزان 8-5 درصد وزنیشیشه ها (3) به لعاب افزوده می شود. تشکیل مناسب این نوع لعاب به شرایط اکسایش – کاهش اتمسفر پخت بستگی دارد. و در شرایط مختلف اکسایش و کاهش رنگ های متنوعی پدید می آید. در لعاب های کوپرنیز از کربنات مس به عنوان منبع Cuاستفاده می شود. البته در طی فرآیند پختشیشه ها (3) تجزیه گشته و Cuoباقی می ماند. Cuo تولید نیز با مونواکسیدکربن (CO) موجود در کوره واکنش داده تا ذرات مس در لعاب تشکیل شوند. این ذرات رنگ قرمز به لعاب می دهند.
لعاب های راکولعاب های راکو اغلباً لعاب هایی فلزی به نظر می رسند. (اگر بوسیله ی یک لایه از فلز Ti پوشش داده شده باشند)
یک روش پیشرفته در تولید لعاب های راکو بدین صورت است که ظروف سرامیکی به شیوه ی معمولی پخت می شوند سپس آنها را در داخل یک محیط کاهنده مانند خاک اره وارد می کنند و سپس آنها را قبل از آنکه بتوانند اکسید شوند، به سرعت سرد می کنند. این نوع لعاب ها اغلبا حالت استثنا داشته و می توانند با زمان تغییر کنند. این مسئله ساده است. زیرا آنها در طی فرآیندهای بعدی تولید اکسید می شوند. این نوع لعاب بر خلاف سایر لعاب ها خنثی نبوده و تنها برای دکوراسیون استفاده می شوند.
لعاب های کریستالی ( crystalline glaze )این نوع لعاب ها ، لعاب هایی دکوراسیونی هستند اما به طور مستقیم با تکنولوژی تشکیل شیشه – سرامیک در ارتباطند. کریستال ها بوسیله ی سرد کردن آهسته لعاب ایجاد می شوند. این سرد کردن آهسته به کریستال های لعاب اجازه ی رشد کردن می دهند. رشد این کریستال ها مد نظر است؛ زیرا لعاب ضخامت کمی داشته و از این رو کریستال ها باید به صورت پلیت لت (platelets) در آیند. برای آنکه عمل رشد کریستال ها بهتر انجام شود از جوانه زاهای تیتانیایی استفاده می شود. این نوع جوانه زاها در لعاب های باویسکوزیته ی پایین استفاده می شوند و در آنهاشیشه ها (3) تشکیل می شود. ترکیب شیمیایی این نوع لعاب ها بسیار مهم است. در آن شیشه ها (3) وشیشه ها (3) به میزان کم و Pbo به میزان 10-8 درصد وزنی استفاده می شود. رشد کریستال با اضافه شدن fe به لعاب افزایش می یابد. اما این اضافه شدن می تواند همچنین موجب پدید آمدن اثراتی بر سایر دو پانت های اضافه شده به لعاب شود.
سفالگران امروزی ازشیشه ها (3) به عنوان اصلاح کننده و تولید کننده ی کریستال های ویلمایت (Crystals Willemite) استفاده می کنند. (ویلمایت یک مینرال کمیاب از روی است). این تکنیک نیازمند مهارت ویژه است. زیرا افزودن مقادیر زیادشیشه ها (3) به لعاب باعث می شود ویسکوزیته ی آن حتی در دماهای پایین نیز کم باشد، بنابراین این مسئله باعث می شود که لعاب از روی سطح سفالی جریان پیدا کند. رشد اسفرولیتی (Spherulite growth) از جوانه زا در لعاب در شکل 3 نشان داده شده است. هر اسفرولیت در واقع توده ای از کریستال های شعاعی است که با توجه به مرکز اسفرولیت دورهم گرد آمده اند.

شیشه ها (1)

لعاب های اپک ( opaque glazes ) اگر به لعاب مذاب کریستال هایی افزوده شود، لعاب می تواند اپک شود. برای این کار می توان ازO_2 S_n یا زیر کن استفاده کرد. که زیر کن ارزان تر است .شیشه ها (3) برای تولید رنگ سفید در لعاب های زیرکنی (Zircon glaze) استفاده می شود. برای اپک کردن کمتر ازشیشه ها (3) استفاده می شود زیرا کریستال های روتایل طلایی رنگ هستند. و بنابراین لعاب را به رنگ زرد در می آورند. ما همچنین می توانیم با تشکیل کریستال لعاب را اپک کنیم (مثلا ولاستونیت:شیشه ها (3). این کار بوسیله ی عملیات حرارتی مناسب، حبس کردن گاز (هوا یاشیشه ها (3) ) ) و یا بوسیله ی جدایش فازی مایع – مایع انجام می شود. لعاب های مات (Matt glazes) بوسیله ی تشکیل کریستال های بسیار کوچک در لعاب بوجود می آیند (مثلا کریستال های ولاستونیت برای لعاب های مات – آهکی و وبلیمایت (شیشه ها (3):Willemite ) برای لعاب های مات – زینک). کریستال های ریز ولاستونیت بوسیله ی افزودن کلسیت به لعاب پایه سیلیس تشکیل می شود. یک روش دیگر برای این کار افزودن مقادیر زیادی از ماده ی کریستالی به لعاب است تا در طی فرآیند پخت درصدی از آن به صورت کریستالی باقی بماند

رنگ در لعاب و لعاب موضوعاتی هستند که امروزه تحقیقات فراوانی بر روی آنها به عمل آورده شده است. امروزه رنگ های جدیدی بوسیله ی افزودن نانو ذرات در لعاب پدید می آید. عموما نانو ذرات نقره و طلا رنگ طلایی بوجود می آورند. و نانو ذرات مس رنگ قرمز بوجود می آورند. توضیح در مورد نحوه ی پدید آمدن رنگ در لعاب واقعاً پیچیده تر از نحوه ی پدید آمدن رنگ در شیشه هاست. زیرا لعاب بر روی یک لایه اعمال می شود و از این سو نباید ترانسپارنت باشد. همچنین لعاب یک لایه ی نازک است و در اتمسفر مختلف (کاهنده – اکسید کننده) بوجود می آید از این دو بررسی عوامل موثر بر تشکیل یک لعاب مشکل است.

لعاب های رنگی ( Colored glazes )

در لعاب های رنگی باید از پیگمنت های سرامیکی با پایداری مناسب بهره برد. از اکسیدهای رنگ زای ارزان قیمت می توان برای ایجاد رنگ در محصولات متنوع سفالی بهره برد. البته بسیاری از مواد رنگ زا برای لعاب همانهایی هستند که ما برای رنگرزی شیشه از آنها استفاده می کنیم
اکسید کبالت شیشه ها (4) یک اکسید سیاه رنگ است اما کمتر از یک درصد وزنی از آن در لعاب ایجاد رنگ آبی تیره می کند (اگر چه در بیشتر موارد از کربنات کبالت استفاده می شود).
به دلیل آنکه شیشه ها (4) در این گونه لعاب ها بوجود می آید، ویسکوزیته ی لعاب تغییر می کند.
اکسید کروم که تا 3-2% وزنی نیز می تواند به لعاب افزوده شود به جای رنگ سبز، رنگهای زرد، صورتی یا قهوه ای بوجود می آورد (رنگ قرمز در حضور سرب در ترکیب لعاب اولیه پدید می آید. اگر Zn در لعاب اولیه وجود داشته باشد، رنگ لعاب قهوه ای می شود مگر آنکه سرب ها هم وجود داشته باشد. که در صورت وجود سرب و روی در لعاب اولیه رنگ زرد پدید می آید).
شیشه ها (4)که به صورت کربنات به لعاب افزوده می شود، رنگ لعاب را به صورت قهوه ای در آورده البته این ماده می تواند رنگ قرمز، بنفش و حتی سیاه نیز تولید کند. که این تغییر رنگ به درصد سدیم موجود در لعاب اولیه بستگی دارد. افزودن Cuo به اندازه ی %2-1 وزنی به یک لعاب با سدیم بسیار کم سبب پدید آمدن رنگ فیروزه ای می شود. این درحالی است که افزودن بیش از 3% از این رنگ زا باعث پدید آمدن رنگ سبز یا آبی می شود. اگر درصد Cuo در لعاب افزایش یابد، لعاب ظاهری فلزی مانند مفرغ به خود می گیرد. اگر لعاب دارای 0.3– 2 درصد وزنی Cuo در اتمسفر کاهنده پخت شود، رنگ قرمز مسی پدید می آید. این رنگ به دلیل حضور ذرات کلوئیدی CU درلعاب بوجود می آید.
اگر یک لعاب رنگ زرد داشته باشد، این رنگ ممکن است بوسیله ی افزودن Cds یا Cdse بوجود آمده باشد. البته این نوع افزودنی های رنگ زا ممکن است رنگ های قرمز یا نارنجی را نیز پدید آورند. درصورت حضور سرب در این نوع لعاب ها ، Pds تشکیل می شود که باعث سیاه شدن لعاب می شود. زیرکن در صنعت برای کمک کردن به پایدار شدن این نوع رنگ ها (برپایه ی cd) استفاده می شود. درحقیقت شیشه ها (4) (زیر کن وانادیومی آبی رنگ) و شیشه ها (4)(pr,zr) (زیر کن پراسئودیومی زرد رنگ) مهم ترین تثبیت کننده های مورد استفاده در این رنگ هاست. هنگامی که اورانیوم به لعاب اضافه شود، به جای پدید آوردن رنگ زرد کم رنگ، رنگ قهوه ای تیره پدید می آید. (اورانیوم در شیشه های وازلینی تولید رنگ زرد کم رنگ می کند). البته بسته به ترکیب لعاب ، اورانیوم می تواند رنگ های قرمز یا نارنجی روشن نیز بدهد.

لعاب نمکی ( saltglaze )

دراین نوع فرآیند لعاب کاری سفال در کوره های با دمای بالا با نمک واکنش می دهد. در واقع سفالگر نمک را بر روی سفال اعمال می کند. این فرآیند هنگامی اتفاق می افتد که سفال در داخل کوره است. این فن بوسیله ی سفالگران ایرانی وانگلیسی در دهه ی 1700 ابداع گشته است. همچنین شما می توانید مثال های فراوانی از فرآیند رنگ آمیزی بوسیله ی اکسیدهای فلزی را در آلمان ببنید. در این نوع لعاب ها نمک با رس واکنش داده و تشکیل لایه ای شیشه ای بر روی سطح می دهد. این تکنیک دقیقاً فرآیند خوردگی خاک نسوز در دمای بالاست (بوسیله ی سود سوز آور).
واژه ی مینا (enamel) معمولا در هنگامی استفاده می شود که یک لایه ی لعابی بر روی فلز اعمال می شود. البته این واژه در هنگامی که یک لایه لعابی بر روی لعاب اولیه اعمال می شود نیز استفاده می شود. بازار مصرف مینا بسیار بزرگ است. این بازار از لوازم بهداشتی تا جواهر آلات گسترده است.

خوردگی شیشه و لعاب

این تصور وجود دارد که شیشه خنثی است اما باید بدانید که اسید سیتریک و اسید استیک موجود در غذاها و میوه ها می توانند بایون های موجود در شیشه واکنش دهند و ترکیبات کمپلکس پدید آورند. با خروج یون های قلیایی از داخل شیشه یون های هیدروژن مثبت جایگزین آنها می شود. هنگامی که بخواهیم استحکام سطح شیشه را افزایش دهیم باید یون های پتاسیم و سدیم مثبت را با لیتیم مثبت ( شیشه ها (4) ) جایگزین کنیم. در شیشه ی آلایش یافته (Stain glass) می توان یون نقره ی مثبت و مس را جایگزین شیشه ها (4) کرد.
همانند مواد کریستالی ، شیشه ها نیز دارای عیوب کریستالی اند. یکی از چالش هایی که ما با آنها روبرو هستیم محاسبه ی خواص بوجود آمده ازعیوب (مانند نفوذ) در شیشه هاست. زیرا در شیشه ها شبکه ی مرجع وجود ندارد.

انواع شیشه های سرامیکی

همه ی شیشه ها براساس تتراهدرال های سیلیسی ایجاد نمی شوند؛ واحدهای ساختاری این شیشه ها در جدول 1 آورده شده است. برخی از ترکیبات این شیشه ها نیز در جدول 2 آورده شده است.

شیشه ها (4)

شیشه ها (4)

شیشه ی سیلیکاتی ( سودالایم )

این شیشه ها بر پایه ی شیشه ها (4) هستند. (معمولا این نوع شیشه ها علاوه بر این مواد دارای شیشه ها (4) نیز هستند.) این نوع شیشه نستبا ارزان هستند و دارای دوام خوبی نیز هستند همچنین از این نوع شیشه به طور فراوان در صنعت بسته بندی و ساختمان استفاده می شود. ضریب انبساط حرارتی شیشه ها (4) این نوع شیشه ها ناچیز نیست. همچنین این نوع از شیشه ها عایق های خوبی نیستند. استفاده های عمده از این نوع شیشه در صفحات شیشه ای ،بطری ها ، وسایل غذا خوری و صنعت الکترونیک (حباب لامپ) است. شیشه های آلومینو سیلیکاتی قلیایی (شیشه ها (4)= عنصر قلیایی) دارای ضریب انبساط حرارتی پایینی است. این نوع شیشه دارای دوام و خواص عایق کاری بهتری است. وهمچنین نسبت به سایر شیشه های هم گروه استحکام بالاتری دارد. استفاده های این نوع شیشه عبارتست از تیوپ های اختراق، حباب های لامپ هالوژن و به عنوان بسترهای صنعت الکترونیک کاربرد دارد.

شیشه ی سربی

ترکیب عمومی این شیشه ها سیلیکات های قلیایی سربی استشیشه ها (4). در این نوع شیشه ها Pbo به جای CaO در شیشه ی سودالایمی قرار گرفته است. این نوع شیشه دارای مقاومت بالایی است. همچنین ضریب انبساط حرارتی آن بالاست. و دمای نرم شوندگی پایینی دارد. دلیل آنکه از این نوع شیشه ها در تولید ظروف کریستال استفاده می شود این است که ضریب شکست این نوع شیشه بالاست و علاوه بر این که از این شیشه ها در ظروف تزئینی استفاده می شود، از آنها در ساخت تیوپ های لامپ، لامپ تصویر تلویزیون و تیوپ های ترمومترها استفاده می شود. در ظروف کریستال انگلیسی که به صورت سنتی تولید می شوند، میزان Pbo حداقل 30% است. برطبق رهنمود اتحادیه ی اروپا میزان Pbo باید بیش از 24 درصد باشد. همچنین بر طبق استاندارد اروپا شیشه های کریستال سربی باز یافت نمی شوند. شیشه های سربی که برای ساخت حفاظ های تابشی استفاده می شوند ممکن است دارای بیش از 65% Pbo باشند. کاربرد این گونه شیشه ها در لامپ تصویر تلویزیون است اگر چه شیشه های باریمی برای ساخت صفحه و تابلوهای تلویزیون استفاده می شود. (تفنگ الکترونی تلویزیون اشعه ی x ساتع می کند که این نوع شیشه باید این تابش ها را جذب کند.)شیشه های سرب – بوراتی می توانند به عنوان لحیم های شیشه ای استفاده شوند. این نوع شیشه ها دارای در صد کمیشیشه ها (4) است و کاملا خنثی است.
شیشه های فیلنیتی (flint glass) دارای تفرق بالایی است. در واقع این نوع شیشه ها از نوع شیشه های سیلیکاتی قلیایی ـ سربی است که از ذوب سنگ های فیلنیتی ساخته شده اند(فیلنیت فرم خالص سیلیس است) .لازم به توضیح است که این نوع سنگ کلسینه شده و به طور فراوان در ساخت بدنه های سرامیکی استفاده می شود.

شیشه ی بورانی ( شیشه ی بورو سیلیکاتی )

شیشه های بوروسیلیکاتی قلیاییشیشه ها (4) به خاطر ضریب انبساط حرارتیشیشه ها (4) کوچکشان ویژه هستند. این نوع شیشه دوام بالایی داشته و خواص الکتریکی مفیدی دارند. پیرکس (Pyrex) که یک نوع ماده در تولید وسایل پخت و پز است . از جنس بروسیلیکات است .شیشه ی بروسیلیکاتی به طور وسیع در فرآیندهای شیمیایی استفاده می شود. برخی از شیشه های براتی دارای دمای ذوب پایینیشیشه ها (4) هستند از این رو آنها را می توان به همراه سایر شیشه ها استفاده کرد. شیشه ی بروسیلیکاتی – زنیکی به شیشه های منفعل شهرت دارند. این شیشه ها مواد قلیایی ندارند و از این رو از آنها می توان در ساخت اجزای الکترونیکی سیلیسیمی استفاده کرد.

سیلیس فیوزد

این نوع شیشه از نوع سیلیس خالص است. این شیشه ها ، شیشه های سیلیکاتی برای کاربردهای دما بالا هستند. ضریب انبساط حرارتی این نوع شیشه ها نزدیک به صفر است. این نوع شیشه ها برای تولید آینه های تلسکوپ و زیر لایه ها (Substrates) استفاده می شود. به خاطر داشتن ضریب انبساط حرارتی نزدیک به صفر به این شیشه ها ، شیشه های با انبساط حرارتی بسیار پایین (VLE Silica) می گویند .
شیشه های VLE دارای 7 درصد وزنیشیشه ها (4) برای تولید لفافه های لیتوگرافی نوری (masks photolithography) استفاده می شود. البته به خاطر دمای بالای فرآیند شکل دهی این شیشه ها ؛ می توان به جای آنها از شیشه های وایکور استفاده کرد.

شیشه ی فسفاتی ( phosphate – glass )
 

شیشه های فسفاتی شیشه های مهمی هستند زیرا این نوع شیشه ها خاصیت نیمه رسانایی دارند. یکی از کاربرد این مواد در ساخت تقویت کننده های الکترون (electron multipliers) است . در این نوع وسایل با استفاده از دپ کردن Er (افزودنشیشه ها (4) ) ، این تقویت کننده ها ساخته می شود. کایتون های موجود در این نوع شیشه ها معمولا V و P هستند اما لابراتوار ملی او آ ک ریچ (Oak Ridge National labroatory) یک نوع شیشه ی فسفاتی اندیوم – سربی تولید کرده است که دارای ضریب شکست بالایی است. از ویژگی های دیگر این شیشه می توان به دمای ذوب پایین و خاصیت ترانسپارنتی در برابر گسترده ی وسیعی از طول موج ها را نام برد. به دلیل آنکه این نوع شیشه می تواند درصد بالایی از عناصر خاکهای کم یاب را در خود حل کنند، از آنها در تولید وسایل نوری اکتیو مانند آمپلی فایرهای فیبر اپتیک و لیزرها استفاده می شود. شیشه های فسفاتی دپ شده با Nd در لیزرهای حالت جامد استفاده می شوند. ترکیب شیمیایی نمونه وار از این نوع شیشه عبارتست ازشیشه ها (4) است. که در صد Nd بین O.2-2.O درصد مولی است.

شیشه ی چالکوژیندی ( Chalcogenide glass )

این نوع شیشه براساس Se,As و Te بوجود می آید. این شیشه ها نور فرو سرخ را از خود عبور می دهند و نیمه رسانا های غیر اکسیدی هستند. از این نوع شیشه در وسایل و لنزهای الکترونیکی ویژه استفاده می شود. در این وسایل هنگامی که ولتاژ اعمالی به آنها از میزان بحرانی فراتر رود، به طور ناگهانی تغییر رسانایی رخ می دهد. کاربرد این نوع شیشه ها بسیار خاص است زیرا این شیشه ها دوام پایینی داشته و دمای نرم شوندگی شان پایین است.

شیشه ی فلورایدی ( fluoride glass )

عموماً شیشه های هالیدی بر پایه یشیشه ها (4) را شیشه های فلورایدی می گویند. کاربرد این نوع شیشه ها در وسایل همسو کننده نوری (optical waveguides) است. و درجاهایی که قیمت توجیه پذیر باشد استفاده می شوند.

شیشه ی طبیعی

این مسئله که شیشه در طبیعت بوجود می آید حتی این پدیده یک امر نسبتاً معمولی است، باعث شگفتی بسیاری از مردم می شود. تکتیت ها (tektites) درهنگام برخورد شهاب سنگ ها به زمین و در دهانه ی حاصله از برخورد شهاب سنگ پدید می آیند. مولد اویت (Moldavite) نیز یک شیشه ی سبز رنگ است که در مولداوی (Moldavia) یافت می شود . فولگلاریت (fulgarite) نیز تیوپ های شکننده از شیشه هستند که در هنگام برخورد برق آسمان به خاکهای ماسه ای پدید می آید. ابسیدیان (obsidian) نیز یک نوع شیشه است که در جریان های آتش فشانی تشکیل می شود. رنگ سیاه رنگ این نوع شیشه به خاطر ناخالصی پدید می آید. در طی دوره ی پارینه سنگی از ابسیدیان در ساخت وسایل استفاده می شده است. سنگ پا (Pamice) یکی دیگر از شیشه هایی است که از فوران های آتش فشانی تشکیل می شود. این ماده می تواند تخلخل های فراوانی داشته باشد. (درصورتی که ماده ی اولیه ی تشکیل دهنده ی آن دارای مواد گازی فراوانی باشد). سنگ پا شکل متخلخل ابسیدیان است

شیشه ها

مقدمه:

دراین مقاله ها در مورد انواع مختلف شیشه و برخی از کاربردهای آنها صحبت می کنیم.
شیشه ها یکی از انواع مهم موادمهندسی محسوب می شوند. این مواد در پنجره ها، ساخت بطری، لیزرها، الیاف نوری، عایق ها، لعاب کاری (glazing) ومینا کاری (enamelihg)، چاقوی جراحی، وسایل هنری وتابلوهای راهنمایی - رانندگی استفاده می شوند.
شیشه ها معمولا بازیافت می شوند واز این رو دوستدار محیط زیست هستند.مصریان آثار شیشه ای متنوعی بر جای گذاشته اند ولی آنها اولین کسانی نبودند که از این ماده استفاده می کردند.در دوران های دیرینه سنگی (paleolithic Times) شیشه های اولیه و شیشه های طبیعی (Obsidian: نوعی شیشه ی مصنوعی بدست آمده از آتش فشان ها ) بسیاراهمیت داشتند به خاطر اهمیت زیاد این ماده می توان گفت که شیشه نقش مهمی در شکل دهی تمدن ما داشته است.
به هر حال تعریفات مختلفی برای شیشه ها بیان شده است. دراین مقاله سعی می کنیم بگوییم چرا واژه های شیشه ای (glassy)، زجاجی (Vitreous) و آمورف (amor phous) همگی برای توصیف شیشه استفاده می شوند. همچنین سعی داریم جواب این سوال را بدهیم که: «شیشه چیست؟»
هنگام مطالعه ی این مقاله باید دو ذهنیت را داشته باشید:
1) ادعای Sturkey:"شیشه در دماهای بالا یک محلول شیمیایی است."
2) اگر شیشه که مایع فوق سرد شده است، پس جامد نیست وبنابراین یک ماده ی سرامیکی نیست (اما شیشه یک ماده ی سرامیکی است)

تعریف

تعریف کلاسیک شیشه براساس روش تاریخی تشکیل آن انجام شده است. البته این روش تعریف یک روش بسیار غیر معقولی برای تعریف هر ماده است. این مسئله باعث شده است تا امروز شیشه به چندین روش مختلف تعریف شود:
تعریف کلاسیک: شیشه یک مایع فوق سرد شده است(Supercooled liquid) مشکل بوجود آمده دراین تعریف این است که در برخی موارد می توان یک شیشه ی ویژه را به روشی تولید کرد که هیچگاه درحالت مایع قرار نداشته باشد.
ASTM شیشه را به صورت زیر تعریف کرده است:
"شیشه یک محصول غیر آلی از ترکیبی مذاب است که بدون آنکه کریستالی شود، سرد وصلب می گردد."
این تعریف نیز همان چیزی است که در تعریف کلاسیک آمده است. اما دراین تعریف شیشه ی پلیمری استثناء شده است. به وضوح مشخص است که استناد کردن به روش تولید برای تعریف یک گروه از مواد ایده آل و مناسب نمی باشد.

تعاریف دیگر :

1)" شیشه یک ماده ی جامد است که نظم دوربعد از خود نشان نمی دهد."
نداشتن نظم دوربعد یعنی ساختار شیشه درفواصل یک، دو یا سه برابر فاصله ی اجزای سازنده، دارای نظم نیست. این تعریف براساس مشاهدات حاصله از تفرق اشعه X، میکروسکوپ الکترونی عبوری (TEM) و... استوار است اما این تعریف نیز کمی قراردادی است زیرا به اندازه ی اجزاء تشکیل دهنده بستگی دارد.
2)" شیشه یک مایع است که قابلیت جاری شدن خود را از دست داده است."
این تعریف استوار است اما از تعریفی که بوسیله ی ASTM ارائه شده است فراگیرتر است .همچنین این تعریف از خاصیت مکانیکی برای تعریف شیشه استفاده می کند. درحقیقت این تعریف عملاً با دیدگاه فیزیک مدرن درباره ی شیشه مطابقت دارد.
اکثر شیشه هایی که ما در مورد آنها توضیح می دهیم، شیشه های با شبکه ی اکسیدی است . (مخصوصاً سیلیکات ها) تعریف ما از چنین شیشه هایی عبارتست از:
تجمعی جامد از تتراگونال هایی است که می توانند رئوس خود را به اشتراک گذاشته و البته این مواد نظم دور بعد ندارند.
دراین مقاله ما تنها درمورد شیشه های سرامیکی بحث می کنیم اما باید بدانیم که علاوه بر شیشه های سرامیکی، شیشه های فلزی و پلیمری نیز وجود دارد. شیشه های فلزی ترکیبات پیچیده ای هستند که در آنها عمل کریستالیزاسیون انجام نشده است. این مسئله بوسیله ی سریع سرد کردن فلز مذاب بوجود می آید.(این فرآیند اسپلات کوئنچینگ نامیده می شود). درادامه به بیان ویژگی شیشه ها می پردازیم:

ساختار

شیشه ها در اصل جامد های غیر کریستالی (یا آمورفی) هستند که در اغلب موارد از فریز شدن یک مایع فوق سرد شده بدست می آیند. دراین موارد نظم دور برد در آرایش اتمی وجود ندارد. البته نظم کوتاه برد (زیر 1nm) وجود دارد. این مواد دارای آرایش منظمی از سلولهای واحد نیستند.همانگونه که گفتیم شواهدی وجود دارد که ثابت می کند در شیشه ها نظم کوتاه برد وجود دارد.این نظم کوتاه برد به دلیل آرایش اتمی درمجاورت هر اتم (البته در فاصله ی کوتاه) بدست می آید. تلاش های فراوانی برای توصیف شیشه ها انجام شده است. که به بیان علت تشکیل شدن یا نشدن شیشه ها بحث می کند. دراین زمینه ما ازدو دیدگاه به شیشه ها نگاه می کنیم:
1) توجه به ساختار
2) توجه به مباحث کنیتیکی کریستالیزاسیون
درمورد اول ما به بیان هندسه ی اجزای تشکیل دهنده ی شیشه ها می پردازیم. همچنین دراین زمینه به بیان پیوندهای بین اتمی واستحکام پیوندها می پردازیم . درمورد دوم ما به بیان چگونگی دگرگونی های مایع به جامد در طی فرآیند سرد شدن می پردازیم.
دمای تبدیل شدن شیشه ای ( Tg )
درشکل 1 نموداری نشان داده شده است که در آن حجم ویژه به عنوان تابعی از دما رسم شده است.

شیشه ها (1)

این دیاگرام فرمی از دیاگرام استعاله ی دما – زمان (T.T.T) برای شیشه است. درهنگام سرد شدن مایع از دمای بالا دو پدید ه ممکن است در نقطه ی انجماد (Tm) اتفاق می افتد که عبارتند از :
1) اگر مایع کریستالیزه شود تغییرات حجم و سرعت سرد کردن گسسته است.
2) اگر کریستالیزاسیون اتفاق نیفتد، مایع به حالت فوق سرد شده تبدیل می شود و حجم در نزدیک دمای ذوب کاهش می یابد.
دردمای تبدیل شدن شیشه ای (Tg)، شیب نمودار کاهش می یابد و به شیب جامد کریستالی نزدیک می شود. این شکستگی بوجود آمده در نمودار سرد کردن نشان دهنده ی گذرگاه مایع فوق سرد شده به شیشه است. زیر دمای Tgساختار شیشه درحالت آسایش نیست زیرا این مواد اکنون جامد هستند. دراین ناحیه از Tg ویسکوزیته تقریبا شیشه ها (1) است. ضریب انبساط حالت شیشه ای معمولا نزدیک به ضریب انبساط جامد کریستالی است. اگر از سرعت های سرد کردن پایین تر استفاده شود، میزان آسایش ساختار افزایش می یابد. ومایع فوق سرد شده در دمای پایین تر تشکیل می شود. و شیشه ی حاصله ممکن است دانسیته ی بالاتری بدست آورند. (همانگونه که در شکل 1 دیده می شود)
فیزیک شیشه جنبه ی تردی آن را مورد بررسی قرار می دهد. در واقع این ویژگی یک ویژگی مایعات شیشه ساز در بالای دمای Tgاست واندزه ای از استعکام پیوندهای بین اتمی است. در ادامه ما درمورد شیشه ی نامحلول در آب یا بطری های شیشه ای آب صحبت می کنیم. البته چیزی که آگاهی کمتری از آن است این است که ما می توانیم آب را با سریع سرد کردن در اتاق مایع به حالت شیشه ای در آوریم. ماده ی حاصله یک شیشه ترد است اما این مسئله فهمیده شده است که بیشتر آب موجود در جهان به همین شکل وجود دارد.
تاریخچه
شیشه ماده ای است که پیوندی عمیق با تاریخچه ی انسان دارد. یکی از شواهد این مسئله استفاده از ابسیدیان (obsidian) یک شیشه ی طبیعی توسط بشر است. هیچ کس نمی داند که اولین جسم شیشه ای در چه زمانی ساخته شده است. قدیمی ترین یافته ها به 7000 سال پیش از میلاد برمی گردد. (البته ممکن است یافته هایی پیش از این تاریخ نیز وجود داشته باشد). درکاوش های باستان شناسی در بین النهرین روش های تولید شیشه کشف شده است . این کارها 4500 سال پیش از میلاد مسیح بوده است ومربوط به روش های تولید وسایل شیشه ای بوده است نه لعاب های مورد استفاده در وسایل سفالی. استفاده از شیشه در لعاب کاری سفال حتی به دوران های پیشین می رسد.

شیشه ها (1)

تقریبا در 3000 سال پیش از میلاد مسیح شیشه گران مصری شروع به تولید جواهر آلات شیشه ای و ظروف شیشه ای کوچک کردند. شیشه هم به عنوان یک جسم دکوری وهم به عنوان یک وسیله ی مورد استفاده در زندگی روزمره به شمار می آمد. قطعاتی از جواهر آلات شیشه ای در کاوش های اطراف کوه های مصر پیدا شده است. مثالی از این جواهرآلات شیشه ی فیزوزه ای آبی است که در شکل 2 دیده می شود. تقر یبا 1500 سال پیش از میلاد مسیح شیشه گران مصری ( در دوره ی touthmosis سوم ) روشی برای تولید قطعات تو خالی قابل استفاده، توسعه دادند. یک مثال قابل توجه از این نوع ساختار یک شیشه ی توخالی است که شبیه به سرماهی است (شکل 3) این ظرف بین سال های 1352 و 1336 قبل از میلاد ساخته شده است واین نظریه وجود دارد که برای نگه داری روغن خوش بو استفاده می شده است.

شیشه ها (1)

الگوی موجی این ظرف بسیار خاص است. در واقع این ظرف بوسیله ی کشیده شدن یک جسم تیز به شیشه ی خمیری شده تولید شده است.
نویسنده ی رومیPliny Fhe Elder (23-79 میلادی) اختراع شیشه را به صورت زیر توصیف می کند:
روزی یک کشتی که متعلق به چند تاجر نیتروم (Nitrum) بود در کنار ساحل لبنان کنونی توقف می کند. هنگام پخت غذا به دلیل نبود سنگ در ساحل، خدمه کشتی از کلوخ های نیترومی که در کشتی وجود داشته است. استفاده می کنند تا بتوانند دیگ غذا را در مکان مناسب استقرار دهند. پس از آنکه آتش روش شد، کلوخه ها با ماسه های ساحلی واکنش داده و تشکیل شیشه ی مذاب می دهد. این اولین منشع پدید آمدن شیشه است.
نیتروم (Nitrum) یک نوع سدیم کربنات (Soda) طبیعی است .این ماده یکی از اجزای مهم در شیشه های قدیمی و مدرن است. خاکستر گیاهان نیز یک منبع فقیر از سدیم برای شیشه گران فراهم می کند. گیاهان علف شوره (Saltwort) و رازیانه ی آبی (glass wort) از جمله گیاهانی هستند که برای مهیا شدن سدیم از آنها استفاده می شده است.
یکی از معمولی ترین روش ها برای شکل دهی شیشه روش دمش هوا است. اگر چه این تکنیک بیش از دوهزار سال پیش توسعه یافت، لوله های تولیدی به روش دمش در طی زمان تغییری نکرده است. توسعه ی عمده که دراین زمینه انجام شده است، روش دمش اتوماتیک است که برای تولید شیشه های بطری و حباب های لامپ استفاده می شود. دراین روش به قطعه ای شیشه در داخل قالب هوا دمیده می شود. و بدین شکل شیشه به شکل قالب در می آید. مهمترین مرحله ی رشد در تاریخ شیشه سازی مخصوصا درطی قرن بیستم مربوط به توسعه های اتفاق افتاده در زمینه ی تکنولوژی های تولید می باشد. این توسعه ها منجر به کاهش هزینه ی تولید محصولات شیشه ای می شود

در ادامه به بیان خواص شیشه ها می پردازیم:

ویسکوزیته ( η )

ویسکوزیته یک ویژگی کلیدی شیشه هاست.ما نیاز داریم تا درمورد ویسکوزیته ی شیشه در دماهای مختلف اطلاع داشته باشیم. و بتوانیم دمای مورد نیاز برا ی شکل دهی وآنیلینگ آن را تشخیص دهیم. ویسکوزیته یک ویژگی مکانیکی است. فرمول ویسکوزیتد به صورت زیر است:

شیشه ها (2)

دراین فرمول:
η : ویسکوزیته، F: نیروی مورد نیاز برای کشیدن یکی از صفحات موازی که در میان آنها مایع مورد نظر قرار دارد: ،d: فاصله ی صفحات، A: مساحت صفحات، V: سرعت حرکت صفحه. ویسکوزیته در واقع پاسخ یک مایع دربرابر تنش برشی است. مایعات دارای ویسکوزیته ای هستند که با واحد سانتی پوآز (CP) اندازه گیری می شود. واحد اندازه گیری ویسکوزیته ی گازها میکروپوآز(mp) است.

شیشه ها (2)

جدول 1 لیستی از اعداد ویسکوزیته ای است که برای فرآیندهای شیشه سازی مهم هستند. اعداد داده شده در جدول 2 نیز برای تعریف ویژگی های برجسته ی شیشه (با تأکید بر روی فرآیند) آورده شده است. بسیاری از اعداد آورده شده درجدول ویسکوزیته ها استاندارد هستند مثلا (2003) ASTMC338-93 یک روش تست استاندارد است که نقطه نرم شدگی شیشه بوسیله ی آن تعیین می شود.
محاسبه ی نقطه ی نرم شدگی شیشه بوسیله ی اندازه گیری دمایی که در آن یک فیبر شیشه ای استوانه ای با قطر شیشه ها (2) طول بوسیله ی وزن خودش تغییر طول می دهد. نرخ تغییر طول یک میلی متر بردقیقه است . در این روش 100 میلی متر از بخش بالایی فیبر بوسیله ی کوره ی خاصی با سرعت گرم شدنشیشه ها (2) گرم می شود.

شیشه ها (2)

ویسکوزیته ی برخی ازمایعات عمومی در جدول 2 آورده شده است. توجه کنید که در دمای کارپذیری شیشه ویسکوزیته ای شبیه به عسل در دمای اتاق دارد. به طور نمونه برای یک شیشه ی سیلیکاتی سودالایم این ویسکوزیته در دمایشیشه ها (2) بدست می آید. این جدول همچنین نشان می دهد که یک جامد دارای ویسکوزیته ای بیش ازشیشه ها (2) دسی پو آز است. ویسکوزیته ی به طور نمایی با تغییر دما ، تغییر می کند ( همانگونه که در شکل 1 برای انواع شیشه ی سیلیکاتی دیده می شود.) دمای فیکتیو (fictive temperature) دمایی است که در آن ساختار مایع به حالت شیشه ای تبدیل می شود. این دما بوسیله ی تقاطع منحنی های برونیابی شده در حالت دما بالا و دما پایین در نمودار ویسکوزیته – دما بدست می آید. دمای فیکتیو (Tf) مانند Tg به تبدیلات ساختاری شیشه بستگی دارد. البته Tg اندکی کمتر از Tf است.

شیشه ها (2)

شکل 2 وابستگی ویسکوزیته به دما را برای اکسیدهای شیشه ساز نشان می دهد. شما باید توجه کنید که بوسیله ی شیب این خطوط می توان انرژی اکتیواسیون جریان ویسکوز (EV) را بدست آوریم.

شیشه ها (2)

جدول 3 اعداد ویسکوزیته وسرعت های کریستالیزاسیون (v) برخی شیشه ها را نشان می دهد. سرعت کریستالیزاسیون مربوط می شود به سرعت تبادل مایع/جامد. V بسیار کم بیان کننده ی قابلیت شیشه سازی استثنایی ماده است.البته کریستالیزاسیون مذاب جامد شده ی سیلیس بسیار مشکل است.

شیشه ها (2)

روش های متعددی برای اندازه گیری ویسکوزیته وجود دارد. این روش ها با توجه به میزان ویسکوزیته انتخاب می شود.

شیشه ها (2)

شماتیک دو روش اول اندازه گیری ویسکوزیته در شکل 3 نشان داده شده است:

شیشه ها (2)

شیشه ( خلاصه ای از خواص )
 

شیشه ماده ای خنثی است. این مسئله به محیط بستگی دارد. اگر شیشه یک ماده ی سیلیکاتی باشد، این مسئله درست است . البته همه ی شیشه ها خنثی نیستند. مثلا بیوگلاس (bioglass)
شیشه یک ماده ی هموژن است. این مسئله نیز به نحوه ی شکل دهی و ترکیب شیمیایی شیشه بستگی دارد. ما می توانیم با استفاده از فرآیندهای خاص شیشه را به صورت غیر هموژن در آوریم.
شیشه می تواند تغییر شکل دهد. این مسئله عموماً درست می باشد و دلیلی است برای قابلیت بازیافت شیشه ها. برخی از شیشه ها به نحوه ای ساخته می شوند که بوسیله ی نور، انتشار نور در داخل آن وتابش نور و...تغییر ماهیت می دهد.
شیشه دارای ضریب انبساط کوچک است. البته همه ی شیشه ها مناسب استفاده شدن در کاربردهای حرارتی مانند ظروف پیرکس نیستند.
شیشه ها شفاف اند (trans Parent) این خاصیت برای الیاف نوری ضروری است. البته ما می توانیم با انجام عملیات های خاص شیشه به صورت اپک یا مات در آوریم.
بسیاری از شیشه های اولیه شفافیت کامل نداشتند زیرا در ساختار آنها ناخالصی وحباب هوا وجود داشت.
شیشه ارزان است. البته این مسئله برای شیشه های پنجره صحیح است. اما درمورد فیلم های نازک شیشه ای این مسئله صحیح نمی باشد. برخی از شیشه های قرمز رنگ بوسیله ی دپینگ (doping) طلا در آنها تولید می شود. که قیمت برخی از ظروف تولیدی از آن به پیش از 50 دلار می رسد.
شیشه یک ماده ی بالک است مگر در حالتی که آن را به صورت یک فیلم نازک ، یک فیلم انیتر گرانولار (IGF) یا یک سرامیک کریستالی رشد دهیم.

برخی از خواص مکانیکی شیشه

استحکام تئوریک شیشه ی سیلیکاتی درحدود 10GPa است. البته با حضور عیوب سطحی (ترک ها وجوانه ها ) این استحکام کاهش می یابد. شیشه ها موادی الاستیک هستند اما تحت کشش می شکنند. می توان استحکام این مواد را بوسیله ی ایجاد لایه های سطحی فشرده و یا بوسیله ی از بین بردن ترک های سطحی (با اسید شوئی یا پدید آوردن پوشش محافظ) افزایش داد. مثالی از این روش ها پدید آوردن ترک های اضافی در ساختار قطعات شیشه ای تزئینی به منظور بهبود خواص مکانیکی آنهاست. در این روش از سرد کردن شیشه ی مذاب در آب جهت ایجاد تنش های اضافه بهره برده می شود . در این حالت سطح قطعه ی شیشه ای مذاب زودتر از مرکز آن سرد می شود و بنابراین تنش های اضافی پدید می آید. قطعات جامد شده به این شیوه را می توان با چکش و بدون اینکه بشکنند چکش کاری کرد.

برخی از ویژگی های الکتریکی شیشه

شیشه معمولا دارای مقاومت الکتریکی بالایی است. که علت آن تفاوت زیاد میان باندهای انرژی (گپ بزرگ) در این ماده است. در مواردی که شیشه رساناست . بار بوسیله ی یون ها منتقل می شود.(در این مورد یون های قلیایی مانندشیشه ها (2) دارای سرعت انتقال بار بالایی هستند). در واقع به همین دلیل است که با افزایش دما رسانایی به شدت افزایش می یابد. رسانایی درشیشه های مختلف، متفاوت است.علت آن متفاوت بودن نوع شبکه ی این شیشه هاست. در شیشه هایی که دارای بیش از یک یون قلیایی هستند. پدیده ی جالبی رخ می دهد. رسانایی تولیدی در این نوع شیشه ها به طور مشخصی از شیشه های دارای یک یون کمتر است. این نوع شیشه ها در کاربردهای مختلف مانند لامپ های با توان بالا استفاده می شوند. ثابت دی الکتریک شیشه واقعاً بالاست اما نه به حدی که بتوان از آن در کاربردهای حافظه ای پیشرفته مانند حافظه ی با دستیابی دینامیک و رندوم (DRAMS) استفاده کرد. ظرفیت الکتریکی یک ماده میزان بار ذخیره شده در داخل ماده است. این خاصیت به ضخامت دی الکتریک بستگی دارد. همانطور که ضخامت دی الکتریک کمتر می شود، ظرفیت الکتریکی افزایش می یابد. اما کم کردن ضخامت نیز مشکلاتی به همراه دارد. مثلا با کاهش ضخامت احتمال شکست دی الکتریک بیشتر می شود. شیشه ی سیلیسی دارای مقاومت دی الکتریک بالاتری نسبت به سایر شیشه هاست. اما مقاومت این دی الکتریک نیز در حد دی الکتریک های پلیمری مانند رزین فنولیک نیست.

برخی از خواص اپتیکی شیشه

شفافیت دربرابر نور فرا بنفش ، مرئی و فرو سرخ به چندین فاکتور بستگی دارد. یکی از این فاکتورها طول موج تفرق است که بوسیله ی ناخالصی ها تغییر می کند. لبه ی فرو سرخ (IRedge) و لبه ی فرا بنفش ((uv edge اعدادی هستند که نشان دهنده ی فرکانس قطع شدن عبور این موج ها هستند. یک مانع لبه UV edge blocker)UV) از عبور UV جلوگیری می کند و این در حالی است که یک عبور دهنده ی لبه یUV (UV edge tran Smitter) اجازه ی عبور نور UV را می دهد.

عیوب در شیشه ها

اگر چه شیشه یک ماده ی آمورف است ولی مانند مواد کریستالی دارای عیوب و رسوبات است. و همچنین دچار جدایش فاز می شود. شیشه را می توان برای حبس کردن عناصر رادیو اکتیو استفاده کرد .در این عناصر مانند عیوب نقطه ای یا فاز ثانویه تشکیل می شوند. همچنین سرعت نفوذ این عناصر از میان شیشه بر روی میزان آن ها در شیشه تأثیر دارند. این مسئله استفاده می شود تا بتوان مواد رادیو اکتیو یا سایر مواد را کنترل کرد.

شیشه ی غیر هموژن

به دلیل آنکه شیشه یک مایع فوق سرد شده است. نمی توان گفت که این ماده حتما باید هموژن باشد. شیشه های خاص می توانند بدون نیاز به فرآیند کریستالیزاسیون به دو فاز تبدیل شوند. هنگامی که این دو فاز شیشه ای باشند این مسأله باعث می شود که سدی در برابر جدایش فازی پدید نیاید. در مورد فرآیند جدایش فازی مایع – مایع ممکن است مرحله ای برای جوانه زنی وجود داشته باشد. البته در این نوع تبدیلات ممکن است استعاله ی اسپینودال (Spinodal) نیز رخ می دهد. که هر دوی این استعاله ها به نفوذ وابسته اند.
قوانین امتزاج ناپذیری در شیشه ها بسیار مهم است. این مسئله مخصوصاً در شیشه های تولید شده با تکنولوژی روز نمود دارد. برای مثال امتزاج ناپذیری در شکل دهی شیشه – سرامیک ها ، تولید شیشه ی وایکور (Vycor) و شیشه های اپتیکی و تشکیل رسوب در شیشه ها مهم می باشد. بسیاری از اکسیدهای دوتایی و سه تایی در کنار سیلیس از خود مشکلات امتزاج پذیری نشان می دهند.
در دیاگرام فازی ناحیه ای وجود دارد که یک مایع به دو مایع با ترکیب شیمیایی متفاوت تبدیل می شود. این ناحیه گپ امتزاج پذیری (imisciblity gap) نامیده می شود. در زیر برخی از سیستم هایی که مشکل امتزاج پذیری دارند را نام برده ایم:

شیشه ها (2)

شیشه ها (2)

شکل 4 دیاگرام فازیشیشه ها (2) را نشان می دهد. در دمای پایین و در گوشه ی غنی از سیلیس دیاگرام ، فاز مایع به دو بخش مایع با ترکیب شیمیایی متفاوت تبدیل می شود. این دو مایع به صورت دو شکل گنبد مانند در شکل نشان داده شده اند. خط تیره نشان دهنده ی خط تقریبی ناحیه ی امتزاج ناپذیری است. مشکلی که در اندازه گیری این خط وجود دارد. این است که این پدیده در دمای پایین رخ می دهد و از این رو سرعت آن پایین است . و از این رو اندازه گیری آن مشکل است. دراین وضعیت میل جدایش فازی بیشتر از میل به کریستالیزاسیون است . البته کریستالیزاسیون مساعد تر از جدایش فازی است اما به دلیل آنکه جدایش فازی نیازی به باز آرایی اتم ها ندارد، این پدیده رخ می دهد. به عنوان یک قانون کلی برای سیلیس باید گفت که امتزاج ناپذیری با افزودنشیشه ها (2) افزایش می یابد اما با افزودنشیشه ها (2) کم می شود. در شیشه های وایکور از قوانین جدایش فازی استفاده می شود. در فرآیند تولید شیشه وایکور، شیشه ای پدید می آید که دارایشیشه ها (2) و 4 درصد تخلخل است.این نوع شیشه به عنوان فیلتر وبیومواد مخصوصا در جاهایی که تخلخل مهم می باشد، استفاده می شود. در فرآیند تولید وایکور، شیشه ای تولید می شود که پس از فرآیند شکل دهی دنس می گردد و شیشه ای با سیلیس خالص پدید می آید که در دمای پایین تر نسبت به کوارتز خالص شکل دهی گشته است

شیشه ی آلومینیوم – ایتریمی

شیشه های آلومینیوم –ایتریایی (YA) دارای درصد آلومینایی در گسترده ی تقریبی 75.6- 59.8 هستند. با این درصد آلومینایک شیشه ی دو فازی تشکیل می شود که در آن یک فاز قطره مانند در فاز دیگر تشکیل شده است. این شیشه به طور خود بخودی به صورت شیشه ی آلومینیوم – ایتریمی یا مخلوطی ازشیشه ها (3) تبدیل می شود. درشیشه های YA پدیده ای به نام پلی مورفیزم (Polymorphism) رخ می دهد

شیشه ی رنگی

اگر چه در بیشتر کاربردهای شیشه نیاز است تا این ماده بی رنگ باشد اما در برخی از کاربردها نیاز است شیشه رنگی باشد. هنگامی که پنجره های یک کلیسا رنگی باشد، تأثیر پذیری ازمحیط بیشتر می شود . درشیشه ها معمولا بوسیله ی افزودن اکسیدهای انتقالی و یا اکسیدهای عناصر خاک های کمیاب (rave –eavth) به بچ ماده ی اولیه ی آنها، رنگی می شوند. جدول 1 لیستی از رنگ های تولیدی بوسیله ی مواد رنگی کننده ی شیشه هاست . زرد کم رنگ، نارنجی و رنگ های قرمز بوسیله ی فلزات گران بها درحالت کلوئیدی تولید می شود. طلا (Au) رنگ قرمز، یا قوتی تولید می کند. (البته این شیشه ها گران قیمت هستند). سولفید کادمیم (cds) محصولاتی با رنگ زرد تولید می کند. اما هنگامی که علاوه بر se ، cds نیز استفاده شود. محصولاتی با رنگ قرمز یا قوتی با شدت رنگ بالا تولید می شود.

شیشه ها (3)

شیشه بوسیله ی افزودن دوپانت ها (dopants) رنگرزی می شوند. در واقع با افزودن این دو پانت ها در شیشه عیوب نقطه ای پدید می آوریم. رنگ شیشه به نوع دو پانت و حالت اکسیداسیون آن بستگی دارد.
دو پانت ها می توانند اثر بی رنگ کننده (decdorizo) ، پوشش دهنده (mask) یا اصلاح کننده (modify) داشته باشند. ما می توانیم اثرات رنگی آهن را بوسیله ی افزایش cr خنثی کنیم؛ البته اگر درصدشیشه ها (3) زیاد باشد اضافی به صورتشیشه ها (3) خارج می شود. اگر این شیشه به روش دمیدن شکل دهی شود، این پلیت لت هایشیشه ها (3) منظم گشته و شیشه ای اپک به نام آونتورین کرومی (chromium aventurine) تولید می کنند. مس (cu) برای تولید شیشه ی آبی مصری (Egyptian Blue glass) استفاده می شود.
CO (کبالت ) دربرخی از شیشه های پالایش یافته ی تولید در قرن دوازدهم استفاده می شده است. البته Co در تولید لعاب های پرسلانی مورد استفاده در چین ( در دوره ی سلسله ی منیگ وتانگ) استفاده می شده است. کبالت مورد استفاده در این لعاب ها رنگ آبی کبالتی تولید می کند.
با افزودن Se به شیشه های دپ شده با Cds باعث پدید آمدن رنگ یاقوتی سلینومی (Selenium Ruby) می شود. جزئیات پدید آمده ازهر کدام از این رنگ ها به ترکیب شیمیایی و شرایط پخت شیشه بستگی دارد.
شرکت کورینگ (Cornig) میکرو بارکدهایی با شیشه دپ شده با خاکهای کم یاب تولید کرده است. خاکهای کم یاب دارای باندهای نشر کم پهنا هستند و از میان 13 عنصر خاکهای قلیایی که مورد آزمایش قرار گرفته ، تنها 4 عنصر (Tm,Ce,Tb و Dy) می توانند در برابر تابش UV برانگیخته شوند. و لذا می توان از آنها در شناسایی بوسیله ی UV استفاده کرد. این نوع بارکدها همچنین مشکلات تداخل با سایر بارکدها را نیز ندارد. از این بارکدها در کاربردهای بیولوژیکی استفاده می شود زیرا سمی نیستند.(البته بر چسب زنی با کوانتوم دات ها خطرات کمتری دارد) و می توان از آنها در کاربردهای ژنتیکی استفاده کرد. با استفاده از چند عنصر خاکی کمیاب می توان ترکیب رنگی بیشتر پدید آورد.
شیشه های رنگی خاص شامل موارد زیر می شود :

شیشه ی یاقوتی یا کرانبری ( Cranberry )
 

شیشه ی یاقوتی با افزودن Au به شیشه سربی با حضور Sn پدید می آید. شیشه ی کرانبری که اولین بار در سال 1685 گزارش شده است، یک نوع شیشه ی بی رنگ (معمولاً صورتی کم رنگ ) است. علت پدید آمدن این رنگ در صد کم طلای موجود در آن است . راز تولید شیشه قرمز رنگ برای قرن ها ی زیادی گم شده بود و در قرن هفدهم دوباره کشف شد.

شیشه ی اورانیومی یا وازلینی

محصولات اورانیومی هنگامی که در شیشه ی با سرب بالا استفاده شود، رنگ قرمز تیره تولید می کند. البته شیشه های اورانیومی دیگری نیز وجود دارد که با صطلاح به آنها شیشه های وازلینی (Vaseline glass) می گویند. این نوع شیشه ها دارای رنگ سبز هستند. مسأله ای که این نوع شیشه ها را خاص کرده است این است که این نوع شیشه ها هنگام تابش اشعه ی UV به آنها ، خاصیت فلئورسانس پیدا می کنند. از سال 1940 تنها اورانیوم تهی شده (uranium depleted) به عنوان دو پانت استفاده می شود. علت استفاده از این نوع دو پانت، فراوانی آن است. اما از 100 سال گذشته به بعد اورانیوم طبیعی (natural uranium) استفاده می شود.

شیشه ها (3)

شکل 1 مثالی از یک شیشه ی وازلینی است.

لیزر شیشه ای

عناصر خاکهای کم یاب (rave – earth elements) مانند Nd در تولید شیشه های لیزر و سایر وسایل اپتیکی کاربرد دارند. (شکل 2) . لیزر شیشه ای دپ شده با Nd (Nd-doped glass laser) مانند یک لیزر یاقوتی (ruby laser) کار می کند . اگر چه نوع شیشه ای دارای تفاوت هایی است . میله ی لیزر قطری بینشیشه ها (1) اینچ دارد و معمولا بوسیله ی یک لامپ حلزونی تخلیه می شود. علت استفاده از لامپ های حلزونی این است که طول غیر بار دار این نوع لامپ ها از لامپ های خطی طولانی تر است. لیزر شیشه ای دپ شده با Nd دارای بازدهی بیش از 2% است. این بازده 4 برابر بازده یک لیزر یاقوتی است. به دلیل آنکه رسانایی گرمایی شیشه پایین است بنابراین نیاز به زمان بیشتری برای خنک سازی است.

شیشه ها (3)

رسوبات در شیشه

وجود رسوبات در شیشه عموما اجتناب ناپذیر است. سوال این است که چه زمانی طول می کشد تا رسوبات تشکیل شود. (مخصوصا اگر جوانه زنی هموژن باشد). ما ممکن است عوامل هسته زا برای تسریع جوانه زنی به شیشه اضافه کنیم. جوانه زنی کریستال ها در شیشه از تئوری کلاسیک پیروی می کند. رسوبات تشکیل شده در شیشه می تواند موجب رنگی شدن شیشه شود.

شیشه به عنوان لعاب

لعاب ها مانند شیشه ها در همه جا دیده می شوند. لعاب کاری (glazing) استفاده از ویژگی های ویسکوز شیشه و تشکیل یک لایه ی یک پارچه و صاف بر روی یک زیر لایه ی سرامیکی است.
مینا کاری (enameling) تشکیل همان لایه بر روی یک زیر لایه ی فلزی است. چیزی که باید به آن توجه کرد این است که عموما لعاب ها قدمت زیادتری دارند. در ادامه به بیان برخی از اصطلاحات لعاب می پردازیم:

زیر لعاب ( underglaze )

هنگامی که یک بیسکوییت سرامیکی را می خواهیم مورد عملیات دکور قرار دهیم باید قبل از آن یک لعاب کاری بر روی آن انجام دهیم که این نوع لعاب را زیر لعاب گویند. این لایه به علت تشکیل بهتر دکور بر روی بدنه اعمال می شود. پس از آن که فرآیند دکوراسیون جسم سرامیکی انجام شود برروی آن یک لعاب دیگر اعمال می شود. البته این لعاب پیش از پخت دکور اعمال می شود.
عیب کراولینگ لعاب ( glaze craweling ) این عیب که در لعاب اتفاق می افتد بدین صورت است که لعاب از لایه ی سرامیکی زیرین جدا می گردد. این پدیده به دلیل عدم ترشوندگی بیسکوییت سرامیکی بالعاب در طی فرآیند پخت اتفاق می افتد.
لعاب ترک خورده ( crackle glaze )اگر انبساط گرماییشیشه ها (3) لعاب از سرامیک بستر بزرگ تر باشد، لعاب ممکن است در طی فرآیند سرد کردن (در طی پخت) بشکند. هنگامی که غلظت یون سدیم و پتاسیم در لعاب بیشتر باشد، ترک ها بیشتر پدید می آیند. هنگامی که سرعت سرد کردن بالا رود ترک های حاصل ریزتر می شوند.
لعابهای سلادون (celadon )، تنموکو (tenmoku)، راکو (raku) و کوپر ( copper) لعاب های ویژه ای هستند که در دنیای هنر سرامیک یافت می شوند.
لعاب های سلادوناین لعاب ها اولین بار در حدود 3500 سال پیش تولید شده اند. این لعاب ها دارای گستره ی رنگی از آبی کم رنگ تا سبز مایل به زرد هستند و می توانند رنگی کاملا تیره پدید آورند. رنگ تولیدی در این لعاب ها بوسیله ی آهن تولید می شود(3.o - o.5 در صدشیشه ها (3) به لعاب افزوده می شود). ظروف لعاب خورده توسط این نوع لعاب سپس در دمای تقریباًشیشه ها (3) پخت می گردند. ظروف تولید شده با این لعاب ها زیبایی خاصی داشته و در کاربردهای تزئینی استفاده می شوند. مثلا کوزه ی لعاب خورده با این لعاب که درکشور کره تولید شده است، درسال 1946 از سوی کشور کره به هاری ترومن رئیس جمهور آمریکا هدیه شد. امروزه این ظرف که 23cm ارتفاع دارد قیمتی برابر با 3 میلیون دلار دارد.
لعاب تنموکواین نوع لعاب در زمان سلسله ی سونگ (sung Dynasty) بوجود آمده است. و دارای رنگ قهوه ای تیره یا حتی سیاه است. برای ایجاد این رنگ میزان 8-5 درصد وزنیشیشه ها (3) به لعاب افزوده می شود. تشکیل مناسب این نوع لعاب به شرایط اکسایش – کاهش اتمسفر پخت بستگی دارد. و در شرایط مختلف اکسایش و کاهش رنگ های متنوعی پدید می آید. در لعاب های کوپرنیز از کربنات مس به عنوان منبع Cuاستفاده می شود. البته در طی فرآیند پختشیشه ها (3) تجزیه گشته و Cuoباقی می ماند. Cuo تولید نیز با مونواکسیدکربن (CO) موجود در کوره واکنش داده تا ذرات مس در لعاب تشکیل شوند. این ذرات رنگ قرمز به لعاب می دهند.
لعاب های راکولعاب های راکو اغلباً لعاب هایی فلزی به نظر می رسند. (اگر بوسیله ی یک لایه از فلز Ti پوشش داده شده باشند)
یک روش پیشرفته در تولید لعاب های راکو بدین صورت است که ظروف سرامیکی به شیوه ی معمولی پخت می شوند سپس آنها را در داخل یک محیط کاهنده مانند خاک اره وارد می کنند و سپس آنها را قبل از آنکه بتوانند اکسید شوند، به سرعت سرد می کنند. این نوع لعاب ها اغلبا حالت استثنا داشته و می توانند با زمان تغییر کنند. این مسئله ساده است. زیرا آنها در طی فرآیندهای بعدی تولید اکسید می شوند. این نوع لعاب بر خلاف سایر لعاب ها خنثی نبوده و تنها برای دکوراسیون استفاده می شوند.
لعاب های کریستالی ( crystalline glaze )این نوع لعاب ها ، لعاب هایی دکوراسیونی هستند اما به طور مستقیم با تکنولوژی تشکیل شیشه – سرامیک در ارتباطند. کریستال ها بوسیله ی سرد کردن آهسته لعاب ایجاد می شوند. این سرد کردن آهسته به کریستال های لعاب اجازه ی رشد کردن می دهند. رشد این کریستال ها مد نظر است؛ زیرا لعاب ضخامت کمی داشته و از این رو کریستال ها باید به صورت پلیت لت (platelets) در آیند. برای آنکه عمل رشد کریستال ها بهتر انجام شود از جوانه زاهای تیتانیایی استفاده می شود. این نوع جوانه زاها در لعاب های باویسکوزیته ی پایین استفاده می شوند و در آنهاشیشه ها (3) تشکیل می شود. ترکیب شیمیایی این نوع لعاب ها بسیار مهم است. در آن شیشه ها (3) وشیشه ها (3) به میزان کم و Pbo به میزان 10-8 درصد وزنی استفاده می شود. رشد کریستال با اضافه شدن fe به لعاب افزایش می یابد. اما این اضافه شدن می تواند همچنین موجب پدید آمدن اثراتی بر سایر دو پانت های اضافه شده به لعاب شود.
سفالگران امروزی ازشیشه ها (3) به عنوان اصلاح کننده و تولید کننده ی کریستال های ویلمایت (Crystals Willemite) استفاده می کنند. (ویلمایت یک مینرال کمیاب از روی است). این تکنیک نیازمند مهارت ویژه است. زیرا افزودن مقادیر زیادشیشه ها (3) به لعاب باعث می شود ویسکوزیته ی آن حتی در دماهای پایین نیز کم باشد، بنابراین این مسئله باعث می شود که لعاب از روی سطح سفالی جریان پیدا کند. رشد اسفرولیتی (Spherulite growth) از جوانه زا در لعاب در شکل 3 نشان داده شده است. هر اسفرولیت در واقع توده ای از کریستال های شعاعی است که با توجه به مرکز اسفرولیت دورهم گرد آمده اند.

شیشه ها (1)

لعاب های اپک ( opaque glazes ) اگر به لعاب مذاب کریستال هایی افزوده شود، لعاب می تواند اپک شود. برای این کار می توان ازO_2 S_n یا زیر کن استفاده کرد. که زیر کن ارزان تر است .شیشه ها (3) برای تولید رنگ سفید در لعاب های زیرکنی (Zircon glaze) استفاده می شود. برای اپک کردن کمتر ازشیشه ها (3) استفاده می شود زیرا کریستال های روتایل طلایی رنگ هستند. و بنابراین لعاب را به رنگ زرد در می آورند. ما همچنین می توانیم با تشکیل کریستال لعاب را اپک کنیم (مثلا ولاستونیت:شیشه ها (3). این کار بوسیله ی عملیات حرارتی مناسب، حبس کردن گاز (هوا یاشیشه ها (3) ) ) و یا بوسیله ی جدایش فازی مایع – مایع انجام می شود. لعاب های مات (Matt glazes) بوسیله ی تشکیل کریستال های بسیار کوچک در لعاب بوجود می آیند (مثلا کریستال های ولاستونیت برای لعاب های مات – آهکی و وبلیمایت (شیشه ها (3):Willemite ) برای لعاب های مات – زینک). کریستال های ریز ولاستونیت بوسیله ی افزودن کلسیت به لعاب پایه سیلیس تشکیل می شود. یک روش دیگر برای این کار افزودن مقادیر زیادی از ماده ی کریستالی به لعاب است تا در طی فرآیند پخت درصدی از آن به صورت کریستالی باقی بماند

رنگ در لعاب و لعاب موضوعاتی هستند که امروزه تحقیقات فراوانی بر روی آنها به عمل آورده شده است. امروزه رنگ های جدیدی بوسیله ی افزودن نانو ذرات در لعاب پدید می آید. عموما نانو ذرات نقره و طلا رنگ طلایی بوجود می آورند. و نانو ذرات مس رنگ قرمز بوجود می آورند. توضیح در مورد نحوه ی پدید آمدن رنگ در لعاب واقعاً پیچیده تر از نحوه ی پدید آمدن رنگ در شیشه هاست. زیرا لعاب بر روی یک لایه اعمال می شود و از این سو نباید ترانسپارنت باشد. همچنین لعاب یک لایه ی نازک است و در اتمسفر مختلف (کاهنده – اکسید کننده) بوجود می آید از این دو بررسی عوامل موثر بر تشکیل یک لعاب مشکل است.

لعاب های رنگی ( Colored glazes )

در لعاب های رنگی باید از پیگمنت های سرامیکی با پایداری مناسب بهره برد. از اکسیدهای رنگ زای ارزان قیمت می توان برای ایجاد رنگ در محصولات متنوع سفالی بهره برد. البته بسیاری از مواد رنگ زا برای لعاب همانهایی هستند که ما برای رنگرزی شیشه از آنها استفاده می کنیم
اکسید کبالت شیشه ها (4) یک اکسید سیاه رنگ است اما کمتر از یک درصد وزنی از آن در لعاب ایجاد رنگ آبی تیره می کند (اگر چه در بیشتر موارد از کربنات کبالت استفاده می شود).
به دلیل آنکه شیشه ها (4) در این گونه لعاب ها بوجود می آید، ویسکوزیته ی لعاب تغییر می کند.
اکسید کروم که تا 3-2% وزنی نیز می تواند به لعاب افزوده شود به جای رنگ سبز، رنگهای زرد، صورتی یا قهوه ای بوجود می آورد (رنگ قرمز در حضور سرب در ترکیب لعاب اولیه پدید می آید. اگر Zn در لعاب اولیه وجود داشته باشد، رنگ لعاب قهوه ای می شود مگر آنکه سرب ها هم وجود داشته باشد. که در صورت وجود سرب و روی در لعاب اولیه رنگ زرد پدید می آید).
شیشه ها (4)که به صورت کربنات به لعاب افزوده می شود، رنگ لعاب را به صورت قهوه ای در آورده البته این ماده می تواند رنگ قرمز، بنفش و حتی سیاه نیز تولید کند. که این تغییر رنگ به درصد سدیم موجود در لعاب اولیه بستگی دارد. افزودن Cuo به اندازه ی %2-1 وزنی به یک لعاب با سدیم بسیار کم سبب پدید آمدن رنگ فیروزه ای می شود. این درحالی است که افزودن بیش از 3% از این رنگ زا باعث پدید آمدن رنگ سبز یا آبی می شود. اگر درصد Cuo در لعاب افزایش یابد، لعاب ظاهری فلزی مانند مفرغ به خود می گیرد. اگر لعاب دارای 0.3– 2 درصد وزنی Cuo در اتمسفر کاهنده پخت شود، رنگ قرمز مسی پدید می آید. این رنگ به دلیل حضور ذرات کلوئیدی CU درلعاب بوجود می آید.
اگر یک لعاب رنگ زرد داشته باشد، این رنگ ممکن است بوسیله ی افزودن Cds یا Cdse بوجود آمده باشد. البته این نوع افزودنی های رنگ زا ممکن است رنگ های قرمز یا نارنجی را نیز پدید آورند. درصورت حضور سرب در این نوع لعاب ها ، Pds تشکیل می شود که باعث سیاه شدن لعاب می شود. زیرکن در صنعت برای کمک کردن به پایدار شدن این نوع رنگ ها (برپایه ی cd) استفاده می شود. درحقیقت شیشه ها (4) (زیر کن وانادیومی آبی رنگ) و شیشه ها (4)(pr,zr) (زیر کن پراسئودیومی زرد رنگ) مهم ترین تثبیت کننده های مورد استفاده در این رنگ هاست. هنگامی که اورانیوم به لعاب اضافه شود، به جای پدید آوردن رنگ زرد کم رنگ، رنگ قهوه ای تیره پدید می آید. (اورانیوم در شیشه های وازلینی تولید رنگ زرد کم رنگ می کند). البته بسته به ترکیب لعاب ، اورانیوم می تواند رنگ های قرمز یا نارنجی روشن نیز بدهد.

لعاب نمکی ( saltglaze )

دراین نوع فرآیند لعاب کاری سفال در کوره های با دمای بالا با نمک واکنش می دهد. در واقع سفالگر نمک را بر روی سفال اعمال می کند. این فرآیند هنگامی اتفاق می افتد که سفال در داخل کوره است. این فن بوسیله ی سفالگران ایرانی وانگلیسی در دهه ی 1700 ابداع گشته است. همچنین شما می توانید مثال های فراوانی از فرآیند رنگ آمیزی بوسیله ی اکسیدهای فلزی را در آلمان ببنید. در این نوع لعاب ها نمک با رس واکنش داده و تشکیل لایه ای شیشه ای بر روی سطح می دهد. این تکنیک دقیقاً فرآیند خوردگی خاک نسوز در دمای بالاست (بوسیله ی سود سوز آور).
واژه ی مینا (enamel) معمولا در هنگامی استفاده می شود که یک لایه ی لعابی بر روی فلز اعمال می شود. البته این واژه در هنگامی که یک لایه لعابی بر روی لعاب اولیه اعمال می شود نیز استفاده می شود. بازار مصرف مینا بسیار بزرگ است. این بازار از لوازم بهداشتی تا جواهر آلات گسترده است.

خوردگی شیشه و لعاب

این تصور وجود دارد که شیشه خنثی است اما باید بدانید که اسید سیتریک و اسید استیک موجود در غذاها و میوه ها می توانند بایون های موجود در شیشه واکنش دهند و ترکیبات کمپلکس پدید آورند. با خروج یون های قلیایی از داخل شیشه یون های هیدروژن مثبت جایگزین آنها می شود. هنگامی که بخواهیم استحکام سطح شیشه را افزایش دهیم باید یون های پتاسیم و سدیم مثبت را با لیتیم مثبت ( شیشه ها (4) ) جایگزین کنیم. در شیشه ی آلایش یافته (Stain glass) می توان یون نقره ی مثبت و مس را جایگزین شیشه ها (4) کرد.
همانند مواد کریستالی ، شیشه ها نیز دارای عیوب کریستالی اند. یکی از چالش هایی که ما با آنها روبرو هستیم محاسبه ی خواص بوجود آمده ازعیوب (مانند نفوذ) در شیشه هاست. زیرا در شیشه ها شبکه ی مرجع وجود ندارد.

انواع شیشه های سرامیکی

همه ی شیشه ها براساس تتراهدرال های سیلیسی ایجاد نمی شوند؛ واحدهای ساختاری این شیشه ها در جدول 1 آورده شده است. برخی از ترکیبات این شیشه ها نیز در جدول 2 آورده شده است.

شیشه ها (4)

شیشه ها (4)

شیشه ی سیلیکاتی ( سودالایم )

این شیشه ها بر پایه ی شیشه ها (4) هستند. (معمولا این نوع شیشه ها علاوه بر این مواد دارای شیشه ها (4) نیز هستند.) این نوع شیشه نستبا ارزان هستند و دارای دوام خوبی نیز هستند همچنین از این نوع شیشه به طور فراوان در صنعت بسته بندی و ساختمان استفاده می شود. ضریب انبساط حرارتی شیشه ها (4) این نوع شیشه ها ناچیز نیست. همچنین این نوع از شیشه ها عایق های خوبی نیستند. استفاده های عمده از این نوع شیشه در صفحات شیشه ای ،بطری ها ، وسایل غذا خوری و صنعت الکترونیک (حباب لامپ) است. شیشه های آلومینو سیلیکاتی قلیایی (شیشه ها (4)= عنصر قلیایی) دارای ضریب انبساط حرارتی پایینی است. این نوع شیشه دارای دوام و خواص عایق کاری بهتری است. وهمچنین نسبت به سایر شیشه های هم گروه استحکام بالاتری دارد. استفاده های این نوع شیشه عبارتست از تیوپ های اختراق، حباب های لامپ هالوژن و به عنوان بسترهای صنعت الکترونیک کاربرد دارد.

شیشه ی سربی

ترکیب عمومی این شیشه ها سیلیکات های قلیایی سربی استشیشه ها (4). در این نوع شیشه ها Pbo به جای CaO در شیشه ی سودالایمی قرار گرفته است. این نوع شیشه دارای مقاومت بالایی است. همچنین ضریب انبساط حرارتی آن بالاست. و دمای نرم شوندگی پایینی دارد. دلیل آنکه از این نوع شیشه ها در تولید ظروف کریستال استفاده می شود این است که ضریب شکست این نوع شیشه بالاست و علاوه بر این که از این شیشه ها در ظروف تزئینی استفاده می شود، از آنها در ساخت تیوپ های لامپ، لامپ تصویر تلویزیون و تیوپ های ترمومترها استفاده می شود. در ظروف کریستال انگلیسی که به صورت سنتی تولید می شوند، میزان Pbo حداقل 30% است. برطبق رهنمود اتحادیه ی اروپا میزان Pbo باید بیش از 24 درصد باشد. همچنین بر طبق استاندارد اروپا شیشه های کریستال سربی باز یافت نمی شوند. شیشه های سربی که برای ساخت حفاظ های تابشی استفاده می شوند ممکن است دارای بیش از 65% Pbo باشند. کاربرد این گونه شیشه ها در لامپ تصویر تلویزیون است اگر چه شیشه های باریمی برای ساخت صفحه و تابلوهای تلویزیون استفاده می شود. (تفنگ الکترونی تلویزیون اشعه ی x ساتع می کند که این نوع شیشه باید این تابش ها را جذب کند.)شیشه های سرب – بوراتی می توانند به عنوان لحیم های شیشه ای استفاده شوند. این نوع شیشه ها دارای در صد کمیشیشه ها (4) است و کاملا خنثی است.
شیشه های فیلنیتی (flint glass) دارای تفرق بالایی است. در واقع این نوع شیشه ها از نوع شیشه های سیلیکاتی قلیایی ـ سربی است که از ذوب سنگ های فیلنیتی ساخته شده اند(فیلنیت فرم خالص سیلیس است) .لازم به توضیح است که این نوع سنگ کلسینه شده و به طور فراوان در ساخت بدنه های سرامیکی استفاده می شود.

شیشه ی بورانی ( شیشه ی بورو سیلیکاتی )

شیشه های بوروسیلیکاتی قلیاییشیشه ها (4) به خاطر ضریب انبساط حرارتیشیشه ها (4) کوچکشان ویژه هستند. این نوع شیشه دوام بالایی داشته و خواص الکتریکی مفیدی دارند. پیرکس (Pyrex) که یک نوع ماده در تولید وسایل پخت و پز است . از جنس بروسیلیکات است .شیشه ی بروسیلیکاتی به طور وسیع در فرآیندهای شیمیایی استفاده می شود. برخی از شیشه های براتی دارای دمای ذوب پایینیشیشه ها (4) هستند از این رو آنها را می توان به همراه سایر شیشه ها استفاده کرد. شیشه ی بروسیلیکاتی – زنیکی به شیشه های منفعل شهرت دارند. این شیشه ها مواد قلیایی ندارند و از این رو از آنها می توان در ساخت اجزای الکترونیکی سیلیسیمی استفاده کرد.

سیلیس فیوزد

این نوع شیشه از نوع سیلیس خالص است. این شیشه ها ، شیشه های سیلیکاتی برای کاربردهای دما بالا هستند. ضریب انبساط حرارتی این نوع شیشه ها نزدیک به صفر است. این نوع شیشه ها برای تولید آینه های تلسکوپ و زیر لایه ها (Substrates) استفاده می شود. به خاطر داشتن ضریب انبساط حرارتی نزدیک به صفر به این شیشه ها ، شیشه های با انبساط حرارتی بسیار پایین (VLE Silica) می گویند .
شیشه های VLE دارای 7 درصد وزنیشیشه ها (4) برای تولید لفافه های لیتوگرافی نوری (masks photolithography) استفاده می شود. البته به خاطر دمای بالای فرآیند شکل دهی این شیشه ها ؛ می توان به جای آنها از شیشه های وایکور استفاده کرد.

شیشه ی فسفاتی ( phosphate – glass )
 

شیشه های فسفاتی شیشه های مهمی هستند زیرا این نوع شیشه ها خاصیت نیمه رسانایی دارند. یکی از کاربرد این مواد در ساخت تقویت کننده های الکترون (electron multipliers) است . در این نوع وسایل با استفاده از دپ کردن Er (افزودنشیشه ها (4) ) ، این تقویت کننده ها ساخته می شود. کایتون های موجود در این نوع شیشه ها معمولا V و P هستند اما لابراتوار ملی او آ ک ریچ (Oak Ridge National labroatory) یک نوع شیشه ی فسفاتی اندیوم – سربی تولید کرده است که دارای ضریب شکست بالایی است. از ویژگی های دیگر این شیشه می توان به دمای ذوب پایین و خاصیت ترانسپارنتی در برابر گسترده ی وسیعی از طول موج ها را نام برد. به دلیل آنکه این نوع شیشه می تواند درصد بالایی از عناصر خاکهای کم یاب را در خود حل کنند، از آنها در تولید وسایل نوری اکتیو مانند آمپلی فایرهای فیبر اپتیک و لیزرها استفاده می شود. شیشه های فسفاتی دپ شده با Nd در لیزرهای حالت جامد استفاده می شوند. ترکیب شیمیایی نمونه وار از این نوع شیشه عبارتست ازشیشه ها (4) است. که در صد Nd بین O.2-2.O درصد مولی است.

شیشه ی چالکوژیندی ( Chalcogenide glass )

این نوع شیشه براساس Se,As و Te بوجود می آید. این شیشه ها نور فرو سرخ را از خود عبور می دهند و نیمه رسانا های غیر اکسیدی هستند. از این نوع شیشه در وسایل و لنزهای الکترونیکی ویژه استفاده می شود. در این وسایل هنگامی که ولتاژ اعمالی به آنها از میزان بحرانی فراتر رود، به طور ناگهانی تغییر رسانایی رخ می دهد. کاربرد این نوع شیشه ها بسیار خاص است زیرا این شیشه ها دوام پایینی داشته و دمای نرم شوندگی شان پایین است.

شیشه ی فلورایدی ( fluoride glass )

عموماً شیشه های هالیدی بر پایه یشیشه ها (4) را شیشه های فلورایدی می گویند. کاربرد این نوع شیشه ها در وسایل همسو کننده نوری (optical waveguides) است. و درجاهایی که قیمت توجیه پذیر باشد استفاده می شوند.

شیشه ی طبیعی

این مسئله که شیشه در طبیعت بوجود می آید حتی این پدیده یک امر نسبتاً معمولی است، باعث شگفتی بسیاری از مردم می شود. تکتیت ها (tektites) درهنگام برخورد شهاب سنگ ها به زمین و در دهانه ی حاصله از برخورد شهاب سنگ پدید می آیند. مولد اویت (Moldavite) نیز یک شیشه ی سبز رنگ است که در مولداوی (Moldavia) یافت می شود . فولگلاریت (fulgarite) نیز تیوپ های شکننده از شیشه هستند که در هنگام برخورد برق آسمان به خاکهای ماسه ای پدید می آید. ابسیدیان (obsidian) نیز یک نوع شیشه است که در جریان های آتش فشانی تشکیل می شود. رنگ سیاه رنگ این نوع شیشه به خاطر ناخالصی پدید می آید. در طی دوره ی پارینه سنگی از ابسیدیان در ساخت وسایل استفاده می شده است. سنگ پا (Pamice) یکی دیگر از شیشه هایی است که از فوران های آتش فشانی تشکیل می شود. این ماده می تواند تخلخل های فراوانی داشته باشد. (درصورتی که ماده ی اولیه ی تشکیل دهنده ی آن دارای مواد گازی فراوانی باشد). سنگ پا شکل متخلخل ابسیدیان است

شیشه ها

مقدمه:

دراین مقاله ها در مورد انواع مختلف شیشه و برخی از کاربردهای آنها صحبت می کنیم.
شیشه ها یکی از انواع مهم موادمهندسی محسوب می شوند. این مواد در پنجره ها، ساخت بطری، لیزرها، الیاف نوری، عایق ها، لعاب کاری (glazing) ومینا کاری (enamelihg)، چاقوی جراحی، وسایل هنری وتابلوهای راهنمایی - رانندگی استفاده می شوند.
شیشه ها معمولا بازیافت می شوند واز این رو دوستدار محیط زیست هستند.مصریان آثار شیشه ای متنوعی بر جای گذاشته اند ولی آنها اولین کسانی نبودند که از این ماده استفاده می کردند.در دوران های دیرینه سنگی (paleolithic Times) شیشه های اولیه و شیشه های طبیعی (Obsidian: نوعی شیشه ی مصنوعی بدست آمده از آتش فشان ها ) بسیاراهمیت داشتند به خاطر اهمیت زیاد این ماده می توان گفت که شیشه نقش مهمی در شکل دهی تمدن ما داشته است.
به هر حال تعریفات مختلفی برای شیشه ها بیان شده است. دراین مقاله سعی می کنیم بگوییم چرا واژه های شیشه ای (glassy)، زجاجی (Vitreous) و آمورف (amor phous) همگی برای توصیف شیشه استفاده می شوند. همچنین سعی داریم جواب این سوال را بدهیم که: «شیشه چیست؟»
هنگام مطالعه ی این مقاله باید دو ذهنیت را داشته باشید:
1) ادعای Sturkey:"شیشه در دماهای بالا یک محلول شیمیایی است."
2) اگر شیشه که مایع فوق سرد شده است، پس جامد نیست وبنابراین یک ماده ی سرامیکی نیست (اما شیشه یک ماده ی سرامیکی است)

تعریف

تعریف کلاسیک شیشه براساس روش تاریخی تشکیل آن انجام شده است. البته این روش تعریف یک روش بسیار غیر معقولی برای تعریف هر ماده است. این مسئله باعث شده است تا امروز شیشه به چندین روش مختلف تعریف شود:
تعریف کلاسیک: شیشه یک مایع فوق سرد شده است(Supercooled liquid) مشکل بوجود آمده دراین تعریف این است که در برخی موارد می توان یک شیشه ی ویژه را به روشی تولید کرد که هیچگاه درحالت مایع قرار نداشته باشد.
ASTM شیشه را به صورت زیر تعریف کرده است:
"شیشه یک محصول غیر آلی از ترکیبی مذاب است که بدون آنکه کریستالی شود، سرد وصلب می گردد."
این تعریف نیز همان چیزی است که در تعریف کلاسیک آمده است. اما دراین تعریف شیشه ی پلیمری استثناء شده است. به وضوح مشخص است که استناد کردن به روش تولید برای تعریف یک گروه از مواد ایده آل و مناسب نمی باشد.

تعاریف دیگر :

1)" شیشه یک ماده ی جامد است که نظم دوربعد از خود نشان نمی دهد."
نداشتن نظم دوربعد یعنی ساختار شیشه درفواصل یک، دو یا سه برابر فاصله ی اجزای سازنده، دارای نظم نیست. این تعریف براساس مشاهدات حاصله از تفرق اشعه X، میکروسکوپ الکترونی عبوری (TEM) و... استوار است اما این تعریف نیز کمی قراردادی است زیرا به اندازه ی اجزاء تشکیل دهنده بستگی دارد.
2)" شیشه یک مایع است که قابلیت جاری شدن خود را از دست داده است."
این تعریف استوار است اما از تعریفی که بوسیله ی ASTM ارائه شده است فراگیرتر است .همچنین این تعریف از خاصیت مکانیکی برای تعریف شیشه استفاده می کند. درحقیقت این تعریف عملاً با دیدگاه فیزیک مدرن درباره ی شیشه مطابقت دارد.
اکثر شیشه هایی که ما در مورد آنها توضیح می دهیم، شیشه های با شبکه ی اکسیدی است . (مخصوصاً سیلیکات ها) تعریف ما از چنین شیشه هایی عبارتست از:
تجمعی جامد از تتراگونال هایی است که می توانند رئوس خود را به اشتراک گذاشته و البته این مواد نظم دور بعد ندارند.
دراین مقاله ما تنها درمورد شیشه های سرامیکی بحث می کنیم اما باید بدانیم که علاوه بر شیشه های سرامیکی، شیشه های فلزی و پلیمری نیز وجود دارد. شیشه های فلزی ترکیبات پیچیده ای هستند که در آنها عمل کریستالیزاسیون انجام نشده است. این مسئله بوسیله ی سریع سرد کردن فلز مذاب بوجود می آید.(این فرآیند اسپلات کوئنچینگ نامیده می شود). درادامه به بیان ویژگی شیشه ها می پردازیم:

ساختار

شیشه ها در اصل جامد های غیر کریستالی (یا آمورفی) هستند که در اغلب موارد از فریز شدن یک مایع فوق سرد شده بدست می آیند. دراین موارد نظم دور برد در آرایش اتمی وجود ندارد. البته نظم کوتاه برد (زیر 1nm) وجود دارد. این مواد دارای آرایش منظمی از سلولهای واحد نیستند.همانگونه که گفتیم شواهدی وجود دارد که ثابت می کند در شیشه ها نظم کوتاه برد وجود دارد.این نظم کوتاه برد به دلیل آرایش اتمی درمجاورت هر اتم (البته در فاصله ی کوتاه) بدست می آید. تلاش های فراوانی برای توصیف شیشه ها انجام شده است. که به بیان علت تشکیل شدن یا نشدن شیشه ها بحث می کند. دراین زمینه ما ازدو دیدگاه به شیشه ها نگاه می کنیم:
1) توجه به ساختار
2) توجه به مباحث کنیتیکی کریستالیزاسیون
درمورد اول ما به بیان هندسه ی اجزای تشکیل دهنده ی شیشه ها می پردازیم. همچنین دراین زمینه به بیان پیوندهای بین اتمی واستحکام پیوندها می پردازیم . درمورد دوم ما به بیان چگونگی دگرگونی های مایع به جامد در طی فرآیند سرد شدن می پردازیم.
دمای تبدیل شدن شیشه ای ( Tg )
درشکل 1 نموداری نشان داده شده است که در آن حجم ویژه به عنوان تابعی از دما رسم شده است.

شیشه ها (1)

این دیاگرام فرمی از دیاگرام استعاله ی دما – زمان (T.T.T) برای شیشه است. درهنگام سرد شدن مایع از دمای بالا دو پدید ه ممکن است در نقطه ی انجماد (Tm) اتفاق می افتد که عبارتند از :
1) اگر مایع کریستالیزه شود تغییرات حجم و سرعت سرد کردن گسسته است.
2) اگر کریستالیزاسیون اتفاق نیفتد، مایع به حالت فوق سرد شده تبدیل می شود و حجم در نزدیک دمای ذوب کاهش می یابد.
دردمای تبدیل شدن شیشه ای (Tg)، شیب نمودار کاهش می یابد و به شیب جامد کریستالی نزدیک می شود. این شکستگی بوجود آمده در نمودار سرد کردن نشان دهنده ی گذرگاه مایع فوق سرد شده به شیشه است. زیر دمای Tgساختار شیشه درحالت آسایش نیست زیرا این مواد اکنون جامد هستند. دراین ناحیه از Tg ویسکوزیته تقریبا شیشه ها (1) است. ضریب انبساط حالت شیشه ای معمولا نزدیک به ضریب انبساط جامد کریستالی است. اگر از سرعت های سرد کردن پایین تر استفاده شود، میزان آسایش ساختار افزایش می یابد. ومایع فوق سرد شده در دمای پایین تر تشکیل می شود. و شیشه ی حاصله ممکن است دانسیته ی بالاتری بدست آورند. (همانگونه که در شکل 1 دیده می شود)
فیزیک شیشه جنبه ی تردی آن را مورد بررسی قرار می دهد. در واقع این ویژگی یک ویژگی مایعات شیشه ساز در بالای دمای Tgاست واندزه ای از استعکام پیوندهای بین اتمی است. در ادامه ما درمورد شیشه ی نامحلول در آب یا بطری های شیشه ای آب صحبت می کنیم. البته چیزی که آگاهی کمتری از آن است این است که ما می توانیم آب را با سریع سرد کردن در اتاق مایع به حالت شیشه ای در آوریم. ماده ی حاصله یک شیشه ترد است اما این مسئله فهمیده شده است که بیشتر آب موجود در جهان به همین شکل وجود دارد.
تاریخچه
شیشه ماده ای است که پیوندی عمیق با تاریخچه ی انسان دارد. یکی از شواهد این مسئله استفاده از ابسیدیان (obsidian) یک شیشه ی طبیعی توسط بشر است. هیچ کس نمی داند که اولین جسم شیشه ای در چه زمانی ساخته شده است. قدیمی ترین یافته ها به 7000 سال پیش از میلاد برمی گردد. (البته ممکن است یافته هایی پیش از این تاریخ نیز وجود داشته باشد). درکاوش های باستان شناسی در بین النهرین روش های تولید شیشه کشف شده است . این کارها 4500 سال پیش از میلاد مسیح بوده است ومربوط به روش های تولید وسایل شیشه ای بوده است نه لعاب های مورد استفاده در وسایل سفالی. استفاده از شیشه در لعاب کاری سفال حتی به دوران های پیشین می رسد.

شیشه ها (1)

تقریبا در 3000 سال پیش از میلاد مسیح شیشه گران مصری شروع به تولید جواهر آلات شیشه ای و ظروف شیشه ای کوچک کردند. شیشه هم به عنوان یک جسم دکوری وهم به عنوان یک وسیله ی مورد استفاده در زندگی روزمره به شمار می آمد. قطعاتی از جواهر آلات شیشه ای در کاوش های اطراف کوه های مصر پیدا شده است. مثالی از این جواهرآلات شیشه ی فیزوزه ای آبی است که در شکل 2 دیده می شود. تقر یبا 1500 سال پیش از میلاد مسیح شیشه گران مصری ( در دوره ی touthmosis سوم ) روشی برای تولید قطعات تو خالی قابل استفاده، توسعه دادند. یک مثال قابل توجه از این نوع ساختار یک شیشه ی توخالی است که شبیه به سرماهی است (شکل 3) این ظرف بین سال های 1352 و 1336 قبل از میلاد ساخته شده است واین نظریه وجود دارد که برای نگه داری روغن خوش بو استفاده می شده است.

شیشه ها (1)

الگوی موجی این ظرف بسیار خاص است. در واقع این ظرف بوسیله ی کشیده شدن یک جسم تیز به شیشه ی خمیری شده تولید شده است.
نویسنده ی رومیPliny Fhe Elder (23-79 میلادی) اختراع شیشه را به صورت زیر توصیف می کند:
روزی یک کشتی که متعلق به چند تاجر نیتروم (Nitrum) بود در کنار ساحل لبنان کنونی توقف می کند. هنگام پخت غذا به دلیل نبود سنگ در ساحل، خدمه کشتی از کلوخ های نیترومی که در کشتی وجود داشته است. استفاده می کنند تا بتوانند دیگ غذا را در مکان مناسب استقرار دهند. پس از آنکه آتش روش شد، کلوخه ها با ماسه های ساحلی واکنش داده و تشکیل شیشه ی مذاب می دهد. این اولین منشع پدید آمدن شیشه است.
نیتروم (Nitrum) یک نوع سدیم کربنات (Soda) طبیعی است .این ماده یکی از اجزای مهم در شیشه های قدیمی و مدرن است. خاکستر گیاهان نیز یک منبع فقیر از سدیم برای شیشه گران فراهم می کند. گیاهان علف شوره (Saltwort) و رازیانه ی آبی (glass wort) از جمله گیاهانی هستند که برای مهیا شدن سدیم از آنها استفاده می شده است.
یکی از معمولی ترین روش ها برای شکل دهی شیشه روش دمش هوا است. اگر چه این تکنیک بیش از دوهزار سال پیش توسعه یافت، لوله های تولیدی به روش دمش در طی زمان تغییری نکرده است. توسعه ی عمده که دراین زمینه انجام شده است، روش دمش اتوماتیک است که برای تولید شیشه های بطری و حباب های لامپ استفاده می شود. دراین روش به قطعه ای شیشه در داخل قالب هوا دمیده می شود. و بدین شکل شیشه به شکل قالب در می آید. مهمترین مرحله ی رشد در تاریخ شیشه سازی مخصوصا درطی قرن بیستم مربوط به توسعه های اتفاق افتاده در زمینه ی تکنولوژی های تولید می باشد. این توسعه ها منجر به کاهش هزینه ی تولید محصولات شیشه ای می شود

در ادامه به بیان خواص شیشه ها می پردازیم:

ویسکوزیته ( η )

ویسکوزیته یک ویژگی کلیدی شیشه هاست.ما نیاز داریم تا درمورد ویسکوزیته ی شیشه در دماهای مختلف اطلاع داشته باشیم. و بتوانیم دمای مورد نیاز برا ی شکل دهی وآنیلینگ آن را تشخیص دهیم. ویسکوزیته یک ویژگی مکانیکی است. فرمول ویسکوزیتد به صورت زیر است:

شیشه ها (2)

دراین فرمول:
η : ویسکوزیته، F: نیروی مورد نیاز برای کشیدن یکی از صفحات موازی که در میان آنها مایع مورد نظر قرار دارد: ،d: فاصله ی صفحات، A: مساحت صفحات، V: سرعت حرکت صفحه. ویسکوزیته در واقع پاسخ یک مایع دربرابر تنش برشی است. مایعات دارای ویسکوزیته ای هستند که با واحد سانتی پوآز (CP) اندازه گیری می شود. واحد اندازه گیری ویسکوزیته ی گازها میکروپوآز(mp) است.

شیشه ها (2)

جدول 1 لیستی از اعداد ویسکوزیته ای است که برای فرآیندهای شیشه سازی مهم هستند. اعداد داده شده در جدول 2 نیز برای تعریف ویژگی های برجسته ی شیشه (با تأکید بر روی فرآیند) آورده شده است. بسیاری از اعداد آورده شده درجدول ویسکوزیته ها استاندارد هستند مثلا (2003) ASTMC338-93 یک روش تست استاندارد است که نقطه نرم شدگی شیشه بوسیله ی آن تعیین می شود.
محاسبه ی نقطه ی نرم شدگی شیشه بوسیله ی اندازه گیری دمایی که در آن یک فیبر شیشه ای استوانه ای با قطر شیشه ها (2) طول بوسیله ی وزن خودش تغییر طول می دهد. نرخ تغییر طول یک میلی متر بردقیقه است . در این روش 100 میلی متر از بخش بالایی فیبر بوسیله ی کوره ی خاصی با سرعت گرم شدنشیشه ها (2) گرم می شود.

شیشه ها (2)

ویسکوزیته ی برخی ازمایعات عمومی در جدول 2 آورده شده است. توجه کنید که در دمای کارپذیری شیشه ویسکوزیته ای شبیه به عسل در دمای اتاق دارد. به طور نمونه برای یک شیشه ی سیلیکاتی سودالایم این ویسکوزیته در دمایشیشه ها (2) بدست می آید. این جدول همچنین نشان می دهد که یک جامد دارای ویسکوزیته ای بیش ازشیشه ها (2) دسی پو آز است. ویسکوزیته ی به طور نمایی با تغییر دما ، تغییر می کند ( همانگونه که در شکل 1 برای انواع شیشه ی سیلیکاتی دیده می شود.) دمای فیکتیو (fictive temperature) دمایی است که در آن ساختار مایع به حالت شیشه ای تبدیل می شود. این دما بوسیله ی تقاطع منحنی های برونیابی شده در حالت دما بالا و دما پایین در نمودار ویسکوزیته – دما بدست می آید. دمای فیکتیو (Tf) مانند Tg به تبدیلات ساختاری شیشه بستگی دارد. البته Tg اندکی کمتر از Tf است.

شیشه ها (2)

شکل 2 وابستگی ویسکوزیته به دما را برای اکسیدهای شیشه ساز نشان می دهد. شما باید توجه کنید که بوسیله ی شیب این خطوط می توان انرژی اکتیواسیون جریان ویسکوز (EV) را بدست آوریم.

شیشه ها (2)

جدول 3 اعداد ویسکوزیته وسرعت های کریستالیزاسیون (v) برخی شیشه ها را نشان می دهد. سرعت کریستالیزاسیون مربوط می شود به سرعت تبادل مایع/جامد. V بسیار کم بیان کننده ی قابلیت شیشه سازی استثنایی ماده است.البته کریستالیزاسیون مذاب جامد شده ی سیلیس بسیار مشکل است.

شیشه ها (2)

روش های متعددی برای اندازه گیری ویسکوزیته وجود دارد. این روش ها با توجه به میزان ویسکوزیته انتخاب می شود.

شیشه ها (2)

شماتیک دو روش اول اندازه گیری ویسکوزیته در شکل 3 نشان داده شده است:

شیشه ها (2)

شیشه ( خلاصه ای از خواص )
 

شیشه ماده ای خنثی است. این مسئله به محیط بستگی دارد. اگر شیشه یک ماده ی سیلیکاتی باشد، این مسئله درست است . البته همه ی شیشه ها خنثی نیستند. مثلا بیوگلاس (bioglass)
شیشه یک ماده ی هموژن است. این مسئله نیز به نحوه ی شکل دهی و ترکیب شیمیایی شیشه بستگی دارد. ما می توانیم با استفاده از فرآیندهای خاص شیشه را به صورت غیر هموژن در آوریم.
شیشه می تواند تغییر شکل دهد. این مسئله عموماً درست می باشد و دلیلی است برای قابلیت بازیافت شیشه ها. برخی از شیشه ها به نحوه ای ساخته می شوند که بوسیله ی نور، انتشار نور در داخل آن وتابش نور و...تغییر ماهیت می دهد.
شیشه دارای ضریب انبساط کوچک است. البته همه ی شیشه ها مناسب استفاده شدن در کاربردهای حرارتی مانند ظروف پیرکس نیستند.
شیشه ها شفاف اند (trans Parent) این خاصیت برای الیاف نوری ضروری است. البته ما می توانیم با انجام عملیات های خاص شیشه به صورت اپک یا مات در آوریم.
بسیاری از شیشه های اولیه شفافیت کامل نداشتند زیرا در ساختار آنها ناخالصی وحباب هوا وجود داشت.
شیشه ارزان است. البته این مسئله برای شیشه های پنجره صحیح است. اما درمورد فیلم های نازک شیشه ای این مسئله صحیح نمی باشد. برخی از شیشه های قرمز رنگ بوسیله ی دپینگ (doping) طلا در آنها تولید می شود. که قیمت برخی از ظروف تولیدی از آن به پیش از 50 دلار می رسد.
شیشه یک ماده ی بالک است مگر در حالتی که آن را به صورت یک فیلم نازک ، یک فیلم انیتر گرانولار (IGF) یا یک سرامیک کریستالی رشد دهیم.

برخی از خواص مکانیکی شیشه

استحکام تئوریک شیشه ی سیلیکاتی درحدود 10GPa است. البته با حضور عیوب سطحی (ترک ها وجوانه ها ) این استحکام کاهش می یابد. شیشه ها موادی الاستیک هستند اما تحت کشش می شکنند. می توان استحکام این مواد را بوسیله ی ایجاد لایه های سطحی فشرده و یا بوسیله ی از بین بردن ترک های سطحی (با اسید شوئی یا پدید آوردن پوشش محافظ) افزایش داد. مثالی از این روش ها پدید آوردن ترک های اضافی در ساختار قطعات شیشه ای تزئینی به منظور بهبود خواص مکانیکی آنهاست. در این روش از سرد کردن شیشه ی مذاب در آب جهت ایجاد تنش های اضافه بهره برده می شود . در این حالت سطح قطعه ی شیشه ای مذاب زودتر از مرکز آن سرد می شود و بنابراین تنش های اضافی پدید می آید. قطعات جامد شده به این شیوه را می توان با چکش و بدون اینکه بشکنند چکش کاری کرد.

برخی از ویژگی های الکتریکی شیشه

شیشه معمولا دارای مقاومت الکتریکی بالایی است. که علت آن تفاوت زیاد میان باندهای انرژی (گپ بزرگ) در این ماده است. در مواردی که شیشه رساناست . بار بوسیله ی یون ها منتقل می شود.(در این مورد یون های قلیایی مانندشیشه ها (2) دارای سرعت انتقال بار بالایی هستند). در واقع به همین دلیل است که با افزایش دما رسانایی به شدت افزایش می یابد. رسانایی درشیشه های مختلف، متفاوت است.علت آن متفاوت بودن نوع شبکه ی این شیشه هاست. در شیشه هایی که دارای بیش از یک یون قلیایی هستند. پدیده ی جالبی رخ می دهد. رسانایی تولیدی در این نوع شیشه ها به طور مشخصی از شیشه های دارای یک یون کمتر است. این نوع شیشه ها در کاربردهای مختلف مانند لامپ های با توان بالا استفاده می شوند. ثابت دی الکتریک شیشه واقعاً بالاست اما نه به حدی که بتوان از آن در کاربردهای حافظه ای پیشرفته مانند حافظه ی با دستیابی دینامیک و رندوم (DRAMS) استفاده کرد. ظرفیت الکتریکی یک ماده میزان بار ذخیره شده در داخل ماده است. این خاصیت به ضخامت دی الکتریک بستگی دارد. همانطور که ضخامت دی الکتریک کمتر می شود، ظرفیت الکتریکی افزایش می یابد. اما کم کردن ضخامت نیز مشکلاتی به همراه دارد. مثلا با کاهش ضخامت احتمال شکست دی الکتریک بیشتر می شود. شیشه ی سیلیسی دارای مقاومت دی الکتریک بالاتری نسبت به سایر شیشه هاست. اما مقاومت این دی الکتریک نیز در حد دی الکتریک های پلیمری مانند رزین فنولیک نیست.

برخی از خواص اپتیکی شیشه

شفافیت دربرابر نور فرا بنفش ، مرئی و فرو سرخ به چندین فاکتور بستگی دارد. یکی از این فاکتورها طول موج تفرق است که بوسیله ی ناخالصی ها تغییر می کند. لبه ی فرو سرخ (IRedge) و لبه ی فرا بنفش ((uv edge اعدادی هستند که نشان دهنده ی فرکانس قطع شدن عبور این موج ها هستند. یک مانع لبه UV edge blocker)UV) از عبور UV جلوگیری می کند و این در حالی است که یک عبور دهنده ی لبه یUV (UV edge tran Smitter) اجازه ی عبور نور UV را می دهد.

عیوب در شیشه ها

اگر چه شیشه یک ماده ی آمورف است ولی مانند مواد کریستالی دارای عیوب و رسوبات است. و همچنین دچار جدایش فاز می شود. شیشه را می توان برای حبس کردن عناصر رادیو اکتیو استفاده کرد .در این عناصر مانند عیوب نقطه ای یا فاز ثانویه تشکیل می شوند. همچنین سرعت نفوذ این عناصر از میان شیشه بر روی میزان آن ها در شیشه تأثیر دارند. این مسئله استفاده می شود تا بتوان مواد رادیو اکتیو یا سایر مواد را کنترل کرد.

شیشه ی غیر هموژن

به دلیل آنکه شیشه یک مایع فوق سرد شده است. نمی توان گفت که این ماده حتما باید هموژن باشد. شیشه های خاص می توانند بدون نیاز به فرآیند کریستالیزاسیون به دو فاز تبدیل شوند. هنگامی که این دو فاز شیشه ای باشند این مسأله باعث می شود که سدی در برابر جدایش فازی پدید نیاید. در مورد فرآیند جدایش فازی مایع – مایع ممکن است مرحله ای برای جوانه زنی وجود داشته باشد. البته در این نوع تبدیلات ممکن است استعاله ی اسپینودال (Spinodal) نیز رخ می دهد. که هر دوی این استعاله ها به نفوذ وابسته اند.
قوانین امتزاج ناپذیری در شیشه ها بسیار مهم است. این مسئله مخصوصاً در شیشه های تولید شده با تکنولوژی روز نمود دارد. برای مثال امتزاج ناپذیری در شکل دهی شیشه – سرامیک ها ، تولید شیشه ی وایکور (Vycor) و شیشه های اپتیکی و تشکیل رسوب در شیشه ها مهم می باشد. بسیاری از اکسیدهای دوتایی و سه تایی در کنار سیلیس از خود مشکلات امتزاج پذیری نشان می دهند.
در دیاگرام فازی ناحیه ای وجود دارد که یک مایع به دو مایع با ترکیب شیمیایی متفاوت تبدیل می شود. این ناحیه گپ امتزاج پذیری (imisciblity gap) نامیده می شود. در زیر برخی از سیستم هایی که مشکل امتزاج پذیری دارند را نام برده ایم:

شیشه ها (2)

شیشه ها (2)

شکل 4 دیاگرام فازیشیشه ها (2) را نشان می دهد. در دمای پایین و در گوشه ی غنی از سیلیس دیاگرام ، فاز مایع به دو بخش مایع با ترکیب شیمیایی متفاوت تبدیل می شود. این دو مایع به صورت دو شکل گنبد مانند در شکل نشان داده شده اند. خط تیره نشان دهنده ی خط تقریبی ناحیه ی امتزاج ناپذیری است. مشکلی که در اندازه گیری این خط وجود دارد. این است که این پدیده در دمای پایین رخ می دهد و از این رو سرعت آن پایین است . و از این رو اندازه گیری آن مشکل است. دراین وضعیت میل جدایش فازی بیشتر از میل به کریستالیزاسیون است . البته کریستالیزاسیون مساعد تر از جدایش فازی است اما به دلیل آنکه جدایش فازی نیازی به باز آرایی اتم ها ندارد، این پدیده رخ می دهد. به عنوان یک قانون کلی برای سیلیس باید گفت که امتزاج ناپذیری با افزودنشیشه ها (2) افزایش می یابد اما با افزودنشیشه ها (2) کم می شود. در شیشه های وایکور از قوانین جدایش فازی استفاده می شود. در فرآیند تولید شیشه وایکور، شیشه ای پدید می آید که دارایشیشه ها (2) و 4 درصد تخلخل است.این نوع شیشه به عنوان فیلتر وبیومواد مخصوصا در جاهایی که تخلخل مهم می باشد، استفاده می شود. در فرآیند تولید وایکور، شیشه ای تولید می شود که پس از فرآیند شکل دهی دنس می گردد و شیشه ای با سیلیس خالص پدید می آید که در دمای پایین تر نسبت به کوارتز خالص شکل دهی گشته است

شیشه ی آلومینیوم – ایتریمی

شیشه های آلومینیوم –ایتریایی (YA) دارای درصد آلومینایی در گسترده ی تقریبی 75.6- 59.8 هستند. با این درصد آلومینایک شیشه ی دو فازی تشکیل می شود که در آن یک فاز قطره مانند در فاز دیگر تشکیل شده است. این شیشه به طور خود بخودی به صورت شیشه ی آلومینیوم – ایتریمی یا مخلوطی ازشیشه ها (3) تبدیل می شود. درشیشه های YA پدیده ای به نام پلی مورفیزم (Polymorphism) رخ می دهد

شیشه ی رنگی

اگر چه در بیشتر کاربردهای شیشه نیاز است تا این ماده بی رنگ باشد اما در برخی از کاربردها نیاز است شیشه رنگی باشد. هنگامی که پنجره های یک کلیسا رنگی باشد، تأثیر پذیری ازمحیط بیشتر می شود . درشیشه ها معمولا بوسیله ی افزودن اکسیدهای انتقالی و یا اکسیدهای عناصر خاک های کمیاب (rave –eavth) به بچ ماده ی اولیه ی آنها، رنگی می شوند. جدول 1 لیستی از رنگ های تولیدی بوسیله ی مواد رنگی کننده ی شیشه هاست . زرد کم رنگ، نارنجی و رنگ های قرمز بوسیله ی فلزات گران بها درحالت کلوئیدی تولید می شود. طلا (Au) رنگ قرمز، یا قوتی تولید می کند. (البته این شیشه ها گران قیمت هستند). سولفید کادمیم (cds) محصولاتی با رنگ زرد تولید می کند. اما هنگامی که علاوه بر se ، cds نیز استفاده شود. محصولاتی با رنگ قرمز یا قوتی با شدت رنگ بالا تولید می شود.

شیشه ها (3)

شیشه بوسیله ی افزودن دوپانت ها (dopants) رنگرزی می شوند. در واقع با افزودن این دو پانت ها در شیشه عیوب نقطه ای پدید می آوریم. رنگ شیشه به نوع دو پانت و حالت اکسیداسیون آن بستگی دارد.
دو پانت ها می توانند اثر بی رنگ کننده (decdorizo) ، پوشش دهنده (mask) یا اصلاح کننده (modify) داشته باشند. ما می توانیم اثرات رنگی آهن را بوسیله ی افزایش cr خنثی کنیم؛ البته اگر درصدشیشه ها (3) زیاد باشد اضافی به صورتشیشه ها (3) خارج می شود. اگر این شیشه به روش دمیدن شکل دهی شود، این پلیت لت هایشیشه ها (3) منظم گشته و شیشه ای اپک به نام آونتورین کرومی (chromium aventurine) تولید می کنند. مس (cu) برای تولید شیشه ی آبی مصری (Egyptian Blue glass) استفاده می شود.
CO (کبالت ) دربرخی از شیشه های پالایش یافته ی تولید در قرن دوازدهم استفاده می شده است. البته Co در تولید لعاب های پرسلانی مورد استفاده در چین ( در دوره ی سلسله ی منیگ وتانگ) استفاده می شده است. کبالت مورد استفاده در این لعاب ها رنگ آبی کبالتی تولید می کند.
با افزودن Se به شیشه های دپ شده با Cds باعث پدید آمدن رنگ یاقوتی سلینومی (Selenium Ruby) می شود. جزئیات پدید آمده ازهر کدام از این رنگ ها به ترکیب شیمیایی و شرایط پخت شیشه بستگی دارد.
شرکت کورینگ (Cornig) میکرو بارکدهایی با شیشه دپ شده با خاکهای کم یاب تولید کرده است. خاکهای کم یاب دارای باندهای نشر کم پهنا هستند و از میان 13 عنصر خاکهای قلیایی که مورد آزمایش قرار گرفته ، تنها 4 عنصر (Tm,Ce,Tb و Dy) می توانند در برابر تابش UV برانگیخته شوند. و لذا می توان از آنها در شناسایی بوسیله ی UV استفاده کرد. این نوع بارکدها همچنین مشکلات تداخل با سایر بارکدها را نیز ندارد. از این بارکدها در کاربردهای بیولوژیکی استفاده می شود زیرا سمی نیستند.(البته بر چسب زنی با کوانتوم دات ها خطرات کمتری دارد) و می توان از آنها در کاربردهای ژنتیکی استفاده کرد. با استفاده از چند عنصر خاکی کمیاب می توان ترکیب رنگی بیشتر پدید آورد.
شیشه های رنگی خاص شامل موارد زیر می شود :

شیشه ی یاقوتی یا کرانبری ( Cranberry )
 

شیشه ی یاقوتی با افزودن Au به شیشه سربی با حضور Sn پدید می آید. شیشه ی کرانبری که اولین بار در سال 1685 گزارش شده است، یک نوع شیشه ی بی رنگ (معمولاً صورتی کم رنگ ) است. علت پدید آمدن این رنگ در صد کم طلای موجود در آن است . راز تولید شیشه قرمز رنگ برای قرن ها ی زیادی گم شده بود و در قرن هفدهم دوباره کشف شد.

شیشه ی اورانیومی یا وازلینی

محصولات اورانیومی هنگامی که در شیشه ی با سرب بالا استفاده شود، رنگ قرمز تیره تولید می کند. البته شیشه های اورانیومی دیگری نیز وجود دارد که با صطلاح به آنها شیشه های وازلینی (Vaseline glass) می گویند. این نوع شیشه ها دارای رنگ سبز هستند. مسأله ای که این نوع شیشه ها را خاص کرده است این است که این نوع شیشه ها هنگام تابش اشعه ی UV به آنها ، خاصیت فلئورسانس پیدا می کنند. از سال 1940 تنها اورانیوم تهی شده (uranium depleted) به عنوان دو پانت استفاده می شود. علت استفاده از این نوع دو پانت، فراوانی آن است. اما از 100 سال گذشته به بعد اورانیوم طبیعی (natural uranium) استفاده می شود.

شیشه ها (3)

شکل 1 مثالی از یک شیشه ی وازلینی است.

لیزر شیشه ای

عناصر خاکهای کم یاب (rave – earth elements) مانند Nd در تولید شیشه های لیزر و سایر وسایل اپتیکی کاربرد دارند. (شکل 2) . لیزر شیشه ای دپ شده با Nd (Nd-doped glass laser) مانند یک لیزر یاقوتی (ruby laser) کار می کند . اگر چه نوع شیشه ای دارای تفاوت هایی است . میله ی لیزر قطری بینشیشه ها (1) اینچ دارد و معمولا بوسیله ی یک لامپ حلزونی تخلیه می شود. علت استفاده از لامپ های حلزونی این است که طول غیر بار دار این نوع لامپ ها از لامپ های خطی طولانی تر است. لیزر شیشه ای دپ شده با Nd دارای بازدهی بیش از 2% است. این بازده 4 برابر بازده یک لیزر یاقوتی است. به دلیل آنکه رسانایی گرمایی شیشه پایین است بنابراین نیاز به زمان بیشتری برای خنک سازی است.

شیشه ها (3)

رسوبات در شیشه

وجود رسوبات در شیشه عموما اجتناب ناپذیر است. سوال این است که چه زمانی طول می کشد تا رسوبات تشکیل شود. (مخصوصا اگر جوانه زنی هموژن باشد). ما ممکن است عوامل هسته زا برای تسریع جوانه زنی به شیشه اضافه کنیم. جوانه زنی کریستال ها در شیشه از تئوری کلاسیک پیروی می کند. رسوبات تشکیل شده در شیشه می تواند موجب رنگی شدن شیشه شود.

شیشه به عنوان لعاب

لعاب ها مانند شیشه ها در همه جا دیده می شوند. لعاب کاری (glazing) استفاده از ویژگی های ویسکوز شیشه و تشکیل یک لایه ی یک پارچه و صاف بر روی یک زیر لایه ی سرامیکی است.
مینا کاری (enameling) تشکیل همان لایه بر روی یک زیر لایه ی فلزی است. چیزی که باید به آن توجه کرد این است که عموما لعاب ها قدمت زیادتری دارند. در ادامه به بیان برخی از اصطلاحات لعاب می پردازیم:

زیر لعاب ( underglaze )

هنگامی که یک بیسکوییت سرامیکی را می خواهیم مورد عملیات دکور قرار دهیم باید قبل از آن یک لعاب کاری بر روی آن انجام دهیم که این نوع لعاب را زیر لعاب گویند. این لایه به علت تشکیل بهتر دکور بر روی بدنه اعمال می شود. پس از آن که فرآیند دکوراسیون جسم سرامیکی انجام شود برروی آن یک لعاب دیگر اعمال می شود. البته این لعاب پیش از پخت دکور اعمال می شود.
عیب کراولینگ لعاب ( glaze craweling ) این عیب که در لعاب اتفاق می افتد بدین صورت است که لعاب از لایه ی سرامیکی زیرین جدا می گردد. این پدیده به دلیل عدم ترشوندگی بیسکوییت سرامیکی بالعاب در طی فرآیند پخت اتفاق می افتد.
لعاب ترک خورده ( crackle glaze )اگر انبساط گرماییشیشه ها (3) لعاب از سرامیک بستر بزرگ تر باشد، لعاب ممکن است در طی فرآیند سرد کردن (در طی پخت) بشکند. هنگامی که غلظت یون سدیم و پتاسیم در لعاب بیشتر باشد، ترک ها بیشتر پدید می آیند. هنگامی که سرعت سرد کردن بالا رود ترک های حاصل ریزتر می شوند.
لعابهای سلادون (celadon )، تنموکو (tenmoku)، راکو (raku) و کوپر ( copper) لعاب های ویژه ای هستند که در دنیای هنر سرامیک یافت می شوند.
لعاب های سلادوناین لعاب ها اولین بار در حدود 3500 سال پیش تولید شده اند. این لعاب ها دارای گستره ی رنگی از آبی کم رنگ تا سبز مایل به زرد هستند و می توانند رنگی کاملا تیره پدید آورند. رنگ تولیدی در این لعاب ها بوسیله ی آهن تولید می شود(3.o - o.5 در صدشیشه ها (3) به لعاب افزوده می شود). ظروف لعاب خورده توسط این نوع لعاب سپس در دمای تقریباًشیشه ها (3) پخت می گردند. ظروف تولید شده با این لعاب ها زیبایی خاصی داشته و در کاربردهای تزئینی استفاده می شوند. مثلا کوزه ی لعاب خورده با این لعاب که درکشور کره تولید شده است، درسال 1946 از سوی کشور کره به هاری ترومن رئیس جمهور آمریکا هدیه شد. امروزه این ظرف که 23cm ارتفاع دارد قیمتی برابر با 3 میلیون دلار دارد.
لعاب تنموکواین نوع لعاب در زمان سلسله ی سونگ (sung Dynasty) بوجود آمده است. و دارای رنگ قهوه ای تیره یا حتی سیاه است. برای ایجاد این رنگ میزان 8-5 درصد وزنیشیشه ها (3) به لعاب افزوده می شود. تشکیل مناسب این نوع لعاب به شرایط اکسایش – کاهش اتمسفر پخت بستگی دارد. و در شرایط مختلف اکسایش و کاهش رنگ های متنوعی پدید می آید. در لعاب های کوپرنیز از کربنات مس به عنوان منبع Cuاستفاده می شود. البته در طی فرآیند پختشیشه ها (3) تجزیه گشته و Cuoباقی می ماند. Cuo تولید نیز با مونواکسیدکربن (CO) موجود در کوره واکنش داده تا ذرات مس در لعاب تشکیل شوند. این ذرات رنگ قرمز به لعاب می دهند.
لعاب های راکولعاب های راکو اغلباً لعاب هایی فلزی به نظر می رسند. (اگر بوسیله ی یک لایه از فلز Ti پوشش داده شده باشند)
یک روش پیشرفته در تولید لعاب های راکو بدین صورت است که ظروف سرامیکی به شیوه ی معمولی پخت می شوند سپس آنها را در داخل یک محیط کاهنده مانند خاک اره وارد می کنند و سپس آنها را قبل از آنکه بتوانند اکسید شوند، به سرعت سرد می کنند. این نوع لعاب ها اغلبا حالت استثنا داشته و می توانند با زمان تغییر کنند. این مسئله ساده است. زیرا آنها در طی فرآیندهای بعدی تولید اکسید می شوند. این نوع لعاب بر خلاف سایر لعاب ها خنثی نبوده و تنها برای دکوراسیون استفاده می شوند.
لعاب های کریستالی ( crystalline glaze )این نوع لعاب ها ، لعاب هایی دکوراسیونی هستند اما به طور مستقیم با تکنولوژی تشکیل شیشه – سرامیک در ارتباطند. کریستال ها بوسیله ی سرد کردن آهسته لعاب ایجاد می شوند. این سرد کردن آهسته به کریستال های لعاب اجازه ی رشد کردن می دهند. رشد این کریستال ها مد نظر است؛ زیرا لعاب ضخامت کمی داشته و از این رو کریستال ها باید به صورت پلیت لت (platelets) در آیند. برای آنکه عمل رشد کریستال ها بهتر انجام شود از جوانه زاهای تیتانیایی استفاده می شود. این نوع جوانه زاها در لعاب های باویسکوزیته ی پایین استفاده می شوند و در آنهاشیشه ها (3) تشکیل می شود. ترکیب شیمیایی این نوع لعاب ها بسیار مهم است. در آن شیشه ها (3) وشیشه ها (3) به میزان کم و Pbo به میزان 10-8 درصد وزنی استفاده می شود. رشد کریستال با اضافه شدن fe به لعاب افزایش می یابد. اما این اضافه شدن می تواند همچنین موجب پدید آمدن اثراتی بر سایر دو پانت های اضافه شده به لعاب شود.
سفالگران امروزی ازشیشه ها (3) به عنوان اصلاح کننده و تولید کننده ی کریستال های ویلمایت (Crystals Willemite) استفاده می کنند. (ویلمایت یک مینرال کمیاب از روی است). این تکنیک نیازمند مهارت ویژه است. زیرا افزودن مقادیر زیادشیشه ها (3) به لعاب باعث می شود ویسکوزیته ی آن حتی در دماهای پایین نیز کم باشد، بنابراین این مسئله باعث می شود که لعاب از روی سطح سفالی جریان پیدا کند. رشد اسفرولیتی (Spherulite growth) از جوانه زا در لعاب در شکل 3 نشان داده شده است. هر اسفرولیت در واقع توده ای از کریستال های شعاعی است که با توجه به مرکز اسفرولیت دورهم گرد آمده اند.

شیشه ها (1)

لعاب های اپک ( opaque glazes ) اگر به لعاب مذاب کریستال هایی افزوده شود، لعاب می تواند اپک شود. برای این کار می توان ازO_2 S_n یا زیر کن استفاده کرد. که زیر کن ارزان تر است .شیشه ها (3) برای تولید رنگ سفید در لعاب های زیرکنی (Zircon glaze) استفاده می شود. برای اپک کردن کمتر ازشیشه ها (3) استفاده می شود زیرا کریستال های روتایل طلایی رنگ هستند. و بنابراین لعاب را به رنگ زرد در می آورند. ما همچنین می توانیم با تشکیل کریستال لعاب را اپک کنیم (مثلا ولاستونیت:شیشه ها (3). این کار بوسیله ی عملیات حرارتی مناسب، حبس کردن گاز (هوا یاشیشه ها (3) ) ) و یا بوسیله ی جدایش فازی مایع – مایع انجام می شود. لعاب های مات (Matt glazes) بوسیله ی تشکیل کریستال های بسیار کوچک در لعاب بوجود می آیند (مثلا کریستال های ولاستونیت برای لعاب های مات – آهکی و وبلیمایت (شیشه ها (3):Willemite ) برای لعاب های مات – زینک). کریستال های ریز ولاستونیت بوسیله ی افزودن کلسیت به لعاب پایه سیلیس تشکیل می شود. یک روش دیگر برای این کار افزودن مقادیر زیادی از ماده ی کریستالی به لعاب است تا در طی فرآیند پخت درصدی از آن به صورت کریستالی باقی بماند

رنگ در لعاب و لعاب موضوعاتی هستند که امروزه تحقیقات فراوانی بر روی آنها به عمل آورده شده است. امروزه رنگ های جدیدی بوسیله ی افزودن نانو ذرات در لعاب پدید می آید. عموما نانو ذرات نقره و طلا رنگ طلایی بوجود می آورند. و نانو ذرات مس رنگ قرمز بوجود می آورند. توضیح در مورد نحوه ی پدید آمدن رنگ در لعاب واقعاً پیچیده تر از نحوه ی پدید آمدن رنگ در شیشه هاست. زیرا لعاب بر روی یک لایه اعمال می شود و از این سو نباید ترانسپارنت باشد. همچنین لعاب یک لایه ی نازک است و در اتمسفر مختلف (کاهنده – اکسید کننده) بوجود می آید از این دو بررسی عوامل موثر بر تشکیل یک لعاب مشکل است.

لعاب های رنگی ( Colored glazes )

در لعاب های رنگی باید از پیگمنت های سرامیکی با پایداری مناسب بهره برد. از اکسیدهای رنگ زای ارزان قیمت می توان برای ایجاد رنگ در محصولات متنوع سفالی بهره برد. البته بسیاری از مواد رنگ زا برای لعاب همانهایی هستند که ما برای رنگرزی شیشه از آنها استفاده می کنیم
اکسید کبالت شیشه ها (4) یک اکسید سیاه رنگ است اما کمتر از یک درصد وزنی از آن در لعاب ایجاد رنگ آبی تیره می کند (اگر چه در بیشتر موارد از کربنات کبالت استفاده می شود).
به دلیل آنکه شیشه ها (4) در این گونه لعاب ها بوجود می آید، ویسکوزیته ی لعاب تغییر می کند.
اکسید کروم که تا 3-2% وزنی نیز می تواند به لعاب افزوده شود به جای رنگ سبز، رنگهای زرد، صورتی یا قهوه ای بوجود می آورد (رنگ قرمز در حضور سرب در ترکیب لعاب اولیه پدید می آید. اگر Zn در لعاب اولیه وجود داشته باشد، رنگ لعاب قهوه ای می شود مگر آنکه سرب ها هم وجود داشته باشد. که در صورت وجود سرب و روی در لعاب اولیه رنگ زرد پدید می آید).
شیشه ها (4)که به صورت کربنات به لعاب افزوده می شود، رنگ لعاب را به صورت قهوه ای در آورده البته این ماده می تواند رنگ قرمز، بنفش و حتی سیاه نیز تولید کند. که این تغییر رنگ به درصد سدیم موجود در لعاب اولیه بستگی دارد. افزودن Cuo به اندازه ی %2-1 وزنی به یک لعاب با سدیم بسیار کم سبب پدید آمدن رنگ فیروزه ای می شود. این درحالی است که افزودن بیش از 3% از این رنگ زا باعث پدید آمدن رنگ سبز یا آبی می شود. اگر درصد Cuo در لعاب افزایش یابد، لعاب ظاهری فلزی مانند مفرغ به خود می گیرد. اگر لعاب دارای 0.3– 2 درصد وزنی Cuo در اتمسفر کاهنده پخت شود، رنگ قرمز مسی پدید می آید. این رنگ به دلیل حضور ذرات کلوئیدی CU درلعاب بوجود می آید.
اگر یک لعاب رنگ زرد داشته باشد، این رنگ ممکن است بوسیله ی افزودن Cds یا Cdse بوجود آمده باشد. البته این نوع افزودنی های رنگ زا ممکن است رنگ های قرمز یا نارنجی را نیز پدید آورند. درصورت حضور سرب در این نوع لعاب ها ، Pds تشکیل می شود که باعث سیاه شدن لعاب می شود. زیرکن در صنعت برای کمک کردن به پایدار شدن این نوع رنگ ها (برپایه ی cd) استفاده می شود. درحقیقت شیشه ها (4) (زیر کن وانادیومی آبی رنگ) و شیشه ها (4)(pr,zr) (زیر کن پراسئودیومی زرد رنگ) مهم ترین تثبیت کننده های مورد استفاده در این رنگ هاست. هنگامی که اورانیوم به لعاب اضافه شود، به جای پدید آوردن رنگ زرد کم رنگ، رنگ قهوه ای تیره پدید می آید. (اورانیوم در شیشه های وازلینی تولید رنگ زرد کم رنگ می کند). البته بسته به ترکیب لعاب ، اورانیوم می تواند رنگ های قرمز یا نارنجی روشن نیز بدهد.

لعاب نمکی ( saltglaze )

دراین نوع فرآیند لعاب کاری سفال در کوره های با دمای بالا با نمک واکنش می دهد. در واقع سفالگر نمک را بر روی سفال اعمال می کند. این فرآیند هنگامی اتفاق می افتد که سفال در داخل کوره است. این فن بوسیله ی سفالگران ایرانی وانگلیسی در دهه ی 1700 ابداع گشته است. همچنین شما می توانید مثال های فراوانی از فرآیند رنگ آمیزی بوسیله ی اکسیدهای فلزی را در آلمان ببنید. در این نوع لعاب ها نمک با رس واکنش داده و تشکیل لایه ای شیشه ای بر روی سطح می دهد. این تکنیک دقیقاً فرآیند خوردگی خاک نسوز در دمای بالاست (بوسیله ی سود سوز آور).
واژه ی مینا (enamel) معمولا در هنگامی استفاده می شود که یک لایه ی لعابی بر روی فلز اعمال می شود. البته این واژه در هنگامی که یک لایه لعابی بر روی لعاب اولیه اعمال می شود نیز استفاده می شود. بازار مصرف مینا بسیار بزرگ است. این بازار از لوازم بهداشتی تا جواهر آلات گسترده است.

خوردگی شیشه و لعاب

این تصور وجود دارد که شیشه خنثی است اما باید بدانید که اسید سیتریک و اسید استیک موجود در غذاها و میوه ها می توانند بایون های موجود در شیشه واکنش دهند و ترکیبات کمپلکس پدید آورند. با خروج یون های قلیایی از داخل شیشه یون های هیدروژن مثبت جایگزین آنها می شود. هنگامی که بخواهیم استحکام سطح شیشه را افزایش دهیم باید یون های پتاسیم و سدیم مثبت را با لیتیم مثبت ( شیشه ها (4) ) جایگزین کنیم. در شیشه ی آلایش یافته (Stain glass) می توان یون نقره ی مثبت و مس را جایگزین شیشه ها (4) کرد.
همانند مواد کریستالی ، شیشه ها نیز دارای عیوب کریستالی اند. یکی از چالش هایی که ما با آنها روبرو هستیم محاسبه ی خواص بوجود آمده ازعیوب (مانند نفوذ) در شیشه هاست. زیرا در شیشه ها شبکه ی مرجع وجود ندارد.

انواع شیشه های سرامیکی

همه ی شیشه ها براساس تتراهدرال های سیلیسی ایجاد نمی شوند؛ واحدهای ساختاری این شیشه ها در جدول 1 آورده شده است. برخی از ترکیبات این شیشه ها نیز در جدول 2 آورده شده است.

شیشه ها (4)

شیشه ها (4)

شیشه ی سیلیکاتی ( سودالایم )

این شیشه ها بر پایه ی شیشه ها (4) هستند. (معمولا این نوع شیشه ها علاوه بر این مواد دارای شیشه ها (4) نیز هستند.) این نوع شیشه نستبا ارزان هستند و دارای دوام خوبی نیز هستند همچنین از این نوع شیشه به طور فراوان در صنعت بسته بندی و ساختمان استفاده می شود. ضریب انبساط حرارتی شیشه ها (4) این نوع شیشه ها ناچیز نیست. همچنین این نوع از شیشه ها عایق های خوبی نیستند. استفاده های عمده از این نوع شیشه در صفحات شیشه ای ،بطری ها ، وسایل غذا خوری و صنعت الکترونیک (حباب لامپ) است. شیشه های آلومینو سیلیکاتی قلیایی (شیشه ها (4)= عنصر قلیایی) دارای ضریب انبساط حرارتی پایینی است. این نوع شیشه دارای دوام و خواص عایق کاری بهتری است. وهمچنین نسبت به سایر شیشه های هم گروه استحکام بالاتری دارد. استفاده های این نوع شیشه عبارتست از تیوپ های اختراق، حباب های لامپ هالوژن و به عنوان بسترهای صنعت الکترونیک کاربرد دارد.

شیشه ی سربی

ترکیب عمومی این شیشه ها سیلیکات های قلیایی سربی استشیشه ها (4). در این نوع شیشه ها Pbo به جای CaO در شیشه ی سودالایمی قرار گرفته است. این نوع شیشه دارای مقاومت بالایی است. همچنین ضریب انبساط حرارتی آن بالاست. و دمای نرم شوندگی پایینی دارد. دلیل آنکه از این نوع شیشه ها در تولید ظروف کریستال استفاده می شود این است که ضریب شکست این نوع شیشه بالاست و علاوه بر این که از این شیشه ها در ظروف تزئینی استفاده می شود، از آنها در ساخت تیوپ های لامپ، لامپ تصویر تلویزیون و تیوپ های ترمومترها استفاده می شود. در ظروف کریستال انگلیسی که به صورت سنتی تولید می شوند، میزان Pbo حداقل 30% است. برطبق رهنمود اتحادیه ی اروپا میزان Pbo باید بیش از 24 درصد باشد. همچنین بر طبق استاندارد اروپا شیشه های کریستال سربی باز یافت نمی شوند. شیشه های سربی که برای ساخت حفاظ های تابشی استفاده می شوند ممکن است دارای بیش از 65% Pbo باشند. کاربرد این گونه شیشه ها در لامپ تصویر تلویزیون است اگر چه شیشه های باریمی برای ساخت صفحه و تابلوهای تلویزیون استفاده می شود. (تفنگ الکترونی تلویزیون اشعه ی x ساتع می کند که این نوع شیشه باید این تابش ها را جذب کند.)شیشه های سرب – بوراتی می توانند به عنوان لحیم های شیشه ای استفاده شوند. این نوع شیشه ها دارای در صد کمیشیشه ها (4) است و کاملا خنثی است.
شیشه های فیلنیتی (flint glass) دارای تفرق بالایی است. در واقع این نوع شیشه ها از نوع شیشه های سیلیکاتی قلیایی ـ سربی است که از ذوب سنگ های فیلنیتی ساخته شده اند(فیلنیت فرم خالص سیلیس است) .لازم به توضیح است که این نوع سنگ کلسینه شده و به طور فراوان در ساخت بدنه های سرامیکی استفاده می شود.

شیشه ی بورانی ( شیشه ی بورو سیلیکاتی )

شیشه های بوروسیلیکاتی قلیاییشیشه ها (4) به خاطر ضریب انبساط حرارتیشیشه ها (4) کوچکشان ویژه هستند. این نوع شیشه دوام بالایی داشته و خواص الکتریکی مفیدی دارند. پیرکس (Pyrex) که یک نوع ماده در تولید وسایل پخت و پز است . از جنس بروسیلیکات است .شیشه ی بروسیلیکاتی به طور وسیع در فرآیندهای شیمیایی استفاده می شود. برخی از شیشه های براتی دارای دمای ذوب پایینیشیشه ها (4) هستند از این رو آنها را می توان به همراه سایر شیشه ها استفاده کرد. شیشه ی بروسیلیکاتی – زنیکی به شیشه های منفعل شهرت دارند. این شیشه ها مواد قلیایی ندارند و از این رو از آنها می توان در ساخت اجزای الکترونیکی سیلیسیمی استفاده کرد.

سیلیس فیوزد

این نوع شیشه از نوع سیلیس خالص است. این شیشه ها ، شیشه های سیلیکاتی برای کاربردهای دما بالا هستند. ضریب انبساط حرارتی این نوع شیشه ها نزدیک به صفر است. این نوع شیشه ها برای تولید آینه های تلسکوپ و زیر لایه ها (Substrates) استفاده می شود. به خاطر داشتن ضریب انبساط حرارتی نزدیک به صفر به این شیشه ها ، شیشه های با انبساط حرارتی بسیار پایین (VLE Silica) می گویند .
شیشه های VLE دارای 7 درصد وزنیشیشه ها (4) برای تولید لفافه های لیتوگرافی نوری (masks photolithography) استفاده می شود. البته به خاطر دمای بالای فرآیند شکل دهی این شیشه ها ؛ می توان به جای آنها از شیشه های وایکور استفاده کرد.

شیشه ی فسفاتی ( phosphate – glass )
 

شیشه های فسفاتی شیشه های مهمی هستند زیرا این نوع شیشه ها خاصیت نیمه رسانایی دارند. یکی از کاربرد این مواد در ساخت تقویت کننده های الکترون (electron multipliers) است . در این نوع وسایل با استفاده از دپ کردن Er (افزودنشیشه ها (4) ) ، این تقویت کننده ها ساخته می شود. کایتون های موجود در این نوع شیشه ها معمولا V و P هستند اما لابراتوار ملی او آ ک ریچ (Oak Ridge National labroatory) یک نوع شیشه ی فسفاتی اندیوم – سربی تولید کرده است که دارای ضریب شکست بالایی است. از ویژگی های دیگر این شیشه می توان به دمای ذوب پایین و خاصیت ترانسپارنتی در برابر گسترده ی وسیعی از طول موج ها را نام برد. به دلیل آنکه این نوع شیشه می تواند درصد بالایی از عناصر خاکهای کم یاب را در خود حل کنند، از آنها در تولید وسایل نوری اکتیو مانند آمپلی فایرهای فیبر اپتیک و لیزرها استفاده می شود. شیشه های فسفاتی دپ شده با Nd در لیزرهای حالت جامد استفاده می شوند. ترکیب شیمیایی نمونه وار از این نوع شیشه عبارتست ازشیشه ها (4) است. که در صد Nd بین O.2-2.O درصد مولی است.

شیشه ی چالکوژیندی ( Chalcogenide glass )

این نوع شیشه براساس Se,As و Te بوجود می آید. این شیشه ها نور فرو سرخ را از خود عبور می دهند و نیمه رسانا های غیر اکسیدی هستند. از این نوع شیشه در وسایل و لنزهای الکترونیکی ویژه استفاده می شود. در این وسایل هنگامی که ولتاژ اعمالی به آنها از میزان بحرانی فراتر رود، به طور ناگهانی تغییر رسانایی رخ می دهد. کاربرد این نوع شیشه ها بسیار خاص است زیرا این شیشه ها دوام پایینی داشته و دمای نرم شوندگی شان پایین است.

شیشه ی فلورایدی ( fluoride glass )

عموماً شیشه های هالیدی بر پایه یشیشه ها (4) را شیشه های فلورایدی می گویند. کاربرد این نوع شیشه ها در وسایل همسو کننده نوری (optical waveguides) است. و درجاهایی که قیمت توجیه پذیر باشد استفاده می شوند.

شیشه ی طبیعی

این مسئله که شیشه در طبیعت بوجود می آید حتی این پدیده یک امر نسبتاً معمولی است، باعث شگفتی بسیاری از مردم می شود. تکتیت ها (tektites) درهنگام برخورد شهاب سنگ ها به زمین و در دهانه ی حاصله از برخورد شهاب سنگ پدید می آیند. مولد اویت (Moldavite) نیز یک شیشه ی سبز رنگ است که در مولداوی (Moldavia) یافت می شود . فولگلاریت (fulgarite) نیز تیوپ های شکننده از شیشه هستند که در هنگام برخورد برق آسمان به خاکهای ماسه ای پدید می آید. ابسیدیان (obsidian) نیز یک نوع شیشه است که در جریان های آتش فشانی تشکیل می شود. رنگ سیاه رنگ این نوع شیشه به خاطر ناخالصی پدید می آید. در طی دوره ی پارینه سنگی از ابسیدیان در ساخت وسایل استفاده می شده است. سنگ پا (Pamice) یکی دیگر از شیشه هایی است که از فوران های آتش فشانی تشکیل می شود. این ماده می تواند تخلخل های فراوانی داشته باشد. (درصورتی که ماده ی اولیه ی تشکیل دهنده ی آن دارای مواد گازی فراوانی باشد). سنگ پا شکل متخلخل ابسیدیان است

شیشه ها

مقدمه:

دراین مقاله ها در مورد انواع مختلف شیشه و برخی از کاربردهای آنها صحبت می کنیم.
شیشه ها یکی از انواع مهم موادمهندسی محسوب می شوند. این مواد در پنجره ها، ساخت بطری، لیزرها، الیاف نوری، عایق ها، لعاب کاری (glazing) ومینا کاری (enamelihg)، چاقوی جراحی، وسایل هنری وتابلوهای راهنمایی - رانندگی استفاده می شوند.
شیشه ها معمولا بازیافت می شوند واز این رو دوستدار محیط زیست هستند.مصریان آثار شیشه ای متنوعی بر جای گذاشته اند ولی آنها اولین کسانی نبودند که از این ماده استفاده می کردند.در دوران های دیرینه سنگی (paleolithic Times) شیشه های اولیه و شیشه های طبیعی (Obsidian: نوعی شیشه ی مصنوعی بدست آمده از آتش فشان ها ) بسیاراهمیت داشتند به خاطر اهمیت زیاد این ماده می توان گفت که شیشه نقش مهمی در شکل دهی تمدن ما داشته است.
به هر حال تعریفات مختلفی برای شیشه ها بیان شده است. دراین مقاله سعی می کنیم بگوییم چرا واژه های شیشه ای (glassy)، زجاجی (Vitreous) و آمورف (amor phous) همگی برای توصیف شیشه استفاده می شوند. همچنین سعی داریم جواب این سوال را بدهیم که: «شیشه چیست؟»
هنگام مطالعه ی این مقاله باید دو ذهنیت را داشته باشید:
1) ادعای Sturkey:"شیشه در دماهای بالا یک محلول شیمیایی است."
2) اگر شیشه که مایع فوق سرد شده است، پس جامد نیست وبنابراین یک ماده ی سرامیکی نیست (اما شیشه یک ماده ی سرامیکی است)

تعریف

تعریف کلاسیک شیشه براساس روش تاریخی تشکیل آن انجام شده است. البته این روش تعریف یک روش بسیار غیر معقولی برای تعریف هر ماده است. این مسئله باعث شده است تا امروز شیشه به چندین روش مختلف تعریف شود:
تعریف کلاسیک: شیشه یک مایع فوق سرد شده است(Supercooled liquid) مشکل بوجود آمده دراین تعریف این است که در برخی موارد می توان یک شیشه ی ویژه را به روشی تولید کرد که هیچگاه درحالت مایع قرار نداشته باشد.
ASTM شیشه را به صورت زیر تعریف کرده است:
"شیشه یک محصول غیر آلی از ترکیبی مذاب است که بدون آنکه کریستالی شود، سرد وصلب می گردد."
این تعریف نیز همان چیزی است که در تعریف کلاسیک آمده است. اما دراین تعریف شیشه ی پلیمری استثناء شده است. به وضوح مشخص است که استناد کردن به روش تولید برای تعریف یک گروه از مواد ایده آل و مناسب نمی باشد.

تعاریف دیگر :

1)" شیشه یک ماده ی جامد است که نظم دوربعد از خود نشان نمی دهد."
نداشتن نظم دوربعد یعنی ساختار شیشه درفواصل یک، دو یا سه برابر فاصله ی اجزای سازنده، دارای نظم نیست. این تعریف براساس مشاهدات حاصله از تفرق اشعه X، میکروسکوپ الکترونی عبوری (TEM) و... استوار است اما این تعریف نیز کمی قراردادی است زیرا به اندازه ی اجزاء تشکیل دهنده بستگی دارد.
2)" شیشه یک مایع است که قابلیت جاری شدن خود را از دست داده است."
این تعریف استوار است اما از تعریفی که بوسیله ی ASTM ارائه شده است فراگیرتر است .همچنین این تعریف از خاصیت مکانیکی برای تعریف شیشه استفاده می کند. درحقیقت این تعریف عملاً با دیدگاه فیزیک مدرن درباره ی شیشه مطابقت دارد.
اکثر شیشه هایی که ما در مورد آنها توضیح می دهیم، شیشه های با شبکه ی اکسیدی است . (مخصوصاً سیلیکات ها) تعریف ما از چنین شیشه هایی عبارتست از:
تجمعی جامد از تتراگونال هایی است که می توانند رئوس خود را به اشتراک گذاشته و البته این مواد نظم دور بعد ندارند.
دراین مقاله ما تنها درمورد شیشه های سرامیکی بحث می کنیم اما باید بدانیم که علاوه بر شیشه های سرامیکی، شیشه های فلزی و پلیمری نیز وجود دارد. شیشه های فلزی ترکیبات پیچیده ای هستند که در آنها عمل کریستالیزاسیون انجام نشده است. این مسئله بوسیله ی سریع سرد کردن فلز مذاب بوجود می آید.(این فرآیند اسپلات کوئنچینگ نامیده می شود). درادامه به بیان ویژگی شیشه ها می پردازیم:

ساختار

شیشه ها در اصل جامد های غیر کریستالی (یا آمورفی) هستند که در اغلب موارد از فریز شدن یک مایع فوق سرد شده بدست می آیند. دراین موارد نظم دور برد در آرایش اتمی وجود ندارد. البته نظم کوتاه برد (زیر 1nm) وجود دارد. این مواد دارای آرایش منظمی از سلولهای واحد نیستند.همانگونه که گفتیم شواهدی وجود دارد که ثابت می کند در شیشه ها نظم کوتاه برد وجود دارد.این نظم کوتاه برد به دلیل آرایش اتمی درمجاورت هر اتم (البته در فاصله ی کوتاه) بدست می آید. تلاش های فراوانی برای توصیف شیشه ها انجام شده است. که به بیان علت تشکیل شدن یا نشدن شیشه ها بحث می کند. دراین زمینه ما ازدو دیدگاه به شیشه ها نگاه می کنیم:
1) توجه به ساختار
2) توجه به مباحث کنیتیکی کریستالیزاسیون
درمورد اول ما به بیان هندسه ی اجزای تشکیل دهنده ی شیشه ها می پردازیم. همچنین دراین زمینه به بیان پیوندهای بین اتمی واستحکام پیوندها می پردازیم . درمورد دوم ما به بیان چگونگی دگرگونی های مایع به جامد در طی فرآیند سرد شدن می پردازیم.
دمای تبدیل شدن شیشه ای ( Tg )
درشکل 1 نموداری نشان داده شده است که در آن حجم ویژه به عنوان تابعی از دما رسم شده است.

شیشه ها (1)

این دیاگرام فرمی از دیاگرام استعاله ی دما – زمان (T.T.T) برای شیشه است. درهنگام سرد شدن مایع از دمای بالا دو پدید ه ممکن است در نقطه ی انجماد (Tm) اتفاق می افتد که عبارتند از :
1) اگر مایع کریستالیزه شود تغییرات حجم و سرعت سرد کردن گسسته است.
2) اگر کریستالیزاسیون اتفاق نیفتد، مایع به حالت فوق سرد شده تبدیل می شود و حجم در نزدیک دمای ذوب کاهش می یابد.
دردمای تبدیل شدن شیشه ای (Tg)، شیب نمودار کاهش می یابد و به شیب جامد کریستالی نزدیک می شود. این شکستگی بوجود آمده در نمودار سرد کردن نشان دهنده ی گذرگاه مایع فوق سرد شده به شیشه است. زیر دمای Tgساختار شیشه درحالت آسایش نیست زیرا این مواد اکنون جامد هستند. دراین ناحیه از Tg ویسکوزیته تقریبا شیشه ها (1) است. ضریب انبساط حالت شیشه ای معمولا نزدیک به ضریب انبساط جامد کریستالی است. اگر از سرعت های سرد کردن پایین تر استفاده شود، میزان آسایش ساختار افزایش می یابد. ومایع فوق سرد شده در دمای پایین تر تشکیل می شود. و شیشه ی حاصله ممکن است دانسیته ی بالاتری بدست آورند. (همانگونه که در شکل 1 دیده می شود)
فیزیک شیشه جنبه ی تردی آن را مورد بررسی قرار می دهد. در واقع این ویژگی یک ویژگی مایعات شیشه ساز در بالای دمای Tgاست واندزه ای از استعکام پیوندهای بین اتمی است. در ادامه ما درمورد شیشه ی نامحلول در آب یا بطری های شیشه ای آب صحبت می کنیم. البته چیزی که آگاهی کمتری از آن است این است که ما می توانیم آب را با سریع سرد کردن در اتاق مایع به حالت شیشه ای در آوریم. ماده ی حاصله یک شیشه ترد است اما این مسئله فهمیده شده است که بیشتر آب موجود در جهان به همین شکل وجود دارد.
تاریخچه
شیشه ماده ای است که پیوندی عمیق با تاریخچه ی انسان دارد. یکی از شواهد این مسئله استفاده از ابسیدیان (obsidian) یک شیشه ی طبیعی توسط بشر است. هیچ کس نمی داند که اولین جسم شیشه ای در چه زمانی ساخته شده است. قدیمی ترین یافته ها به 7000 سال پیش از میلاد برمی گردد. (البته ممکن است یافته هایی پیش از این تاریخ نیز وجود داشته باشد). درکاوش های باستان شناسی در بین النهرین روش های تولید شیشه کشف شده است . این کارها 4500 سال پیش از میلاد مسیح بوده است ومربوط به روش های تولید وسایل شیشه ای بوده است نه لعاب های مورد استفاده در وسایل سفالی. استفاده از شیشه در لعاب کاری سفال حتی به دوران های پیشین می رسد.

شیشه ها (1)

تقریبا در 3000 سال پیش از میلاد مسیح شیشه گران مصری شروع به تولید جواهر آلات شیشه ای و ظروف شیشه ای کوچک کردند. شیشه هم به عنوان یک جسم دکوری وهم به عنوان یک وسیله ی مورد استفاده در زندگی روزمره به شمار می آمد. قطعاتی از جواهر آلات شیشه ای در کاوش های اطراف کوه های مصر پیدا شده است. مثالی از این جواهرآلات شیشه ی فیزوزه ای آبی است که در شکل 2 دیده می شود. تقر یبا 1500 سال پیش از میلاد مسیح شیشه گران مصری ( در دوره ی touthmosis سوم ) روشی برای تولید قطعات تو خالی قابل استفاده، توسعه دادند. یک مثال قابل توجه از این نوع ساختار یک شیشه ی توخالی است که شبیه به سرماهی است (شکل 3) این ظرف بین سال های 1352 و 1336 قبل از میلاد ساخته شده است واین نظریه وجود دارد که برای نگه داری روغن خوش بو استفاده می شده است.

شیشه ها (1)

الگوی موجی این ظرف بسیار خاص است. در واقع این ظرف بوسیله ی کشیده شدن یک جسم تیز به شیشه ی خمیری شده تولید شده است.
نویسنده ی رومیPliny Fhe Elder (23-79 میلادی) اختراع شیشه را به صورت زیر توصیف می کند:
روزی یک کشتی که متعلق به چند تاجر نیتروم (Nitrum) بود در کنار ساحل لبنان کنونی توقف می کند. هنگام پخت غذا به دلیل نبود سنگ در ساحل، خدمه کشتی از کلوخ های نیترومی که در کشتی وجود داشته است. استفاده می کنند تا بتوانند دیگ غذا را در مکان مناسب استقرار دهند. پس از آنکه آتش روش شد، کلوخه ها با ماسه های ساحلی واکنش داده و تشکیل شیشه ی مذاب می دهد. این اولین منشع پدید آمدن شیشه است.
نیتروم (Nitrum) یک نوع سدیم کربنات (Soda) طبیعی است .این ماده یکی از اجزای مهم در شیشه های قدیمی و مدرن است. خاکستر گیاهان نیز یک منبع فقیر از سدیم برای شیشه گران فراهم می کند. گیاهان علف شوره (Saltwort) و رازیانه ی آبی (glass wort) از جمله گیاهانی هستند که برای مهیا شدن سدیم از آنها استفاده می شده است.
یکی از معمولی ترین روش ها برای شکل دهی شیشه روش دمش هوا است. اگر چه این تکنیک بیش از دوهزار سال پیش توسعه یافت، لوله های تولیدی به روش دمش در طی زمان تغییری نکرده است. توسعه ی عمده که دراین زمینه انجام شده است، روش دمش اتوماتیک است که برای تولید شیشه های بطری و حباب های لامپ استفاده می شود. دراین روش به قطعه ای شیشه در داخل قالب هوا دمیده می شود. و بدین شکل شیشه به شکل قالب در می آید. مهمترین مرحله ی رشد در تاریخ شیشه سازی مخصوصا درطی قرن بیستم مربوط به توسعه های اتفاق افتاده در زمینه ی تکنولوژی های تولید می باشد. این توسعه ها منجر به کاهش هزینه ی تولید محصولات شیشه ای می شود

در ادامه به بیان خواص شیشه ها می پردازیم:

ویسکوزیته ( η )

ویسکوزیته یک ویژگی کلیدی شیشه هاست.ما نیاز داریم تا درمورد ویسکوزیته ی شیشه در دماهای مختلف اطلاع داشته باشیم. و بتوانیم دمای مورد نیاز برا ی شکل دهی وآنیلینگ آن را تشخیص دهیم. ویسکوزیته یک ویژگی مکانیکی است. فرمول ویسکوزیتد به صورت زیر است:

شیشه ها (2)

دراین فرمول:
η : ویسکوزیته، F: نیروی مورد نیاز برای کشیدن یکی از صفحات موازی که در میان آنها مایع مورد نظر قرار دارد: ،d: فاصله ی صفحات، A: مساحت صفحات، V: سرعت حرکت صفحه. ویسکوزیته در واقع پاسخ یک مایع دربرابر تنش برشی است. مایعات دارای ویسکوزیته ای هستند که با واحد سانتی پوآز (CP) اندازه گیری می شود. واحد اندازه گیری ویسکوزیته ی گازها میکروپوآز(mp) است.

شیشه ها (2)

جدول 1 لیستی از اعداد ویسکوزیته ای است که برای فرآیندهای شیشه سازی مهم هستند. اعداد داده شده در جدول 2 نیز برای تعریف ویژگی های برجسته ی شیشه (با تأکید بر روی فرآیند) آورده شده است. بسیاری از اعداد آورده شده درجدول ویسکوزیته ها استاندارد هستند مثلا (2003) ASTMC338-93 یک روش تست استاندارد است که نقطه نرم شدگی شیشه بوسیله ی آن تعیین می شود.
محاسبه ی نقطه ی نرم شدگی شیشه بوسیله ی اندازه گیری دمایی که در آن یک فیبر شیشه ای استوانه ای با قطر شیشه ها (2) طول بوسیله ی وزن خودش تغییر طول می دهد. نرخ تغییر طول یک میلی متر بردقیقه است . در این روش 100 میلی متر از بخش بالایی فیبر بوسیله ی کوره ی خاصی با سرعت گرم شدنشیشه ها (2) گرم می شود.

شیشه ها (2)

ویسکوزیته ی برخی ازمایعات عمومی در جدول 2 آورده شده است. توجه کنید که در دمای کارپذیری شیشه ویسکوزیته ای شبیه به عسل در دمای اتاق دارد. به طور نمونه برای یک شیشه ی سیلیکاتی سودالایم این ویسکوزیته در دمایشیشه ها (2) بدست می آید. این جدول همچنین نشان می دهد که یک جامد دارای ویسکوزیته ای بیش ازشیشه ها (2) دسی پو آز است. ویسکوزیته ی به طور نمایی با تغییر دما ، تغییر می کند ( همانگونه که در شکل 1 برای انواع شیشه ی سیلیکاتی دیده می شود.) دمای فیکتیو (fictive temperature) دمایی است که در آن ساختار مایع به حالت شیشه ای تبدیل می شود. این دما بوسیله ی تقاطع منحنی های برونیابی شده در حالت دما بالا و دما پایین در نمودار ویسکوزیته – دما بدست می آید. دمای فیکتیو (Tf) مانند Tg به تبدیلات ساختاری شیشه بستگی دارد. البته Tg اندکی کمتر از Tf است.

شیشه ها (2)

شکل 2 وابستگی ویسکوزیته به دما را برای اکسیدهای شیشه ساز نشان می دهد. شما باید توجه کنید که بوسیله ی شیب این خطوط می توان انرژی اکتیواسیون جریان ویسکوز (EV) را بدست آوریم.

شیشه ها (2)

جدول 3 اعداد ویسکوزیته وسرعت های کریستالیزاسیون (v) برخی شیشه ها را نشان می دهد. سرعت کریستالیزاسیون مربوط می شود به سرعت تبادل مایع/جامد. V بسیار کم بیان کننده ی قابلیت شیشه سازی استثنایی ماده است.البته کریستالیزاسیون مذاب جامد شده ی سیلیس بسیار مشکل است.

شیشه ها (2)

روش های متعددی برای اندازه گیری ویسکوزیته وجود دارد. این روش ها با توجه به میزان ویسکوزیته انتخاب می شود.

شیشه ها (2)

شماتیک دو روش اول اندازه گیری ویسکوزیته در شکل 3 نشان داده شده است:

شیشه ها (2)

شیشه ( خلاصه ای از خواص )
 

شیشه ماده ای خنثی است. این مسئله به محیط بستگی دارد. اگر شیشه یک ماده ی سیلیکاتی باشد، این مسئله درست است . البته همه ی شیشه ها خنثی نیستند. مثلا بیوگلاس (bioglass)
شیشه یک ماده ی هموژن است. این مسئله نیز به نحوه ی شکل دهی و ترکیب شیمیایی شیشه بستگی دارد. ما می توانیم با استفاده از فرآیندهای خاص شیشه را به صورت غیر هموژن در آوریم.
شیشه می تواند تغییر شکل دهد. این مسئله عموماً درست می باشد و دلیلی است برای قابلیت بازیافت شیشه ها. برخی از شیشه ها به نحوه ای ساخته می شوند که بوسیله ی نور، انتشار نور در داخل آن وتابش نور و...تغییر ماهیت می دهد.
شیشه دارای ضریب انبساط کوچک است. البته همه ی شیشه ها مناسب استفاده شدن در کاربردهای حرارتی مانند ظروف پیرکس نیستند.
شیشه ها شفاف اند (trans Parent) این خاصیت برای الیاف نوری ضروری است. البته ما می توانیم با انجام عملیات های خاص شیشه به صورت اپک یا مات در آوریم.
بسیاری از شیشه های اولیه شفافیت کامل نداشتند زیرا در ساختار آنها ناخالصی وحباب هوا وجود داشت.
شیشه ارزان است. البته این مسئله برای شیشه های پنجره صحیح است. اما درمورد فیلم های نازک شیشه ای این مسئله صحیح نمی باشد. برخی از شیشه های قرمز رنگ بوسیله ی دپینگ (doping) طلا در آنها تولید می شود. که قیمت برخی از ظروف تولیدی از آن به پیش از 50 دلار می رسد.
شیشه یک ماده ی بالک است مگر در حالتی که آن را به صورت یک فیلم نازک ، یک فیلم انیتر گرانولار (IGF) یا یک سرامیک کریستالی رشد دهیم.

برخی از خواص مکانیکی شیشه

استحکام تئوریک شیشه ی سیلیکاتی درحدود 10GPa است. البته با حضور عیوب سطحی (ترک ها وجوانه ها ) این استحکام کاهش می یابد. شیشه ها موادی الاستیک هستند اما تحت کشش می شکنند. می توان استحکام این مواد را بوسیله ی ایجاد لایه های سطحی فشرده و یا بوسیله ی از بین بردن ترک های سطحی (با اسید شوئی یا پدید آوردن پوشش محافظ) افزایش داد. مثالی از این روش ها پدید آوردن ترک های اضافی در ساختار قطعات شیشه ای تزئینی به منظور بهبود خواص مکانیکی آنهاست. در این روش از سرد کردن شیشه ی مذاب در آب جهت ایجاد تنش های اضافه بهره برده می شود . در این حالت سطح قطعه ی شیشه ای مذاب زودتر از مرکز آن سرد می شود و بنابراین تنش های اضافی پدید می آید. قطعات جامد شده به این شیوه را می توان با چکش و بدون اینکه بشکنند چکش کاری کرد.

برخی از ویژگی های الکتریکی شیشه

شیشه معمولا دارای مقاومت الکتریکی بالایی است. که علت آن تفاوت زیاد میان باندهای انرژی (گپ بزرگ) در این ماده است. در مواردی که شیشه رساناست . بار بوسیله ی یون ها منتقل می شود.(در این مورد یون های قلیایی مانندشیشه ها (2) دارای سرعت انتقال بار بالایی هستند). در واقع به همین دلیل است که با افزایش دما رسانایی به شدت افزایش می یابد. رسانایی درشیشه های مختلف، متفاوت است.علت آن متفاوت بودن نوع شبکه ی این شیشه هاست. در شیشه هایی که دارای بیش از یک یون قلیایی هستند. پدیده ی جالبی رخ می دهد. رسانایی تولیدی در این نوع شیشه ها به طور مشخصی از شیشه های دارای یک یون کمتر است. این نوع شیشه ها در کاربردهای مختلف مانند لامپ های با توان بالا استفاده می شوند. ثابت دی الکتریک شیشه واقعاً بالاست اما نه به حدی که بتوان از آن در کاربردهای حافظه ای پیشرفته مانند حافظه ی با دستیابی دینامیک و رندوم (DRAMS) استفاده کرد. ظرفیت الکتریکی یک ماده میزان بار ذخیره شده در داخل ماده است. این خاصیت به ضخامت دی الکتریک بستگی دارد. همانطور که ضخامت دی الکتریک کمتر می شود، ظرفیت الکتریکی افزایش می یابد. اما کم کردن ضخامت نیز مشکلاتی به همراه دارد. مثلا با کاهش ضخامت احتمال شکست دی الکتریک بیشتر می شود. شیشه ی سیلیسی دارای مقاومت دی الکتریک بالاتری نسبت به سایر شیشه هاست. اما مقاومت این دی الکتریک نیز در حد دی الکتریک های پلیمری مانند رزین فنولیک نیست.

برخی از خواص اپتیکی شیشه

شفافیت دربرابر نور فرا بنفش ، مرئی و فرو سرخ به چندین فاکتور بستگی دارد. یکی از این فاکتورها طول موج تفرق است که بوسیله ی ناخالصی ها تغییر می کند. لبه ی فرو سرخ (IRedge) و لبه ی فرا بنفش ((uv edge اعدادی هستند که نشان دهنده ی فرکانس قطع شدن عبور این موج ها هستند. یک مانع لبه UV edge blocker)UV) از عبور UV جلوگیری می کند و این در حالی است که یک عبور دهنده ی لبه یUV (UV edge tran Smitter) اجازه ی عبور نور UV را می دهد.

عیوب در شیشه ها

اگر چه شیشه یک ماده ی آمورف است ولی مانند مواد کریستالی دارای عیوب و رسوبات است. و همچنین دچار جدایش فاز می شود. شیشه را می توان برای حبس کردن عناصر رادیو اکتیو استفاده کرد .در این عناصر مانند عیوب نقطه ای یا فاز ثانویه تشکیل می شوند. همچنین سرعت نفوذ این عناصر از میان شیشه بر روی میزان آن ها در شیشه تأثیر دارند. این مسئله استفاده می شود تا بتوان مواد رادیو اکتیو یا سایر مواد را کنترل کرد.

شیشه ی غیر هموژن

به دلیل آنکه شیشه یک مایع فوق سرد شده است. نمی توان گفت که این ماده حتما باید هموژن باشد. شیشه های خاص می توانند بدون نیاز به فرآیند کریستالیزاسیون به دو فاز تبدیل شوند. هنگامی که این دو فاز شیشه ای باشند این مسأله باعث می شود که سدی در برابر جدایش فازی پدید نیاید. در مورد فرآیند جدایش فازی مایع – مایع ممکن است مرحله ای برای جوانه زنی وجود داشته باشد. البته در این نوع تبدیلات ممکن است استعاله ی اسپینودال (Spinodal) نیز رخ می دهد. که هر دوی این استعاله ها به نفوذ وابسته اند.
قوانین امتزاج ناپذیری در شیشه ها بسیار مهم است. این مسئله مخصوصاً در شیشه های تولید شده با تکنولوژی روز نمود دارد. برای مثال امتزاج ناپذیری در شکل دهی شیشه – سرامیک ها ، تولید شیشه ی وایکور (Vycor) و شیشه های اپتیکی و تشکیل رسوب در شیشه ها مهم می باشد. بسیاری از اکسیدهای دوتایی و سه تایی در کنار سیلیس از خود مشکلات امتزاج پذیری نشان می دهند.
در دیاگرام فازی ناحیه ای وجود دارد که یک مایع به دو مایع با ترکیب شیمیایی متفاوت تبدیل می شود. این ناحیه گپ امتزاج پذیری (imisciblity gap) نامیده می شود. در زیر برخی از سیستم هایی که مشکل امتزاج پذیری دارند را نام برده ایم:

شیشه ها (2)

شیشه ها (2)

شکل 4 دیاگرام فازیشیشه ها (2) را نشان می دهد. در دمای پایین و در گوشه ی غنی از سیلیس دیاگرام ، فاز مایع به دو بخش مایع با ترکیب شیمیایی متفاوت تبدیل می شود. این دو مایع به صورت دو شکل گنبد مانند در شکل نشان داده شده اند. خط تیره نشان دهنده ی خط تقریبی ناحیه ی امتزاج ناپذیری است. مشکلی که در اندازه گیری این خط وجود دارد. این است که این پدیده در دمای پایین رخ می دهد و از این رو سرعت آن پایین است . و از این رو اندازه گیری آن مشکل است. دراین وضعیت میل جدایش فازی بیشتر از میل به کریستالیزاسیون است . البته کریستالیزاسیون مساعد تر از جدایش فازی است اما به دلیل آنکه جدایش فازی نیازی به باز آرایی اتم ها ندارد، این پدیده رخ می دهد. به عنوان یک قانون کلی برای سیلیس باید گفت که امتزاج ناپذیری با افزودنشیشه ها (2) افزایش می یابد اما با افزودنشیشه ها (2) کم می شود. در شیشه های وایکور از قوانین جدایش فازی استفاده می شود. در فرآیند تولید شیشه وایکور، شیشه ای پدید می آید که دارایشیشه ها (2) و 4 درصد تخلخل است.این نوع شیشه به عنوان فیلتر وبیومواد مخصوصا در جاهایی که تخلخل مهم می باشد، استفاده می شود. در فرآیند تولید وایکور، شیشه ای تولید می شود که پس از فرآیند شکل دهی دنس می گردد و شیشه ای با سیلیس خالص پدید می آید که در دمای پایین تر نسبت به کوارتز خالص شکل دهی گشته است

شیشه ی آلومینیوم – ایتریمی

شیشه های آلومینیوم –ایتریایی (YA) دارای درصد آلومینایی در گسترده ی تقریبی 75.6- 59.8 هستند. با این درصد آلومینایک شیشه ی دو فازی تشکیل می شود که در آن یک فاز قطره مانند در فاز دیگر تشکیل شده است. این شیشه به طور خود بخودی به صورت شیشه ی آلومینیوم – ایتریمی یا مخلوطی ازشیشه ها (3) تبدیل می شود. درشیشه های YA پدیده ای به نام پلی مورفیزم (Polymorphism) رخ می دهد

شیشه ی رنگی

اگر چه در بیشتر کاربردهای شیشه نیاز است تا این ماده بی رنگ باشد اما در برخی از کاربردها نیاز است شیشه رنگی باشد. هنگامی که پنجره های یک کلیسا رنگی باشد، تأثیر پذیری ازمحیط بیشتر می شود . درشیشه ها معمولا بوسیله ی افزودن اکسیدهای انتقالی و یا اکسیدهای عناصر خاک های کمیاب (rave –eavth) به بچ ماده ی اولیه ی آنها، رنگی می شوند. جدول 1 لیستی از رنگ های تولیدی بوسیله ی مواد رنگی کننده ی شیشه هاست . زرد کم رنگ، نارنجی و رنگ های قرمز بوسیله ی فلزات گران بها درحالت کلوئیدی تولید می شود. طلا (Au) رنگ قرمز، یا قوتی تولید می کند. (البته این شیشه ها گران قیمت هستند). سولفید کادمیم (cds) محصولاتی با رنگ زرد تولید می کند. اما هنگامی که علاوه بر se ، cds نیز استفاده شود. محصولاتی با رنگ قرمز یا قوتی با شدت رنگ بالا تولید می شود.

شیشه ها (3)

شیشه بوسیله ی افزودن دوپانت ها (dopants) رنگرزی می شوند. در واقع با افزودن این دو پانت ها در شیشه عیوب نقطه ای پدید می آوریم. رنگ شیشه به نوع دو پانت و حالت اکسیداسیون آن بستگی دارد.
دو پانت ها می توانند اثر بی رنگ کننده (decdorizo) ، پوشش دهنده (mask) یا اصلاح کننده (modify) داشته باشند. ما می توانیم اثرات رنگی آهن را بوسیله ی افزایش cr خنثی کنیم؛ البته اگر درصدشیشه ها (3) زیاد باشد اضافی به صورتشیشه ها (3) خارج می شود. اگر این شیشه به روش دمیدن شکل دهی شود، این پلیت لت هایشیشه ها (3) منظم گشته و شیشه ای اپک به نام آونتورین کرومی (chromium aventurine) تولید می کنند. مس (cu) برای تولید شیشه ی آبی مصری (Egyptian Blue glass) استفاده می شود.
CO (کبالت ) دربرخی از شیشه های پالایش یافته ی تولید در قرن دوازدهم استفاده می شده است. البته Co در تولید لعاب های پرسلانی مورد استفاده در چین ( در دوره ی سلسله ی منیگ وتانگ) استفاده می شده است. کبالت مورد استفاده در این لعاب ها رنگ آبی کبالتی تولید می کند.
با افزودن Se به شیشه های دپ شده با Cds باعث پدید آمدن رنگ یاقوتی سلینومی (Selenium Ruby) می شود. جزئیات پدید آمده ازهر کدام از این رنگ ها به ترکیب شیمیایی و شرایط پخت شیشه بستگی دارد.
شرکت کورینگ (Cornig) میکرو بارکدهایی با شیشه دپ شده با خاکهای کم یاب تولید کرده است. خاکهای کم یاب دارای باندهای نشر کم پهنا هستند و از میان 13 عنصر خاکهای قلیایی که مورد آزمایش قرار گرفته ، تنها 4 عنصر (Tm,Ce,Tb و Dy) می توانند در برابر تابش UV برانگیخته شوند. و لذا می توان از آنها در شناسایی بوسیله ی UV استفاده کرد. این نوع بارکدها همچنین مشکلات تداخل با سایر بارکدها را نیز ندارد. از این بارکدها در کاربردهای بیولوژیکی استفاده می شود زیرا سمی نیستند.(البته بر چسب زنی با کوانتوم دات ها خطرات کمتری دارد) و می توان از آنها در کاربردهای ژنتیکی استفاده کرد. با استفاده از چند عنصر خاکی کمیاب می توان ترکیب رنگی بیشتر پدید آورد.
شیشه های رنگی خاص شامل موارد زیر می شود :

شیشه ی یاقوتی یا کرانبری ( Cranberry )
 

شیشه ی یاقوتی با افزودن Au به شیشه سربی با حضور Sn پدید می آید. شیشه ی کرانبری که اولین بار در سال 1685 گزارش شده است، یک نوع شیشه ی بی رنگ (معمولاً صورتی کم رنگ ) است. علت پدید آمدن این رنگ در صد کم طلای موجود در آن است . راز تولید شیشه قرمز رنگ برای قرن ها ی زیادی گم شده بود و در قرن هفدهم دوباره کشف شد.

شیشه ی اورانیومی یا وازلینی

محصولات اورانیومی هنگامی که در شیشه ی با سرب بالا استفاده شود، رنگ قرمز تیره تولید می کند. البته شیشه های اورانیومی دیگری نیز وجود دارد که با صطلاح به آنها شیشه های وازلینی (Vaseline glass) می گویند. این نوع شیشه ها دارای رنگ سبز هستند. مسأله ای که این نوع شیشه ها را خاص کرده است این است که این نوع شیشه ها هنگام تابش اشعه ی UV به آنها ، خاصیت فلئورسانس پیدا می کنند. از سال 1940 تنها اورانیوم تهی شده (uranium depleted) به عنوان دو پانت استفاده می شود. علت استفاده از این نوع دو پانت، فراوانی آن است. اما از 100 سال گذشته به بعد اورانیوم طبیعی (natural uranium) استفاده می شود.

شیشه ها (3)

شکل 1 مثالی از یک شیشه ی وازلینی است.

لیزر شیشه ای

عناصر خاکهای کم یاب (rave – earth elements) مانند Nd در تولید شیشه های لیزر و سایر وسایل اپتیکی کاربرد دارند. (شکل 2) . لیزر شیشه ای دپ شده با Nd (Nd-doped glass laser) مانند یک لیزر یاقوتی (ruby laser) کار می کند . اگر چه نوع شیشه ای دارای تفاوت هایی است . میله ی لیزر قطری بینشیشه ها (1) اینچ دارد و معمولا بوسیله ی یک لامپ حلزونی تخلیه می شود. علت استفاده از لامپ های حلزونی این است که طول غیر بار دار این نوع لامپ ها از لامپ های خطی طولانی تر است. لیزر شیشه ای دپ شده با Nd دارای بازدهی بیش از 2% است. این بازده 4 برابر بازده یک لیزر یاقوتی است. به دلیل آنکه رسانایی گرمایی شیشه پایین است بنابراین نیاز به زمان بیشتری برای خنک سازی است.

شیشه ها (3)

رسوبات در شیشه

وجود رسوبات در شیشه عموما اجتناب ناپذیر است. سوال این است که چه زمانی طول می کشد تا رسوبات تشکیل شود. (مخصوصا اگر جوانه زنی هموژن باشد). ما ممکن است عوامل هسته زا برای تسریع جوانه زنی به شیشه اضافه کنیم. جوانه زنی کریستال ها در شیشه از تئوری کلاسیک پیروی می کند. رسوبات تشکیل شده در شیشه می تواند موجب رنگی شدن شیشه شود.

شیشه به عنوان لعاب

لعاب ها مانند شیشه ها در همه جا دیده می شوند. لعاب کاری (glazing) استفاده از ویژگی های ویسکوز شیشه و تشکیل یک لایه ی یک پارچه و صاف بر روی یک زیر لایه ی سرامیکی است.
مینا کاری (enameling) تشکیل همان لایه بر روی یک زیر لایه ی فلزی است. چیزی که باید به آن توجه کرد این است که عموما لعاب ها قدمت زیادتری دارند. در ادامه به بیان برخی از اصطلاحات لعاب می پردازیم:

زیر لعاب ( underglaze )

هنگامی که یک بیسکوییت سرامیکی را می خواهیم مورد عملیات دکور قرار دهیم باید قبل از آن یک لعاب کاری بر روی آن انجام دهیم که این نوع لعاب را زیر لعاب گویند. این لایه به علت تشکیل بهتر دکور بر روی بدنه اعمال می شود. پس از آن که فرآیند دکوراسیون جسم سرامیکی انجام شود برروی آن یک لعاب دیگر اعمال می شود. البته این لعاب پیش از پخت دکور اعمال می شود.
عیب کراولینگ لعاب ( glaze craweling ) این عیب که در لعاب اتفاق می افتد بدین صورت است که لعاب از لایه ی سرامیکی زیرین جدا می گردد. این پدیده به دلیل عدم ترشوندگی بیسکوییت سرامیکی بالعاب در طی فرآیند پخت اتفاق می افتد.
لعاب ترک خورده ( crackle glaze )اگر انبساط گرماییشیشه ها (3) لعاب از سرامیک بستر بزرگ تر باشد، لعاب ممکن است در طی فرآیند سرد کردن (در طی پخت) بشکند. هنگامی که غلظت یون سدیم و پتاسیم در لعاب بیشتر باشد، ترک ها بیشتر پدید می آیند. هنگامی که سرعت سرد کردن بالا رود ترک های حاصل ریزتر می شوند.
لعابهای سلادون (celadon )، تنموکو (tenmoku)، راکو (raku) و کوپر ( copper) لعاب های ویژه ای هستند که در دنیای هنر سرامیک یافت می شوند.
لعاب های سلادوناین لعاب ها اولین بار در حدود 3500 سال پیش تولید شده اند. این لعاب ها دارای گستره ی رنگی از آبی کم رنگ تا سبز مایل به زرد هستند و می توانند رنگی کاملا تیره پدید آورند. رنگ تولیدی در این لعاب ها بوسیله ی آهن تولید می شود(3.o - o.5 در صدشیشه ها (3) به لعاب افزوده می شود). ظروف لعاب خورده توسط این نوع لعاب سپس در دمای تقریباًشیشه ها (3) پخت می گردند. ظروف تولید شده با این لعاب ها زیبایی خاصی داشته و در کاربردهای تزئینی استفاده می شوند. مثلا کوزه ی لعاب خورده با این لعاب که درکشور کره تولید شده است، درسال 1946 از سوی کشور کره به هاری ترومن رئیس جمهور آمریکا هدیه شد. امروزه این ظرف که 23cm ارتفاع دارد قیمتی برابر با 3 میلیون دلار دارد.
لعاب تنموکواین نوع لعاب در زمان سلسله ی سونگ (sung Dynasty) بوجود آمده است. و دارای رنگ قهوه ای تیره یا حتی سیاه است. برای ایجاد این رنگ میزان 8-5 درصد وزنیشیشه ها (3) به لعاب افزوده می شود. تشکیل مناسب این نوع لعاب به شرایط اکسایش – کاهش اتمسفر پخت بستگی دارد. و در شرایط مختلف اکسایش و کاهش رنگ های متنوعی پدید می آید. در لعاب های کوپرنیز از کربنات مس به عنوان منبع Cuاستفاده می شود. البته در طی فرآیند پختشیشه ها (3) تجزیه گشته و Cuoباقی می ماند. Cuo تولید نیز با مونواکسیدکربن (CO) موجود در کوره واکنش داده تا ذرات مس در لعاب تشکیل شوند. این ذرات رنگ قرمز به لعاب می دهند.
لعاب های راکولعاب های راکو اغلباً لعاب هایی فلزی به نظر می رسند. (اگر بوسیله ی یک لایه از فلز Ti پوشش داده شده باشند)
یک روش پیشرفته در تولید لعاب های راکو بدین صورت است که ظروف سرامیکی به شیوه ی معمولی پخت می شوند سپس آنها را در داخل یک محیط کاهنده مانند خاک اره وارد می کنند و سپس آنها را قبل از آنکه بتوانند اکسید شوند، به سرعت سرد می کنند. این نوع لعاب ها اغلبا حالت استثنا داشته و می توانند با زمان تغییر کنند. این مسئله ساده است. زیرا آنها در طی فرآیندهای بعدی تولید اکسید می شوند. این نوع لعاب بر خلاف سایر لعاب ها خنثی نبوده و تنها برای دکوراسیون استفاده می شوند.
لعاب های کریستالی ( crystalline glaze )این نوع لعاب ها ، لعاب هایی دکوراسیونی هستند اما به طور مستقیم با تکنولوژی تشکیل شیشه – سرامیک در ارتباطند. کریستال ها بوسیله ی سرد کردن آهسته لعاب ایجاد می شوند. این سرد کردن آهسته به کریستال های لعاب اجازه ی رشد کردن می دهند. رشد این کریستال ها مد نظر است؛ زیرا لعاب ضخامت کمی داشته و از این رو کریستال ها باید به صورت پلیت لت (platelets) در آیند. برای آنکه عمل رشد کریستال ها بهتر انجام شود از جوانه زاهای تیتانیایی استفاده می شود. این نوع جوانه زاها در لعاب های باویسکوزیته ی پایین استفاده می شوند و در آنهاشیشه ها (3) تشکیل می شود. ترکیب شیمیایی این نوع لعاب ها بسیار مهم است. در آن شیشه ها (3) وشیشه ها (3) به میزان کم و Pbo به میزان 10-8 درصد وزنی استفاده می شود. رشد کریستال با اضافه شدن fe به لعاب افزایش می یابد. اما این اضافه شدن می تواند همچنین موجب پدید آمدن اثراتی بر سایر دو پانت های اضافه شده به لعاب شود.
سفالگران امروزی ازشیشه ها (3) به عنوان اصلاح کننده و تولید کننده ی کریستال های ویلمایت (Crystals Willemite) استفاده می کنند. (ویلمایت یک مینرال کمیاب از روی است). این تکنیک نیازمند مهارت ویژه است. زیرا افزودن مقادیر زیادشیشه ها (3) به لعاب باعث می شود ویسکوزیته ی آن حتی در دماهای پایین نیز کم باشد، بنابراین این مسئله باعث می شود که لعاب از روی سطح سفالی جریان پیدا کند. رشد اسفرولیتی (Spherulite growth) از جوانه زا در لعاب در شکل 3 نشان داده شده است. هر اسفرولیت در واقع توده ای از کریستال های شعاعی است که با توجه به مرکز اسفرولیت دورهم گرد آمده اند.

شیشه ها (1)

لعاب های اپک ( opaque glazes ) اگر به لعاب مذاب کریستال هایی افزوده شود، لعاب می تواند اپک شود. برای این کار می توان ازO_2 S_n یا زیر کن استفاده کرد. که زیر کن ارزان تر است .شیشه ها (3) برای تولید رنگ سفید در لعاب های زیرکنی (Zircon glaze) استفاده می شود. برای اپک کردن کمتر ازشیشه ها (3) استفاده می شود زیرا کریستال های روتایل طلایی رنگ هستند. و بنابراین لعاب را به رنگ زرد در می آورند. ما همچنین می توانیم با تشکیل کریستال لعاب را اپک کنیم (مثلا ولاستونیت:شیشه ها (3). این کار بوسیله ی عملیات حرارتی مناسب، حبس کردن گاز (هوا یاشیشه ها (3) ) ) و یا بوسیله ی جدایش فازی مایع – مایع انجام می شود. لعاب های مات (Matt glazes) بوسیله ی تشکیل کریستال های بسیار کوچک در لعاب بوجود می آیند (مثلا کریستال های ولاستونیت برای لعاب های مات – آهکی و وبلیمایت (شیشه ها (3):Willemite ) برای لعاب های مات – زینک). کریستال های ریز ولاستونیت بوسیله ی افزودن کلسیت به لعاب پایه سیلیس تشکیل می شود. یک روش دیگر برای این کار افزودن مقادیر زیادی از ماده ی کریستالی به لعاب است تا در طی فرآیند پخت درصدی از آن به صورت کریستالی باقی بماند

رنگ در لعاب و لعاب موضوعاتی هستند که امروزه تحقیقات فراوانی بر روی آنها به عمل آورده شده است. امروزه رنگ های جدیدی بوسیله ی افزودن نانو ذرات در لعاب پدید می آید. عموما نانو ذرات نقره و طلا رنگ طلایی بوجود می آورند. و نانو ذرات مس رنگ قرمز بوجود می آورند. توضیح در مورد نحوه ی پدید آمدن رنگ در لعاب واقعاً پیچیده تر از نحوه ی پدید آمدن رنگ در شیشه هاست. زیرا لعاب بر روی یک لایه اعمال می شود و از این سو نباید ترانسپارنت باشد. همچنین لعاب یک لایه ی نازک است و در اتمسفر مختلف (کاهنده – اکسید کننده) بوجود می آید از این دو بررسی عوامل موثر بر تشکیل یک لعاب مشکل است.

لعاب های رنگی ( Colored glazes )

در لعاب های رنگی باید از پیگمنت های سرامیکی با پایداری مناسب بهره برد. از اکسیدهای رنگ زای ارزان قیمت می توان برای ایجاد رنگ در محصولات متنوع سفالی بهره برد. البته بسیاری از مواد رنگ زا برای لعاب همانهایی هستند که ما برای رنگرزی شیشه از آنها استفاده می کنیم
اکسید کبالت شیشه ها (4) یک اکسید سیاه رنگ است اما کمتر از یک درصد وزنی از آن در لعاب ایجاد رنگ آبی تیره می کند (اگر چه در بیشتر موارد از کربنات کبالت استفاده می شود).
به دلیل آنکه شیشه ها (4) در این گونه لعاب ها بوجود می آید، ویسکوزیته ی لعاب تغییر می کند.
اکسید کروم که تا 3-2% وزنی نیز می تواند به لعاب افزوده شود به جای رنگ سبز، رنگهای زرد، صورتی یا قهوه ای بوجود می آورد (رنگ قرمز در حضور سرب در ترکیب لعاب اولیه پدید می آید. اگر Zn در لعاب اولیه وجود داشته باشد، رنگ لعاب قهوه ای می شود مگر آنکه سرب ها هم وجود داشته باشد. که در صورت وجود سرب و روی در لعاب اولیه رنگ زرد پدید می آید).
شیشه ها (4)که به صورت کربنات به لعاب افزوده می شود، رنگ لعاب را به صورت قهوه ای در آورده البته این ماده می تواند رنگ قرمز، بنفش و حتی سیاه نیز تولید کند. که این تغییر رنگ به درصد سدیم موجود در لعاب اولیه بستگی دارد. افزودن Cuo به اندازه ی %2-1 وزنی به یک لعاب با سدیم بسیار کم سبب پدید آمدن رنگ فیروزه ای می شود. این درحالی است که افزودن بیش از 3% از این رنگ زا باعث پدید آمدن رنگ سبز یا آبی می شود. اگر درصد Cuo در لعاب افزایش یابد، لعاب ظاهری فلزی مانند مفرغ به خود می گیرد. اگر لعاب دارای 0.3– 2 درصد وزنی Cuo در اتمسفر کاهنده پخت شود، رنگ قرمز مسی پدید می آید. این رنگ به دلیل حضور ذرات کلوئیدی CU درلعاب بوجود می آید.
اگر یک لعاب رنگ زرد داشته باشد، این رنگ ممکن است بوسیله ی افزودن Cds یا Cdse بوجود آمده باشد. البته این نوع افزودنی های رنگ زا ممکن است رنگ های قرمز یا نارنجی را نیز پدید آورند. درصورت حضور سرب در این نوع لعاب ها ، Pds تشکیل می شود که باعث سیاه شدن لعاب می شود. زیرکن در صنعت برای کمک کردن به پایدار شدن این نوع رنگ ها (برپایه ی cd) استفاده می شود. درحقیقت شیشه ها (4) (زیر کن وانادیومی آبی رنگ) و شیشه ها (4)(pr,zr) (زیر کن پراسئودیومی زرد رنگ) مهم ترین تثبیت کننده های مورد استفاده در این رنگ هاست. هنگامی که اورانیوم به لعاب اضافه شود، به جای پدید آوردن رنگ زرد کم رنگ، رنگ قهوه ای تیره پدید می آید. (اورانیوم در شیشه های وازلینی تولید رنگ زرد کم رنگ می کند). البته بسته به ترکیب لعاب ، اورانیوم می تواند رنگ های قرمز یا نارنجی روشن نیز بدهد.

لعاب نمکی ( saltglaze )

دراین نوع فرآیند لعاب کاری سفال در کوره های با دمای بالا با نمک واکنش می دهد. در واقع سفالگر نمک را بر روی سفال اعمال می کند. این فرآیند هنگامی اتفاق می افتد که سفال در داخل کوره است. این فن بوسیله ی سفالگران ایرانی وانگلیسی در دهه ی 1700 ابداع گشته است. همچنین شما می توانید مثال های فراوانی از فرآیند رنگ آمیزی بوسیله ی اکسیدهای فلزی را در آلمان ببنید. در این نوع لعاب ها نمک با رس واکنش داده و تشکیل لایه ای شیشه ای بر روی سطح می دهد. این تکنیک دقیقاً فرآیند خوردگی خاک نسوز در دمای بالاست (بوسیله ی سود سوز آور).
واژه ی مینا (enamel) معمولا در هنگامی استفاده می شود که یک لایه ی لعابی بر روی فلز اعمال می شود. البته این واژه در هنگامی که یک لایه لعابی بر روی لعاب اولیه اعمال می شود نیز استفاده می شود. بازار مصرف مینا بسیار بزرگ است. این بازار از لوازم بهداشتی تا جواهر آلات گسترده است.

خوردگی شیشه و لعاب

این تصور وجود دارد که شیشه خنثی است اما باید بدانید که اسید سیتریک و اسید استیک موجود در غذاها و میوه ها می توانند بایون های موجود در شیشه واکنش دهند و ترکیبات کمپلکس پدید آورند. با خروج یون های قلیایی از داخل شیشه یون های هیدروژن مثبت جایگزین آنها می شود. هنگامی که بخواهیم استحکام سطح شیشه را افزایش دهیم باید یون های پتاسیم و سدیم مثبت را با لیتیم مثبت ( شیشه ها (4) ) جایگزین کنیم. در شیشه ی آلایش یافته (Stain glass) می توان یون نقره ی مثبت و مس را جایگزین شیشه ها (4) کرد.
همانند مواد کریستالی ، شیشه ها نیز دارای عیوب کریستالی اند. یکی از چالش هایی که ما با آنها روبرو هستیم محاسبه ی خواص بوجود آمده ازعیوب (مانند نفوذ) در شیشه هاست. زیرا در شیشه ها شبکه ی مرجع وجود ندارد.

انواع شیشه های سرامیکی

همه ی شیشه ها براساس تتراهدرال های سیلیسی ایجاد نمی شوند؛ واحدهای ساختاری این شیشه ها در جدول 1 آورده شده است. برخی از ترکیبات این شیشه ها نیز در جدول 2 آورده شده است.

شیشه ها (4)

شیشه ها (4)

شیشه ی سیلیکاتی ( سودالایم )

این شیشه ها بر پایه ی شیشه ها (4) هستند. (معمولا این نوع شیشه ها علاوه بر این مواد دارای شیشه ها (4) نیز هستند.) این نوع شیشه نستبا ارزان هستند و دارای دوام خوبی نیز هستند همچنین از این نوع شیشه به طور فراوان در صنعت بسته بندی و ساختمان استفاده می شود. ضریب انبساط حرارتی شیشه ها (4) این نوع شیشه ها ناچیز نیست. همچنین این نوع از شیشه ها عایق های خوبی نیستند. استفاده های عمده از این نوع شیشه در صفحات شیشه ای ،بطری ها ، وسایل غذا خوری و صنعت الکترونیک (حباب لامپ) است. شیشه های آلومینو سیلیکاتی قلیایی (شیشه ها (4)= عنصر قلیایی) دارای ضریب انبساط حرارتی پایینی است. این نوع شیشه دارای دوام و خواص عایق کاری بهتری است. وهمچنین نسبت به سایر شیشه های هم گروه استحکام بالاتری دارد. استفاده های این نوع شیشه عبارتست از تیوپ های اختراق، حباب های لامپ هالوژن و به عنوان بسترهای صنعت الکترونیک کاربرد دارد.

شیشه ی سربی

ترکیب عمومی این شیشه ها سیلیکات های قلیایی سربی استشیشه ها (4). در این نوع شیشه ها Pbo به جای CaO در شیشه ی سودالایمی قرار گرفته است. این نوع شیشه دارای مقاومت بالایی است. همچنین ضریب انبساط حرارتی آن بالاست. و دمای نرم شوندگی پایینی دارد. دلیل آنکه از این نوع شیشه ها در تولید ظروف کریستال استفاده می شود این است که ضریب شکست این نوع شیشه بالاست و علاوه بر این که از این شیشه ها در ظروف تزئینی استفاده می شود، از آنها در ساخت تیوپ های لامپ، لامپ تصویر تلویزیون و تیوپ های ترمومترها استفاده می شود. در ظروف کریستال انگلیسی که به صورت سنتی تولید می شوند، میزان Pbo حداقل 30% است. برطبق رهنمود اتحادیه ی اروپا میزان Pbo باید بیش از 24 درصد باشد. همچنین بر طبق استاندارد اروپا شیشه های کریستال سربی باز یافت نمی شوند. شیشه های سربی که برای ساخت حفاظ های تابشی استفاده می شوند ممکن است دارای بیش از 65% Pbo باشند. کاربرد این گونه شیشه ها در لامپ تصویر تلویزیون است اگر چه شیشه های باریمی برای ساخت صفحه و تابلوهای تلویزیون استفاده می شود. (تفنگ الکترونی تلویزیون اشعه ی x ساتع می کند که این نوع شیشه باید این تابش ها را جذب کند.)شیشه های سرب – بوراتی می توانند به عنوان لحیم های شیشه ای استفاده شوند. این نوع شیشه ها دارای در صد کمیشیشه ها (4) است و کاملا خنثی است.
شیشه های فیلنیتی (flint glass) دارای تفرق بالایی است. در واقع این نوع شیشه ها از نوع شیشه های سیلیکاتی قلیایی ـ سربی است که از ذوب سنگ های فیلنیتی ساخته شده اند(فیلنیت فرم خالص سیلیس است) .لازم به توضیح است که این نوع سنگ کلسینه شده و به طور فراوان در ساخت بدنه های سرامیکی استفاده می شود.

شیشه ی بورانی ( شیشه ی بورو سیلیکاتی )

شیشه های بوروسیلیکاتی قلیاییشیشه ها (4) به خاطر ضریب انبساط حرارتیشیشه ها (4) کوچکشان ویژه هستند. این نوع شیشه دوام بالایی داشته و خواص الکتریکی مفیدی دارند. پیرکس (Pyrex) که یک نوع ماده در تولید وسایل پخت و پز است . از جنس بروسیلیکات است .شیشه ی بروسیلیکاتی به طور وسیع در فرآیندهای شیمیایی استفاده می شود. برخی از شیشه های براتی دارای دمای ذوب پایینیشیشه ها (4) هستند از این رو آنها را می توان به همراه سایر شیشه ها استفاده کرد. شیشه ی بروسیلیکاتی – زنیکی به شیشه های منفعل شهرت دارند. این شیشه ها مواد قلیایی ندارند و از این رو از آنها می توان در ساخت اجزای الکترونیکی سیلیسیمی استفاده کرد.

سیلیس فیوزد

این نوع شیشه از نوع سیلیس خالص است. این شیشه ها ، شیشه های سیلیکاتی برای کاربردهای دما بالا هستند. ضریب انبساط حرارتی این نوع شیشه ها نزدیک به صفر است. این نوع شیشه ها برای تولید آینه های تلسکوپ و زیر لایه ها (Substrates) استفاده می شود. به خاطر داشتن ضریب انبساط حرارتی نزدیک به صفر به این شیشه ها ، شیشه های با انبساط حرارتی بسیار پایین (VLE Silica) می گویند .
شیشه های VLE دارای 7 درصد وزنیشیشه ها (4) برای تولید لفافه های لیتوگرافی نوری (masks photolithography) استفاده می شود. البته به خاطر دمای بالای فرآیند شکل دهی این شیشه ها ؛ می توان به جای آنها از شیشه های وایکور استفاده کرد.

شیشه ی فسفاتی ( phosphate – glass )
 

شیشه های فسفاتی شیشه های مهمی هستند زیرا این نوع شیشه ها خاصیت نیمه رسانایی دارند. یکی از کاربرد این مواد در ساخت تقویت کننده های الکترون (electron multipliers) است . در این نوع وسایل با استفاده از دپ کردن Er (افزودنشیشه ها (4) ) ، این تقویت کننده ها ساخته می شود. کایتون های موجود در این نوع شیشه ها معمولا V و P هستند اما لابراتوار ملی او آ ک ریچ (Oak Ridge National labroatory) یک نوع شیشه ی فسفاتی اندیوم – سربی تولید کرده است که دارای ضریب شکست بالایی است. از ویژگی های دیگر این شیشه می توان به دمای ذوب پایین و خاصیت ترانسپارنتی در برابر گسترده ی وسیعی از طول موج ها را نام برد. به دلیل آنکه این نوع شیشه می تواند درصد بالایی از عناصر خاکهای کم یاب را در خود حل کنند، از آنها در تولید وسایل نوری اکتیو مانند آمپلی فایرهای فیبر اپتیک و لیزرها استفاده می شود. شیشه های فسفاتی دپ شده با Nd در لیزرهای حالت جامد استفاده می شوند. ترکیب شیمیایی نمونه وار از این نوع شیشه عبارتست ازشیشه ها (4) است. که در صد Nd بین O.2-2.O درصد مولی است.

شیشه ی چالکوژیندی ( Chalcogenide glass )

این نوع شیشه براساس Se,As و Te بوجود می آید. این شیشه ها نور فرو سرخ را از خود عبور می دهند و نیمه رسانا های غیر اکسیدی هستند. از این نوع شیشه در وسایل و لنزهای الکترونیکی ویژه استفاده می شود. در این وسایل هنگامی که ولتاژ اعمالی به آنها از میزان بحرانی فراتر رود، به طور ناگهانی تغییر رسانایی رخ می دهد. کاربرد این نوع شیشه ها بسیار خاص است زیرا این شیشه ها دوام پایینی داشته و دمای نرم شوندگی شان پایین است.

شیشه ی فلورایدی ( fluoride glass )

عموماً شیشه های هالیدی بر پایه یشیشه ها (4) را شیشه های فلورایدی می گویند. کاربرد این نوع شیشه ها در وسایل همسو کننده نوری (optical waveguides) است. و درجاهایی که قیمت توجیه پذیر باشد استفاده می شوند.

شیشه ی طبیعی

این مسئله که شیشه در طبیعت بوجود می آید حتی این پدیده یک امر نسبتاً معمولی است، باعث شگفتی بسیاری از مردم می شود. تکتیت ها (tektites) درهنگام برخورد شهاب سنگ ها به زمین و در دهانه ی حاصله از برخورد شهاب سنگ پدید می آیند. مولد اویت (Moldavite) نیز یک شیشه ی سبز رنگ است که در مولداوی (Moldavia) یافت می شود . فولگلاریت (fulgarite) نیز تیوپ های شکننده از شیشه هستند که در هنگام برخورد برق آسمان به خاکهای ماسه ای پدید می آید. ابسیدیان (obsidian) نیز یک نوع شیشه است که در جریان های آتش فشانی تشکیل می شود. رنگ سیاه رنگ این نوع شیشه به خاطر ناخالصی پدید می آید. در طی دوره ی پارینه سنگی از ابسیدیان در ساخت وسایل استفاده می شده است. سنگ پا (Pamice) یکی دیگر از شیشه هایی است که از فوران های آتش فشانی تشکیل می شود. این ماده می تواند تخلخل های فراوانی داشته باشد. (درصورتی که ماده ی اولیه ی تشکیل دهنده ی آن دارای مواد گازی فراوانی باشد). سنگ پا شکل متخلخل ابسیدیان است

شیشه ها

مقدمه:

دراین مقاله ها در مورد انواع مختلف شیشه و برخی از کاربردهای آنها صحبت می کنیم.
شیشه ها یکی از انواع مهم موادمهندسی محسوب می شوند. این مواد در پنجره ها، ساخت بطری، لیزرها، الیاف نوری، عایق ها، لعاب کاری (glazing) ومینا کاری (enamelihg)، چاقوی جراحی، وسایل هنری وتابلوهای راهنمایی - رانندگی استفاده می شوند.
شیشه ها معمولا بازیافت می شوند واز این رو دوستدار محیط زیست هستند.مصریان آثار شیشه ای متنوعی بر جای گذاشته اند ولی آنها اولین کسانی نبودند که از این ماده استفاده می کردند.در دوران های دیرینه سنگی (paleolithic Times) شیشه های اولیه و شیشه های طبیعی (Obsidian: نوعی شیشه ی مصنوعی بدست آمده از آتش فشان ها ) بسیاراهمیت داشتند به خاطر اهمیت زیاد این ماده می توان گفت که شیشه نقش مهمی در شکل دهی تمدن ما داشته است.
به هر حال تعریفات مختلفی برای شیشه ها بیان شده است. دراین مقاله سعی می کنیم بگوییم چرا واژه های شیشه ای (glassy)، زجاجی (Vitreous) و آمورف (amor phous) همگی برای توصیف شیشه استفاده می شوند. همچنین سعی داریم جواب این سوال را بدهیم که: «شیشه چیست؟»
هنگام مطالعه ی این مقاله باید دو ذهنیت را داشته باشید:
1) ادعای Sturkey:"شیشه در دماهای بالا یک محلول شیمیایی است."
2) اگر شیشه که مایع فوق سرد شده است، پس جامد نیست وبنابراین یک ماده ی سرامیکی نیست (اما شیشه یک ماده ی سرامیکی است)

تعریف

تعریف کلاسیک شیشه براساس روش تاریخی تشکیل آن انجام شده است. البته این روش تعریف یک روش بسیار غیر معقولی برای تعریف هر ماده است. این مسئله باعث شده است تا امروز شیشه به چندین روش مختلف تعریف شود:
تعریف کلاسیک: شیشه یک مایع فوق سرد شده است(Supercooled liquid) مشکل بوجود آمده دراین تعریف این است که در برخی موارد می توان یک شیشه ی ویژه را به روشی تولید کرد که هیچگاه درحالت مایع قرار نداشته باشد.
ASTM شیشه را به صورت زیر تعریف کرده است:
"شیشه یک محصول غیر آلی از ترکیبی مذاب است که بدون آنکه کریستالی شود، سرد وصلب می گردد."
این تعریف نیز همان چیزی است که در تعریف کلاسیک آمده است. اما دراین تعریف شیشه ی پلیمری استثناء شده است. به وضوح مشخص است که استناد کردن به روش تولید برای تعریف یک گروه از مواد ایده آل و مناسب نمی باشد.

تعاریف دیگر :

1)" شیشه یک ماده ی جامد است که نظم دوربعد از خود نشان نمی دهد."
نداشتن نظم دوربعد یعنی ساختار شیشه درفواصل یک، دو یا سه برابر فاصله ی اجزای سازنده، دارای نظم نیست. این تعریف براساس مشاهدات حاصله از تفرق اشعه X، میکروسکوپ الکترونی عبوری (TEM) و... استوار است اما این تعریف نیز کمی قراردادی است زیرا به اندازه ی اجزاء تشکیل دهنده بستگی دارد.
2)" شیشه یک مایع است که قابلیت جاری شدن خود را از دست داده است."
این تعریف استوار است اما از تعریفی که بوسیله ی ASTM ارائه شده است فراگیرتر است .همچنین این تعریف از خاصیت مکانیکی برای تعریف شیشه استفاده می کند. درحقیقت این تعریف عملاً با دیدگاه فیزیک مدرن درباره ی شیشه مطابقت دارد.
اکثر شیشه هایی که ما در مورد آنها توضیح می دهیم، شیشه های با شبکه ی اکسیدی است . (مخصوصاً سیلیکات ها) تعریف ما از چنین شیشه هایی عبارتست از:
تجمعی جامد از تتراگونال هایی است که می توانند رئوس خود را به اشتراک گذاشته و البته این مواد نظم دور بعد ندارند.
دراین مقاله ما تنها درمورد شیشه های سرامیکی بحث می کنیم اما باید بدانیم که علاوه بر شیشه های سرامیکی، شیشه های فلزی و پلیمری نیز وجود دارد. شیشه های فلزی ترکیبات پیچیده ای هستند که در آنها عمل کریستالیزاسیون انجام نشده است. این مسئله بوسیله ی سریع سرد کردن فلز مذاب بوجود می آید.(این فرآیند اسپلات کوئنچینگ نامیده می شود). درادامه به بیان ویژگی شیشه ها می پردازیم:

ساختار

شیشه ها در اصل جامد های غیر کریستالی (یا آمورفی) هستند که در اغلب موارد از فریز شدن یک مایع فوق سرد شده بدست می آیند. دراین موارد نظم دور برد در آرایش اتمی وجود ندارد. البته نظم کوتاه برد (زیر 1nm) وجود دارد. این مواد دارای آرایش منظمی از سلولهای واحد نیستند.همانگونه که گفتیم شواهدی وجود دارد که ثابت می کند در شیشه ها نظم کوتاه برد وجود دارد.این نظم کوتاه برد به دلیل آرایش اتمی درمجاورت هر اتم (البته در فاصله ی کوتاه) بدست می آید. تلاش های فراوانی برای توصیف شیشه ها انجام شده است. که به بیان علت تشکیل شدن یا نشدن شیشه ها بحث می کند. دراین زمینه ما ازدو دیدگاه به شیشه ها نگاه می کنیم:
1) توجه به ساختار
2) توجه به مباحث کنیتیکی کریستالیزاسیون
درمورد اول ما به بیان هندسه ی اجزای تشکیل دهنده ی شیشه ها می پردازیم. همچنین دراین زمینه به بیان پیوندهای بین اتمی واستحکام پیوندها می پردازیم . درمورد دوم ما به بیان چگونگی دگرگونی های مایع به جامد در طی فرآیند سرد شدن می پردازیم.
دمای تبدیل شدن شیشه ای ( Tg )
درشکل 1 نموداری نشان داده شده است که در آن حجم ویژه به عنوان تابعی از دما رسم شده است.

شیشه ها (1)

این دیاگرام فرمی از دیاگرام استعاله ی دما – زمان (T.T.T) برای شیشه است. درهنگام سرد شدن مایع از دمای بالا دو پدید ه ممکن است در نقطه ی انجماد (Tm) اتفاق می افتد که عبارتند از :
1) اگر مایع کریستالیزه شود تغییرات حجم و سرعت سرد کردن گسسته است.
2) اگر کریستالیزاسیون اتفاق نیفتد، مایع به حالت فوق سرد شده تبدیل می شود و حجم در نزدیک دمای ذوب کاهش می یابد.
دردمای تبدیل شدن شیشه ای (Tg)، شیب نمودار کاهش می یابد و به شیب جامد کریستالی نزدیک می شود. این شکستگی بوجود آمده در نمودار سرد کردن نشان دهنده ی گذرگاه مایع فوق سرد شده به شیشه است. زیر دمای Tgساختار شیشه درحالت آسایش نیست زیرا این مواد اکنون جامد هستند. دراین ناحیه از Tg ویسکوزیته تقریبا شیشه ها (1) است. ضریب انبساط حالت شیشه ای معمولا نزدیک به ضریب انبساط جامد کریستالی است. اگر از سرعت های سرد کردن پایین تر استفاده شود، میزان آسایش ساختار افزایش می یابد. ومایع فوق سرد شده در دمای پایین تر تشکیل می شود. و شیشه ی حاصله ممکن است دانسیته ی بالاتری بدست آورند. (همانگونه که در شکل 1 دیده می شود)
فیزیک شیشه جنبه ی تردی آن را مورد بررسی قرار می دهد. در واقع این ویژگی یک ویژگی مایعات شیشه ساز در بالای دمای Tgاست واندزه ای از استعکام پیوندهای بین اتمی است. در ادامه ما درمورد شیشه ی نامحلول در آب یا بطری های شیشه ای آب صحبت می کنیم. البته چیزی که آگاهی کمتری از آن است این است که ما می توانیم آب را با سریع سرد کردن در اتاق مایع به حالت شیشه ای در آوریم. ماده ی حاصله یک شیشه ترد است اما این مسئله فهمیده شده است که بیشتر آب موجود در جهان به همین شکل وجود دارد.
تاریخچه
شیشه ماده ای است که پیوندی عمیق با تاریخچه ی انسان دارد. یکی از شواهد این مسئله استفاده از ابسیدیان (obsidian) یک شیشه ی طبیعی توسط بشر است. هیچ کس نمی داند که اولین جسم شیشه ای در چه زمانی ساخته شده است. قدیمی ترین یافته ها به 7000 سال پیش از میلاد برمی گردد. (البته ممکن است یافته هایی پیش از این تاریخ نیز وجود داشته باشد). درکاوش های باستان شناسی در بین النهرین روش های تولید شیشه کشف شده است . این کارها 4500 سال پیش از میلاد مسیح بوده است ومربوط به روش های تولید وسایل شیشه ای بوده است نه لعاب های مورد استفاده در وسایل سفالی. استفاده از شیشه در لعاب کاری سفال حتی به دوران های پیشین می رسد.

شیشه ها (1)

تقریبا در 3000 سال پیش از میلاد مسیح شیشه گران مصری شروع به تولید جواهر آلات شیشه ای و ظروف شیشه ای کوچک کردند. شیشه هم به عنوان یک جسم دکوری وهم به عنوان یک وسیله ی مورد استفاده در زندگی روزمره به شمار می آمد. قطعاتی از جواهر آلات شیشه ای در کاوش های اطراف کوه های مصر پیدا شده است. مثالی از این جواهرآلات شیشه ی فیزوزه ای آبی است که در شکل 2 دیده می شود. تقر یبا 1500 سال پیش از میلاد مسیح شیشه گران مصری ( در دوره ی touthmosis سوم ) روشی برای تولید قطعات تو خالی قابل استفاده، توسعه دادند. یک مثال قابل توجه از این نوع ساختار یک شیشه ی توخالی است که شبیه به سرماهی است (شکل 3) این ظرف بین سال های 1352 و 1336 قبل از میلاد ساخته شده است واین نظریه وجود دارد که برای نگه داری روغن خوش بو استفاده می شده است.

شیشه ها (1)

الگوی موجی این ظرف بسیار خاص است. در واقع این ظرف بوسیله ی کشیده شدن یک جسم تیز به شیشه ی خمیری شده تولید شده است.
نویسنده ی رومیPliny Fhe Elder (23-79 میلادی) اختراع شیشه را به صورت زیر توصیف می کند:
روزی یک کشتی که متعلق به چند تاجر نیتروم (Nitrum) بود در کنار ساحل لبنان کنونی توقف می کند. هنگام پخت غذا به دلیل نبود سنگ در ساحل، خدمه کشتی از کلوخ های نیترومی که در کشتی وجود داشته است. استفاده می کنند تا بتوانند دیگ غذا را در مکان مناسب استقرار دهند. پس از آنکه آتش روش شد، کلوخه ها با ماسه های ساحلی واکنش داده و تشکیل شیشه ی مذاب می دهد. این اولین منشع پدید آمدن شیشه است.
نیتروم (Nitrum) یک نوع سدیم کربنات (Soda) طبیعی است .این ماده یکی از اجزای مهم در شیشه های قدیمی و مدرن است. خاکستر گیاهان نیز یک منبع فقیر از سدیم برای شیشه گران فراهم می کند. گیاهان علف شوره (Saltwort) و رازیانه ی آبی (glass wort) از جمله گیاهانی هستند که برای مهیا شدن سدیم از آنها استفاده می شده است.
یکی از معمولی ترین روش ها برای شکل دهی شیشه روش دمش هوا است. اگر چه این تکنیک بیش از دوهزار سال پیش توسعه یافت، لوله های تولیدی به روش دمش در طی زمان تغییری نکرده است. توسعه ی عمده که دراین زمینه انجام شده است، روش دمش اتوماتیک است که برای تولید شیشه های بطری و حباب های لامپ استفاده می شود. دراین روش به قطعه ای شیشه در داخل قالب هوا دمیده می شود. و بدین شکل شیشه به شکل قالب در می آید. مهمترین مرحله ی رشد در تاریخ شیشه سازی مخصوصا درطی قرن بیستم مربوط به توسعه های اتفاق افتاده در زمینه ی تکنولوژی های تولید می باشد. این توسعه ها منجر به کاهش هزینه ی تولید محصولات شیشه ای می شود

در ادامه به بیان خواص شیشه ها می پردازیم:

ویسکوزیته ( η )

ویسکوزیته یک ویژگی کلیدی شیشه هاست.ما نیاز داریم تا درمورد ویسکوزیته ی شیشه در دماهای مختلف اطلاع داشته باشیم. و بتوانیم دمای مورد نیاز برا ی شکل دهی وآنیلینگ آن را تشخیص دهیم. ویسکوزیته یک ویژگی مکانیکی است. فرمول ویسکوزیتد به صورت زیر است:

شیشه ها (2)

دراین فرمول:
η : ویسکوزیته، F: نیروی مورد نیاز برای کشیدن یکی از صفحات موازی که در میان آنها مایع مورد نظر قرار دارد: ،d: فاصله ی صفحات، A: مساحت صفحات، V: سرعت حرکت صفحه. ویسکوزیته در واقع پاسخ یک مایع دربرابر تنش برشی است. مایعات دارای ویسکوزیته ای هستند که با واحد سانتی پوآز (CP) اندازه گیری می شود. واحد اندازه گیری ویسکوزیته ی گازها میکروپوآز(mp) است.

شیشه ها (2)

جدول 1 لیستی از اعداد ویسکوزیته ای است که برای فرآیندهای شیشه سازی مهم هستند. اعداد داده شده در جدول 2 نیز برای تعریف ویژگی های برجسته ی شیشه (با تأکید بر روی فرآیند) آورده شده است. بسیاری از اعداد آورده شده درجدول ویسکوزیته ها استاندارد هستند مثلا (2003) ASTMC338-93 یک روش تست استاندارد است که نقطه نرم شدگی شیشه بوسیله ی آن تعیین می شود.
محاسبه ی نقطه ی نرم شدگی شیشه بوسیله ی اندازه گیری دمایی که در آن یک فیبر شیشه ای استوانه ای با قطر شیشه ها (2) طول بوسیله ی وزن خودش تغییر طول می دهد. نرخ تغییر طول یک میلی متر بردقیقه است . در این روش 100 میلی متر از بخش بالایی فیبر بوسیله ی کوره ی خاصی با سرعت گرم شدنشیشه ها (2) گرم می شود.

شیشه ها (2)

ویسکوزیته ی برخی ازمایعات عمومی در جدول 2 آورده شده است. توجه کنید که در دمای کارپذیری شیشه ویسکوزیته ای شبیه به عسل در دمای اتاق دارد. به طور نمونه برای یک شیشه ی سیلیکاتی سودالایم این ویسکوزیته در دمایشیشه ها (2) بدست می آید. این جدول همچنین نشان می دهد که یک جامد دارای ویسکوزیته ای بیش ازشیشه ها (2) دسی پو آز است. ویسکوزیته ی به طور نمایی با تغییر دما ، تغییر می کند ( همانگونه که در شکل 1 برای انواع شیشه ی سیلیکاتی دیده می شود.) دمای فیکتیو (fictive temperature) دمایی است که در آن ساختار مایع به حالت شیشه ای تبدیل می شود. این دما بوسیله ی تقاطع منحنی های برونیابی شده در حالت دما بالا و دما پایین در نمودار ویسکوزیته – دما بدست می آید. دمای فیکتیو (Tf) مانند Tg به تبدیلات ساختاری شیشه بستگی دارد. البته Tg اندکی کمتر از Tf است.

شیشه ها (2)

شکل 2 وابستگی ویسکوزیته به دما را برای اکسیدهای شیشه ساز نشان می دهد. شما باید توجه کنید که بوسیله ی شیب این خطوط می توان انرژی اکتیواسیون جریان ویسکوز (EV) را بدست آوریم.

شیشه ها (2)

جدول 3 اعداد ویسکوزیته وسرعت های کریستالیزاسیون (v) برخی شیشه ها را نشان می دهد. سرعت کریستالیزاسیون مربوط می شود به سرعت تبادل مایع/جامد. V بسیار کم بیان کننده ی قابلیت شیشه سازی استثنایی ماده است.البته کریستالیزاسیون مذاب جامد شده ی سیلیس بسیار مشکل است.

شیشه ها (2)

روش های متعددی برای اندازه گیری ویسکوزیته وجود دارد. این روش ها با توجه به میزان ویسکوزیته انتخاب می شود.

شیشه ها (2)

شماتیک دو روش اول اندازه گیری ویسکوزیته در شکل 3 نشان داده شده است:

شیشه ها (2)

شیشه ( خلاصه ای از خواص )
 

شیشه ماده ای خنثی است. این مسئله به محیط بستگی دارد. اگر شیشه یک ماده ی سیلیکاتی باشد، این مسئله درست است . البته همه ی شیشه ها خنثی نیستند. مثلا بیوگلاس (bioglass)
شیشه یک ماده ی هموژن است. این مسئله نیز به نحوه ی شکل دهی و ترکیب شیمیایی شیشه بستگی دارد. ما می توانیم با استفاده از فرآیندهای خاص شیشه را به صورت غیر هموژن در آوریم.
شیشه می تواند تغییر شکل دهد. این مسئله عموماً درست می باشد و دلیلی است برای قابلیت بازیافت شیشه ها. برخی از شیشه ها به نحوه ای ساخته می شوند که بوسیله ی نور، انتشار نور در داخل آن وتابش نور و...تغییر ماهیت می دهد.
شیشه دارای ضریب انبساط کوچک است. البته همه ی شیشه ها مناسب استفاده شدن در کاربردهای حرارتی مانند ظروف پیرکس نیستند.
شیشه ها شفاف اند (trans Parent) این خاصیت برای الیاف نوری ضروری است. البته ما می توانیم با انجام عملیات های خاص شیشه به صورت اپک یا مات در آوریم.
بسیاری از شیشه های اولیه شفافیت کامل نداشتند زیرا در ساختار آنها ناخالصی وحباب هوا وجود داشت.
شیشه ارزان است. البته این مسئله برای شیشه های پنجره صحیح است. اما درمورد فیلم های نازک شیشه ای این مسئله صحیح نمی باشد. برخی از شیشه های قرمز رنگ بوسیله ی دپینگ (doping) طلا در آنها تولید می شود. که قیمت برخی از ظروف تولیدی از آن به پیش از 50 دلار می رسد.
شیشه یک ماده ی بالک است مگر در حالتی که آن را به صورت یک فیلم نازک ، یک فیلم انیتر گرانولار (IGF) یا یک سرامیک کریستالی رشد دهیم.

برخی از خواص مکانیکی شیشه

استحکام تئوریک شیشه ی سیلیکاتی درحدود 10GPa است. البته با حضور عیوب سطحی (ترک ها وجوانه ها ) این استحکام کاهش می یابد. شیشه ها موادی الاستیک هستند اما تحت کشش می شکنند. می توان استحکام این مواد را بوسیله ی ایجاد لایه های سطحی فشرده و یا بوسیله ی از بین بردن ترک های سطحی (با اسید شوئی یا پدید آوردن پوشش محافظ) افزایش داد. مثالی از این روش ها پدید آوردن ترک های اضافی در ساختار قطعات شیشه ای تزئینی به منظور بهبود خواص مکانیکی آنهاست. در این روش از سرد کردن شیشه ی مذاب در آب جهت ایجاد تنش های اضافه بهره برده می شود . در این حالت سطح قطعه ی شیشه ای مذاب زودتر از مرکز آن سرد می شود و بنابراین تنش های اضافی پدید می آید. قطعات جامد شده به این شیوه را می توان با چکش و بدون اینکه بشکنند چکش کاری کرد.

برخی از ویژگی های الکتریکی شیشه

شیشه معمولا دارای مقاومت الکتریکی بالایی است. که علت آن تفاوت زیاد میان باندهای انرژی (گپ بزرگ) در این ماده است. در مواردی که شیشه رساناست . بار بوسیله ی یون ها منتقل می شود.(در این مورد یون های قلیایی مانندشیشه ها (2) دارای سرعت انتقال بار بالایی هستند). در واقع به همین دلیل است که با افزایش دما رسانایی به شدت افزایش می یابد. رسانایی درشیشه های مختلف، متفاوت است.علت آن متفاوت بودن نوع شبکه ی این شیشه هاست. در شیشه هایی که دارای بیش از یک یون قلیایی هستند. پدیده ی جالبی رخ می دهد. رسانایی تولیدی در این نوع شیشه ها به طور مشخصی از شیشه های دارای یک یون کمتر است. این نوع شیشه ها در کاربردهای مختلف مانند لامپ های با توان بالا استفاده می شوند. ثابت دی الکتریک شیشه واقعاً بالاست اما نه به حدی که بتوان از آن در کاربردهای حافظه ای پیشرفته مانند حافظه ی با دستیابی دینامیک و رندوم (DRAMS) استفاده کرد. ظرفیت الکتریکی یک ماده میزان بار ذخیره شده در داخل ماده است. این خاصیت به ضخامت دی الکتریک بستگی دارد. همانطور که ضخامت دی الکتریک کمتر می شود، ظرفیت الکتریکی افزایش می یابد. اما کم کردن ضخامت نیز مشکلاتی به همراه دارد. مثلا با کاهش ضخامت احتمال شکست دی الکتریک بیشتر می شود. شیشه ی سیلیسی دارای مقاومت دی الکتریک بالاتری نسبت به سایر شیشه هاست. اما مقاومت این دی الکتریک نیز در حد دی الکتریک های پلیمری مانند رزین فنولیک نیست.

برخی از خواص اپتیکی شیشه

شفافیت دربرابر نور فرا بنفش ، مرئی و فرو سرخ به چندین فاکتور بستگی دارد. یکی از این فاکتورها طول موج تفرق است که بوسیله ی ناخالصی ها تغییر می کند. لبه ی فرو سرخ (IRedge) و لبه ی فرا بنفش ((uv edge اعدادی هستند که نشان دهنده ی فرکانس قطع شدن عبور این موج ها هستند. یک مانع لبه UV edge blocker)UV) از عبور UV جلوگیری می کند و این در حالی است که یک عبور دهنده ی لبه یUV (UV edge tran Smitter) اجازه ی عبور نور UV را می دهد.

عیوب در شیشه ها

اگر چه شیشه یک ماده ی آمورف است ولی مانند مواد کریستالی دارای عیوب و رسوبات است. و همچنین دچار جدایش فاز می شود. شیشه را می توان برای حبس کردن عناصر رادیو اکتیو استفاده کرد .در این عناصر مانند عیوب نقطه ای یا فاز ثانویه تشکیل می شوند. همچنین سرعت نفوذ این عناصر از میان شیشه بر روی میزان آن ها در شیشه تأثیر دارند. این مسئله استفاده می شود تا بتوان مواد رادیو اکتیو یا سایر مواد را کنترل کرد.

شیشه ی غیر هموژن

به دلیل آنکه شیشه یک مایع فوق سرد شده است. نمی توان گفت که این ماده حتما باید هموژن باشد. شیشه های خاص می توانند بدون نیاز به فرآیند کریستالیزاسیون به دو فاز تبدیل شوند. هنگامی که این دو فاز شیشه ای باشند این مسأله باعث می شود که سدی در برابر جدایش فازی پدید نیاید. در مورد فرآیند جدایش فازی مایع – مایع ممکن است مرحله ای برای جوانه زنی وجود داشته باشد. البته در این نوع تبدیلات ممکن است استعاله ی اسپینودال (Spinodal) نیز رخ می دهد. که هر دوی این استعاله ها به نفوذ وابسته اند.
قوانین امتزاج ناپذیری در شیشه ها بسیار مهم است. این مسئله مخصوصاً در شیشه های تولید شده با تکنولوژی روز نمود دارد. برای مثال امتزاج ناپذیری در شکل دهی شیشه – سرامیک ها ، تولید شیشه ی وایکور (Vycor) و شیشه های اپتیکی و تشکیل رسوب در شیشه ها مهم می باشد. بسیاری از اکسیدهای دوتایی و سه تایی در کنار سیلیس از خود مشکلات امتزاج پذیری نشان می دهند.
در دیاگرام فازی ناحیه ای وجود دارد که یک مایع به دو مایع با ترکیب شیمیایی متفاوت تبدیل می شود. این ناحیه گپ امتزاج پذیری (imisciblity gap) نامیده می شود. در زیر برخی از سیستم هایی که مشکل امتزاج پذیری دارند را نام برده ایم:

شیشه ها (2)

شیشه ها (2)

شکل 4 دیاگرام فازیشیشه ها (2) را نشان می دهد. در دمای پایین و در گوشه ی غنی از سیلیس دیاگرام ، فاز مایع به دو بخش مایع با ترکیب شیمیایی متفاوت تبدیل می شود. این دو مایع به صورت دو شکل گنبد مانند در شکل نشان داده شده اند. خط تیره نشان دهنده ی خط تقریبی ناحیه ی امتزاج ناپذیری است. مشکلی که در اندازه گیری این خط وجود دارد. این است که این پدیده در دمای پایین رخ می دهد و از این رو سرعت آن پایین است . و از این رو اندازه گیری آن مشکل است. دراین وضعیت میل جدایش فازی بیشتر از میل به کریستالیزاسیون است . البته کریستالیزاسیون مساعد تر از جدایش فازی است اما به دلیل آنکه جدایش فازی نیازی به باز آرایی اتم ها ندارد، این پدیده رخ می دهد. به عنوان یک قانون کلی برای سیلیس باید گفت که امتزاج ناپذیری با افزودنشیشه ها (2) افزایش می یابد اما با افزودنشیشه ها (2) کم می شود. در شیشه های وایکور از قوانین جدایش فازی استفاده می شود. در فرآیند تولید شیشه وایکور، شیشه ای پدید می آید که دارایشیشه ها (2) و 4 درصد تخلخل است.این نوع شیشه به عنوان فیلتر وبیومواد مخصوصا در جاهایی که تخلخل مهم می باشد، استفاده می شود. در فرآیند تولید وایکور، شیشه ای تولید می شود که پس از فرآیند شکل دهی دنس می گردد و شیشه ای با سیلیس خالص پدید می آید که در دمای پایین تر نسبت به کوارتز خالص شکل دهی گشته است

شیشه ی آلومینیوم – ایتریمی

شیشه های آلومینیوم –ایتریایی (YA) دارای درصد آلومینایی در گسترده ی تقریبی 75.6- 59.8 هستند. با این درصد آلومینایک شیشه ی دو فازی تشکیل می شود که در آن یک فاز قطره مانند در فاز دیگر تشکیل شده است. این شیشه به طور خود بخودی به صورت شیشه ی آلومینیوم – ایتریمی یا مخلوطی ازشیشه ها (3) تبدیل می شود. درشیشه های YA پدیده ای به نام پلی مورفیزم (Polymorphism) رخ می دهد

شیشه ی رنگی

اگر چه در بیشتر کاربردهای شیشه نیاز است تا این ماده بی رنگ باشد اما در برخی از کاربردها نیاز است شیشه رنگی باشد. هنگامی که پنجره های یک کلیسا رنگی باشد، تأثیر پذیری ازمحیط بیشتر می شود . درشیشه ها معمولا بوسیله ی افزودن اکسیدهای انتقالی و یا اکسیدهای عناصر خاک های کمیاب (rave –eavth) به بچ ماده ی اولیه ی آنها، رنگی می شوند. جدول 1 لیستی از رنگ های تولیدی بوسیله ی مواد رنگی کننده ی شیشه هاست . زرد کم رنگ، نارنجی و رنگ های قرمز بوسیله ی فلزات گران بها درحالت کلوئیدی تولید می شود. طلا (Au) رنگ قرمز، یا قوتی تولید می کند. (البته این شیشه ها گران قیمت هستند). سولفید کادمیم (cds) محصولاتی با رنگ زرد تولید می کند. اما هنگامی که علاوه بر se ، cds نیز استفاده شود. محصولاتی با رنگ قرمز یا قوتی با شدت رنگ بالا تولید می شود.

شیشه ها (3)

شیشه بوسیله ی افزودن دوپانت ها (dopants) رنگرزی می شوند. در واقع با افزودن این دو پانت ها در شیشه عیوب نقطه ای پدید می آوریم. رنگ شیشه به نوع دو پانت و حالت اکسیداسیون آن بستگی دارد.
دو پانت ها می توانند اثر بی رنگ کننده (decdorizo) ، پوشش دهنده (mask) یا اصلاح کننده (modify) داشته باشند. ما می توانیم اثرات رنگی آهن را بوسیله ی افزایش cr خنثی کنیم؛ البته اگر درصدشیشه ها (3) زیاد باشد اضافی به صورتشیشه ها (3) خارج می شود. اگر این شیشه به روش دمیدن شکل دهی شود، این پلیت لت هایشیشه ها (3) منظم گشته و شیشه ای اپک به نام آونتورین کرومی (chromium aventurine) تولید می کنند. مس (cu) برای تولید شیشه ی آبی مصری (Egyptian Blue glass) استفاده می شود.
CO (کبالت ) دربرخی از شیشه های پالایش یافته ی تولید در قرن دوازدهم استفاده می شده است. البته Co در تولید لعاب های پرسلانی مورد استفاده در چین ( در دوره ی سلسله ی منیگ وتانگ) استفاده می شده است. کبالت مورد استفاده در این لعاب ها رنگ آبی کبالتی تولید می کند.
با افزودن Se به شیشه های دپ شده با Cds باعث پدید آمدن رنگ یاقوتی سلینومی (Selenium Ruby) می شود. جزئیات پدید آمده ازهر کدام از این رنگ ها به ترکیب شیمیایی و شرایط پخت شیشه بستگی دارد.
شرکت کورینگ (Cornig) میکرو بارکدهایی با شیشه دپ شده با خاکهای کم یاب تولید کرده است. خاکهای کم یاب دارای باندهای نشر کم پهنا هستند و از میان 13 عنصر خاکهای قلیایی که مورد آزمایش قرار گرفته ، تنها 4 عنصر (Tm,Ce,Tb و Dy) می توانند در برابر تابش UV برانگیخته شوند. و لذا می توان از آنها در شناسایی بوسیله ی UV استفاده کرد. این نوع بارکدها همچنین مشکلات تداخل با سایر بارکدها را نیز ندارد. از این بارکدها در کاربردهای بیولوژیکی استفاده می شود زیرا سمی نیستند.(البته بر چسب زنی با کوانتوم دات ها خطرات کمتری دارد) و می توان از آنها در کاربردهای ژنتیکی استفاده کرد. با استفاده از چند عنصر خاکی کمیاب می توان ترکیب رنگی بیشتر پدید آورد.
شیشه های رنگی خاص شامل موارد زیر می شود :

شیشه ی یاقوتی یا کرانبری ( Cranberry )
 

شیشه ی یاقوتی با افزودن Au به شیشه سربی با حضور Sn پدید می آید. شیشه ی کرانبری که اولین بار در سال 1685 گزارش شده است، یک نوع شیشه ی بی رنگ (معمولاً صورتی کم رنگ ) است. علت پدید آمدن این رنگ در صد کم طلای موجود در آن است . راز تولید شیشه قرمز رنگ برای قرن ها ی زیادی گم شده بود و در قرن هفدهم دوباره کشف شد.

شیشه ی اورانیومی یا وازلینی

محصولات اورانیومی هنگامی که در شیشه ی با سرب بالا استفاده شود، رنگ قرمز تیره تولید می کند. البته شیشه های اورانیومی دیگری نیز وجود دارد که با صطلاح به آنها شیشه های وازلینی (Vaseline glass) می گویند. این نوع شیشه ها دارای رنگ سبز هستند. مسأله ای که این نوع شیشه ها را خاص کرده است این است که این نوع شیشه ها هنگام تابش اشعه ی UV به آنها ، خاصیت فلئورسانس پیدا می کنند. از سال 1940 تنها اورانیوم تهی شده (uranium depleted) به عنوان دو پانت استفاده می شود. علت استفاده از این نوع دو پانت، فراوانی آن است. اما از 100 سال گذشته به بعد اورانیوم طبیعی (natural uranium) استفاده می شود.

شیشه ها (3)

شکل 1 مثالی از یک شیشه ی وازلینی است.

لیزر شیشه ای

عناصر خاکهای کم یاب (rave – earth elements) مانند Nd در تولید شیشه های لیزر و سایر وسایل اپتیکی کاربرد دارند. (شکل 2) . لیزر شیشه ای دپ شده با Nd (Nd-doped glass laser) مانند یک لیزر یاقوتی (ruby laser) کار می کند . اگر چه نوع شیشه ای دارای تفاوت هایی است . میله ی لیزر قطری بینشیشه ها (1) اینچ دارد و معمولا بوسیله ی یک لامپ حلزونی تخلیه می شود. علت استفاده از لامپ های حلزونی این است که طول غیر بار دار این نوع لامپ ها از لامپ های خطی طولانی تر است. لیزر شیشه ای دپ شده با Nd دارای بازدهی بیش از 2% است. این بازده 4 برابر بازده یک لیزر یاقوتی است. به دلیل آنکه رسانایی گرمایی شیشه پایین است بنابراین نیاز به زمان بیشتری برای خنک سازی است.

شیشه ها (3)

رسوبات در شیشه

وجود رسوبات در شیشه عموما اجتناب ناپذیر است. سوال این است که چه زمانی طول می کشد تا رسوبات تشکیل شود. (مخصوصا اگر جوانه زنی هموژن باشد). ما ممکن است عوامل هسته زا برای تسریع جوانه زنی به شیشه اضافه کنیم. جوانه زنی کریستال ها در شیشه از تئوری کلاسیک پیروی می کند. رسوبات تشکیل شده در شیشه می تواند موجب رنگی شدن شیشه شود.

شیشه به عنوان لعاب

لعاب ها مانند شیشه ها در همه جا دیده می شوند. لعاب کاری (glazing) استفاده از ویژگی های ویسکوز شیشه و تشکیل یک لایه ی یک پارچه و صاف بر روی یک زیر لایه ی سرامیکی است.
مینا کاری (enameling) تشکیل همان لایه بر روی یک زیر لایه ی فلزی است. چیزی که باید به آن توجه کرد این است که عموما لعاب ها قدمت زیادتری دارند. در ادامه به بیان برخی از اصطلاحات لعاب می پردازیم:

زیر لعاب ( underglaze )

هنگامی که یک بیسکوییت سرامیکی را می خواهیم مورد عملیات دکور قرار دهیم باید قبل از آن یک لعاب کاری بر روی آن انجام دهیم که این نوع لعاب را زیر لعاب گویند. این لایه به علت تشکیل بهتر دکور بر روی بدنه اعمال می شود. پس از آن که فرآیند دکوراسیون جسم سرامیکی انجام شود برروی آن یک لعاب دیگر اعمال می شود. البته این لعاب پیش از پخت دکور اعمال می شود.
عیب کراولینگ لعاب ( glaze craweling ) این عیب که در لعاب اتفاق می افتد بدین صورت است که لعاب از لایه ی سرامیکی زیرین جدا می گردد. این پدیده به دلیل عدم ترشوندگی بیسکوییت سرامیکی بالعاب در طی فرآیند پخت اتفاق می افتد.
لعاب ترک خورده ( crackle glaze )اگر انبساط گرماییشیشه ها (3) لعاب از سرامیک بستر بزرگ تر باشد، لعاب ممکن است در طی فرآیند سرد کردن (در طی پخت) بشکند. هنگامی که غلظت یون سدیم و پتاسیم در لعاب بیشتر باشد، ترک ها بیشتر پدید می آیند. هنگامی که سرعت سرد کردن بالا رود ترک های حاصل ریزتر می شوند.
لعابهای سلادون (celadon )، تنموکو (tenmoku)، راکو (raku) و کوپر ( copper) لعاب های ویژه ای هستند که در دنیای هنر سرامیک یافت می شوند.
لعاب های سلادوناین لعاب ها اولین بار در حدود 3500 سال پیش تولید شده اند. این لعاب ها دارای گستره ی رنگی از آبی کم رنگ تا سبز مایل به زرد هستند و می توانند رنگی کاملا تیره پدید آورند. رنگ تولیدی در این لعاب ها بوسیله ی آهن تولید می شود(3.o - o.5 در صدشیشه ها (3) به لعاب افزوده می شود). ظروف لعاب خورده توسط این نوع لعاب سپس در دمای تقریباًشیشه ها (3) پخت می گردند. ظروف تولید شده با این لعاب ها زیبایی خاصی داشته و در کاربردهای تزئینی استفاده می شوند. مثلا کوزه ی لعاب خورده با این لعاب که درکشور کره تولید شده است، درسال 1946 از سوی کشور کره به هاری ترومن رئیس جمهور آمریکا هدیه شد. امروزه این ظرف که 23cm ارتفاع دارد قیمتی برابر با 3 میلیون دلار دارد.
لعاب تنموکواین نوع لعاب در زمان سلسله ی سونگ (sung Dynasty) بوجود آمده است. و دارای رنگ قهوه ای تیره یا حتی سیاه است. برای ایجاد این رنگ میزان 8-5 درصد وزنیشیشه ها (3) به لعاب افزوده می شود. تشکیل مناسب این نوع لعاب به شرایط اکسایش – کاهش اتمسفر پخت بستگی دارد. و در شرایط مختلف اکسایش و کاهش رنگ های متنوعی پدید می آید. در لعاب های کوپرنیز از کربنات مس به عنوان منبع Cuاستفاده می شود. البته در طی فرآیند پختشیشه ها (3) تجزیه گشته و Cuoباقی می ماند. Cuo تولید نیز با مونواکسیدکربن (CO) موجود در کوره واکنش داده تا ذرات مس در لعاب تشکیل شوند. این ذرات رنگ قرمز به لعاب می دهند.
لعاب های راکولعاب های راکو اغلباً لعاب هایی فلزی به نظر می رسند. (اگر بوسیله ی یک لایه از فلز Ti پوشش داده شده باشند)
یک روش پیشرفته در تولید لعاب های راکو بدین صورت است که ظروف سرامیکی به شیوه ی معمولی پخت می شوند سپس آنها را در داخل یک محیط کاهنده مانند خاک اره وارد می کنند و سپس آنها را قبل از آنکه بتوانند اکسید شوند، به سرعت سرد می کنند. این نوع لعاب ها اغلبا حالت استثنا داشته و می توانند با زمان تغییر کنند. این مسئله ساده است. زیرا آنها در طی فرآیندهای بعدی تولید اکسید می شوند. این نوع لعاب بر خلاف سایر لعاب ها خنثی نبوده و تنها برای دکوراسیون استفاده می شوند.
لعاب های کریستالی ( crystalline glaze )این نوع لعاب ها ، لعاب هایی دکوراسیونی هستند اما به طور مستقیم با تکنولوژی تشکیل شیشه – سرامیک در ارتباطند. کریستال ها بوسیله ی سرد کردن آهسته لعاب ایجاد می شوند. این سرد کردن آهسته به کریستال های لعاب اجازه ی رشد کردن می دهند. رشد این کریستال ها مد نظر است؛ زیرا لعاب ضخامت کمی داشته و از این رو کریستال ها باید به صورت پلیت لت (platelets) در آیند. برای آنکه عمل رشد کریستال ها بهتر انجام شود از جوانه زاهای تیتانیایی استفاده می شود. این نوع جوانه زاها در لعاب های باویسکوزیته ی پایین استفاده می شوند و در آنهاشیشه ها (3) تشکیل می شود. ترکیب شیمیایی این نوع لعاب ها بسیار مهم است. در آن شیشه ها (3) وشیشه ها (3) به میزان کم و Pbo به میزان 10-8 درصد وزنی استفاده می شود. رشد کریستال با اضافه شدن fe به لعاب افزایش می یابد. اما این اضافه شدن می تواند همچنین موجب پدید آمدن اثراتی بر سایر دو پانت های اضافه شده به لعاب شود.
سفالگران امروزی ازشیشه ها (3) به عنوان اصلاح کننده و تولید کننده ی کریستال های ویلمایت (Crystals Willemite) استفاده می کنند. (ویلمایت یک مینرال کمیاب از روی است). این تکنیک نیازمند مهارت ویژه است. زیرا افزودن مقادیر زیادشیشه ها (3) به لعاب باعث می شود ویسکوزیته ی آن حتی در دماهای پایین نیز کم باشد، بنابراین این مسئله باعث می شود که لعاب از روی سطح سفالی جریان پیدا کند. رشد اسفرولیتی (Spherulite growth) از جوانه زا در لعاب در شکل 3 نشان داده شده است. هر اسفرولیت در واقع توده ای از کریستال های شعاعی است که با توجه به مرکز اسفرولیت دورهم گرد آمده اند.

شیشه ها (1)

لعاب های اپک ( opaque glazes ) اگر به لعاب مذاب کریستال هایی افزوده شود، لعاب می تواند اپک شود. برای این کار می توان ازO_2 S_n یا زیر کن استفاده کرد. که زیر کن ارزان تر است .شیشه ها (3) برای تولید رنگ سفید در لعاب های زیرکنی (Zircon glaze) استفاده می شود. برای اپک کردن کمتر ازشیشه ها (3) استفاده می شود زیرا کریستال های روتایل طلایی رنگ هستند. و بنابراین لعاب را به رنگ زرد در می آورند. ما همچنین می توانیم با تشکیل کریستال لعاب را اپک کنیم (مثلا ولاستونیت:شیشه ها (3). این کار بوسیله ی عملیات حرارتی مناسب، حبس کردن گاز (هوا یاشیشه ها (3) ) ) و یا بوسیله ی جدایش فازی مایع – مایع انجام می شود. لعاب های مات (Matt glazes) بوسیله ی تشکیل کریستال های بسیار کوچک در لعاب بوجود می آیند (مثلا کریستال های ولاستونیت برای لعاب های مات – آهکی و وبلیمایت (شیشه ها (3):Willemite ) برای لعاب های مات – زینک). کریستال های ریز ولاستونیت بوسیله ی افزودن کلسیت به لعاب پایه سیلیس تشکیل می شود. یک روش دیگر برای این کار افزودن مقادیر زیادی از ماده ی کریستالی به لعاب است تا در طی فرآیند پخت درصدی از آن به صورت کریستالی باقی بماند

رنگ در لعاب و لعاب موضوعاتی هستند که امروزه تحقیقات فراوانی بر روی آنها به عمل آورده شده است. امروزه رنگ های جدیدی بوسیله ی افزودن نانو ذرات در لعاب پدید می آید. عموما نانو ذرات نقره و طلا رنگ طلایی بوجود می آورند. و نانو ذرات مس رنگ قرمز بوجود می آورند. توضیح در مورد نحوه ی پدید آمدن رنگ در لعاب واقعاً پیچیده تر از نحوه ی پدید آمدن رنگ در شیشه هاست. زیرا لعاب بر روی یک لایه اعمال می شود و از این سو نباید ترانسپارنت باشد. همچنین لعاب یک لایه ی نازک است و در اتمسفر مختلف (کاهنده – اکسید کننده) بوجود می آید از این دو بررسی عوامل موثر بر تشکیل یک لعاب مشکل است.

لعاب های رنگی ( Colored glazes )

در لعاب های رنگی باید از پیگمنت های سرامیکی با پایداری مناسب بهره برد. از اکسیدهای رنگ زای ارزان قیمت می توان برای ایجاد رنگ در محصولات متنوع سفالی بهره برد. البته بسیاری از مواد رنگ زا برای لعاب همانهایی هستند که ما برای رنگرزی شیشه از آنها استفاده می کنیم
اکسید کبالت شیشه ها (4) یک اکسید سیاه رنگ است اما کمتر از یک درصد وزنی از آن در لعاب ایجاد رنگ آبی تیره می کند (اگر چه در بیشتر موارد از کربنات کبالت استفاده می شود).
به دلیل آنکه شیشه ها (4) در این گونه لعاب ها بوجود می آید، ویسکوزیته ی لعاب تغییر می کند.
اکسید کروم که تا 3-2% وزنی نیز می تواند به لعاب افزوده شود به جای رنگ سبز، رنگهای زرد، صورتی یا قهوه ای بوجود می آورد (رنگ قرمز در حضور سرب در ترکیب لعاب اولیه پدید می آید. اگر Zn در لعاب اولیه وجود داشته باشد، رنگ لعاب قهوه ای می شود مگر آنکه سرب ها هم وجود داشته باشد. که در صورت وجود سرب و روی در لعاب اولیه رنگ زرد پدید می آید).
شیشه ها (4)که به صورت کربنات به لعاب افزوده می شود، رنگ لعاب را به صورت قهوه ای در آورده البته این ماده می تواند رنگ قرمز، بنفش و حتی سیاه نیز تولید کند. که این تغییر رنگ به درصد سدیم موجود در لعاب اولیه بستگی دارد. افزودن Cuo به اندازه ی %2-1 وزنی به یک لعاب با سدیم بسیار کم سبب پدید آمدن رنگ فیروزه ای می شود. این درحالی است که افزودن بیش از 3% از این رنگ زا باعث پدید آمدن رنگ سبز یا آبی می شود. اگر درصد Cuo در لعاب افزایش یابد، لعاب ظاهری فلزی مانند مفرغ به خود می گیرد. اگر لعاب دارای 0.3– 2 درصد وزنی Cuo در اتمسفر کاهنده پخت شود، رنگ قرمز مسی پدید می آید. این رنگ به دلیل حضور ذرات کلوئیدی CU درلعاب بوجود می آید.
اگر یک لعاب رنگ زرد داشته باشد، این رنگ ممکن است بوسیله ی افزودن Cds یا Cdse بوجود آمده باشد. البته این نوع افزودنی های رنگ زا ممکن است رنگ های قرمز یا نارنجی را نیز پدید آورند. درصورت حضور سرب در این نوع لعاب ها ، Pds تشکیل می شود که باعث سیاه شدن لعاب می شود. زیرکن در صنعت برای کمک کردن به پایدار شدن این نوع رنگ ها (برپایه ی cd) استفاده می شود. درحقیقت شیشه ها (4) (زیر کن وانادیومی آبی رنگ) و شیشه ها (4)(pr,zr) (زیر کن پراسئودیومی زرد رنگ) مهم ترین تثبیت کننده های مورد استفاده در این رنگ هاست. هنگامی که اورانیوم به لعاب اضافه شود، به جای پدید آوردن رنگ زرد کم رنگ، رنگ قهوه ای تیره پدید می آید. (اورانیوم در شیشه های وازلینی تولید رنگ زرد کم رنگ می کند). البته بسته به ترکیب لعاب ، اورانیوم می تواند رنگ های قرمز یا نارنجی روشن نیز بدهد.

لعاب نمکی ( saltglaze )

دراین نوع فرآیند لعاب کاری سفال در کوره های با دمای بالا با نمک واکنش می دهد. در واقع سفالگر نمک را بر روی سفال اعمال می کند. این فرآیند هنگامی اتفاق می افتد که سفال در داخل کوره است. این فن بوسیله ی سفالگران ایرانی وانگلیسی در دهه ی 1700 ابداع گشته است. همچنین شما می توانید مثال های فراوانی از فرآیند رنگ آمیزی بوسیله ی اکسیدهای فلزی را در آلمان ببنید. در این نوع لعاب ها نمک با رس واکنش داده و تشکیل لایه ای شیشه ای بر روی سطح می دهد. این تکنیک دقیقاً فرآیند خوردگی خاک نسوز در دمای بالاست (بوسیله ی سود سوز آور).
واژه ی مینا (enamel) معمولا در هنگامی استفاده می شود که یک لایه ی لعابی بر روی فلز اعمال می شود. البته این واژه در هنگامی که یک لایه لعابی بر روی لعاب اولیه اعمال می شود نیز استفاده می شود. بازار مصرف مینا بسیار بزرگ است. این بازار از لوازم بهداشتی تا جواهر آلات گسترده است.

خوردگی شیشه و لعاب

این تصور وجود دارد که شیشه خنثی است اما باید بدانید که اسید سیتریک و اسید استیک موجود در غذاها و میوه ها می توانند بایون های موجود در شیشه واکنش دهند و ترکیبات کمپلکس پدید آورند. با خروج یون های قلیایی از داخل شیشه یون های هیدروژن مثبت جایگزین آنها می شود. هنگامی که بخواهیم استحکام سطح شیشه را افزایش دهیم باید یون های پتاسیم و سدیم مثبت را با لیتیم مثبت ( شیشه ها (4) ) جایگزین کنیم. در شیشه ی آلایش یافته (Stain glass) می توان یون نقره ی مثبت و مس را جایگزین شیشه ها (4) کرد.
همانند مواد کریستالی ، شیشه ها نیز دارای عیوب کریستالی اند. یکی از چالش هایی که ما با آنها روبرو هستیم محاسبه ی خواص بوجود آمده ازعیوب (مانند نفوذ) در شیشه هاست. زیرا در شیشه ها شبکه ی مرجع وجود ندارد.

انواع شیشه های سرامیکی

همه ی شیشه ها براساس تتراهدرال های سیلیسی ایجاد نمی شوند؛ واحدهای ساختاری این شیشه ها در جدول 1 آورده شده است. برخی از ترکیبات این شیشه ها نیز در جدول 2 آورده شده است.

شیشه ها (4)

شیشه ها (4)

شیشه ی سیلیکاتی ( سودالایم )

این شیشه ها بر پایه ی شیشه ها (4) هستند. (معمولا این نوع شیشه ها علاوه بر این مواد دارای شیشه ها (4) نیز هستند.) این نوع شیشه نستبا ارزان هستند و دارای دوام خوبی نیز هستند همچنین از این نوع شیشه به طور فراوان در صنعت بسته بندی و ساختمان استفاده می شود. ضریب انبساط حرارتی شیشه ها (4) این نوع شیشه ها ناچیز نیست. همچنین این نوع از شیشه ها عایق های خوبی نیستند. استفاده های عمده از این نوع شیشه در صفحات شیشه ای ،بطری ها ، وسایل غذا خوری و صنعت الکترونیک (حباب لامپ) است. شیشه های آلومینو سیلیکاتی قلیایی (شیشه ها (4)= عنصر قلیایی) دارای ضریب انبساط حرارتی پایینی است. این نوع شیشه دارای دوام و خواص عایق کاری بهتری است. وهمچنین نسبت به سایر شیشه های هم گروه استحکام بالاتری دارد. استفاده های این نوع شیشه عبارتست از تیوپ های اختراق، حباب های لامپ هالوژن و به عنوان بسترهای صنعت الکترونیک کاربرد دارد.

شیشه ی سربی

ترکیب عمومی این شیشه ها سیلیکات های قلیایی سربی استشیشه ها (4). در این نوع شیشه ها Pbo به جای CaO در شیشه ی سودالایمی قرار گرفته است. این نوع شیشه دارای مقاومت بالایی است. همچنین ضریب انبساط حرارتی آن بالاست. و دمای نرم شوندگی پایینی دارد. دلیل آنکه از این نوع شیشه ها در تولید ظروف کریستال استفاده می شود این است که ضریب شکست این نوع شیشه بالاست و علاوه بر این که از این شیشه ها در ظروف تزئینی استفاده می شود، از آنها در ساخت تیوپ های لامپ، لامپ تصویر تلویزیون و تیوپ های ترمومترها استفاده می شود. در ظروف کریستال انگلیسی که به صورت سنتی تولید می شوند، میزان Pbo حداقل 30% است. برطبق رهنمود اتحادیه ی اروپا میزان Pbo باید بیش از 24 درصد باشد. همچنین بر طبق استاندارد اروپا شیشه های کریستال سربی باز یافت نمی شوند. شیشه های سربی که برای ساخت حفاظ های تابشی استفاده می شوند ممکن است دارای بیش از 65% Pbo باشند. کاربرد این گونه شیشه ها در لامپ تصویر تلویزیون است اگر چه شیشه های باریمی برای ساخت صفحه و تابلوهای تلویزیون استفاده می شود. (تفنگ الکترونی تلویزیون اشعه ی x ساتع می کند که این نوع شیشه باید این تابش ها را جذب کند.)شیشه های سرب – بوراتی می توانند به عنوان لحیم های شیشه ای استفاده شوند. این نوع شیشه ها دارای در صد کمیشیشه ها (4) است و کاملا خنثی است.
شیشه های فیلنیتی (flint glass) دارای تفرق بالایی است. در واقع این نوع شیشه ها از نوع شیشه های سیلیکاتی قلیایی ـ سربی است که از ذوب سنگ های فیلنیتی ساخته شده اند(فیلنیت فرم خالص سیلیس است) .لازم به توضیح است که این نوع سنگ کلسینه شده و به طور فراوان در ساخت بدنه های سرامیکی استفاده می شود.

شیشه ی بورانی ( شیشه ی بورو سیلیکاتی )

شیشه های بوروسیلیکاتی قلیاییشیشه ها (4) به خاطر ضریب انبساط حرارتیشیشه ها (4) کوچکشان ویژه هستند. این نوع شیشه دوام بالایی داشته و خواص الکتریکی مفیدی دارند. پیرکس (Pyrex) که یک نوع ماده در تولید وسایل پخت و پز است . از جنس بروسیلیکات است .شیشه ی بروسیلیکاتی به طور وسیع در فرآیندهای شیمیایی استفاده می شود. برخی از شیشه های براتی دارای دمای ذوب پایینیشیشه ها (4) هستند از این رو آنها را می توان به همراه سایر شیشه ها استفاده کرد. شیشه ی بروسیلیکاتی – زنیکی به شیشه های منفعل شهرت دارند. این شیشه ها مواد قلیایی ندارند و از این رو از آنها می توان در ساخت اجزای الکترونیکی سیلیسیمی استفاده کرد.

سیلیس فیوزد

این نوع شیشه از نوع سیلیس خالص است. این شیشه ها ، شیشه های سیلیکاتی برای کاربردهای دما بالا هستند. ضریب انبساط حرارتی این نوع شیشه ها نزدیک به صفر است. این نوع شیشه ها برای تولید آینه های تلسکوپ و زیر لایه ها (Substrates) استفاده می شود. به خاطر داشتن ضریب انبساط حرارتی نزدیک به صفر به این شیشه ها ، شیشه های با انبساط حرارتی بسیار پایین (VLE Silica) می گویند .
شیشه های VLE دارای 7 درصد وزنیشیشه ها (4) برای تولید لفافه های لیتوگرافی نوری (masks photolithography) استفاده می شود. البته به خاطر دمای بالای فرآیند شکل دهی این شیشه ها ؛ می توان به جای آنها از شیشه های وایکور استفاده کرد.

شیشه ی فسفاتی ( phosphate – glass )
 

شیشه های فسفاتی شیشه های مهمی هستند زیرا این نوع شیشه ها خاصیت نیمه رسانایی دارند. یکی از کاربرد این مواد در ساخت تقویت کننده های الکترون (electron multipliers) است . در این نوع وسایل با استفاده از دپ کردن Er (افزودنشیشه ها (4) ) ، این تقویت کننده ها ساخته می شود. کایتون های موجود در این نوع شیشه ها معمولا V و P هستند اما لابراتوار ملی او آ ک ریچ (Oak Ridge National labroatory) یک نوع شیشه ی فسفاتی اندیوم – سربی تولید کرده است که دارای ضریب شکست بالایی است. از ویژگی های دیگر این شیشه می توان به دمای ذوب پایین و خاصیت ترانسپارنتی در برابر گسترده ی وسیعی از طول موج ها را نام برد. به دلیل آنکه این نوع شیشه می تواند درصد بالایی از عناصر خاکهای کم یاب را در خود حل کنند، از آنها در تولید وسایل نوری اکتیو مانند آمپلی فایرهای فیبر اپتیک و لیزرها استفاده می شود. شیشه های فسفاتی دپ شده با Nd در لیزرهای حالت جامد استفاده می شوند. ترکیب شیمیایی نمونه وار از این نوع شیشه عبارتست ازشیشه ها (4) است. که در صد Nd بین O.2-2.O درصد مولی است.

شیشه ی چالکوژیندی ( Chalcogenide glass )

این نوع شیشه براساس Se,As و Te بوجود می آید. این شیشه ها نور فرو سرخ را از خود عبور می دهند و نیمه رسانا های غیر اکسیدی هستند. از این نوع شیشه در وسایل و لنزهای الکترونیکی ویژه استفاده می شود. در این وسایل هنگامی که ولتاژ اعمالی به آنها از میزان بحرانی فراتر رود، به طور ناگهانی تغییر رسانایی رخ می دهد. کاربرد این نوع شیشه ها بسیار خاص است زیرا این شیشه ها دوام پایینی داشته و دمای نرم شوندگی شان پایین است.

شیشه ی فلورایدی ( fluoride glass )

عموماً شیشه های هالیدی بر پایه یشیشه ها (4) را شیشه های فلورایدی می گویند. کاربرد این نوع شیشه ها در وسایل همسو کننده نوری (optical waveguides) است. و درجاهایی که قیمت توجیه پذیر باشد استفاده می شوند.

شیشه ی طبیعی

این مسئله که شیشه در طبیعت بوجود می آید حتی این پدیده یک امر نسبتاً معمولی است، باعث شگفتی بسیاری از مردم می شود. تکتیت ها (tektites) درهنگام برخورد شهاب سنگ ها به زمین و در دهانه ی حاصله از برخورد شهاب سنگ پدید می آیند. مولد اویت (Moldavite) نیز یک شیشه ی سبز رنگ است که در مولداوی (Moldavia) یافت می شود . فولگلاریت (fulgarite) نیز تیوپ های شکننده از شیشه هستند که در هنگام برخورد برق آسمان به خاکهای ماسه ای پدید می آید. ابسیدیان (obsidian) نیز یک نوع شیشه است که در جریان های آتش فشانی تشکیل می شود. رنگ سیاه رنگ این نوع شیشه به خاطر ناخالصی پدید می آید. در طی دوره ی پارینه سنگی از ابسیدیان در ساخت وسایل استفاده می شده است. سنگ پا (Pamice) یکی دیگر از شیشه هایی است که از فوران های آتش فشانی تشکیل می شود. این ماده می تواند تخلخل های فراوانی داشته باشد. (درصورتی که ماده ی اولیه ی تشکیل دهنده ی آن دارای مواد گازی فراوانی باشد). سنگ پا شکل متخلخل ابسیدیان است

شیشه ها

مقدمه:

دراین مقاله ها در مورد انواع مختلف شیشه و برخی از کاربردهای آنها صحبت می کنیم.
شیشه ها یکی از انواع مهم موادمهندسی محسوب می شوند. این مواد در پنجره ها، ساخت بطری، لیزرها، الیاف نوری، عایق ها، لعاب کاری (glazing) ومینا کاری (enamelihg)، چاقوی جراحی، وسایل هنری وتابلوهای راهنمایی - رانندگی استفاده می شوند.
شیشه ها معمولا بازیافت می شوند واز این رو دوستدار محیط زیست هستند.مصریان آثار شیشه ای متنوعی بر جای گذاشته اند ولی آنها اولین کسانی نبودند که از این ماده استفاده می کردند.در دوران های دیرینه سنگی (paleolithic Times) شیشه های اولیه و شیشه های طبیعی (Obsidian: نوعی شیشه ی مصنوعی بدست آمده از آتش فشان ها ) بسیاراهمیت داشتند به خاطر اهمیت زیاد این ماده می توان گفت که شیشه نقش مهمی در شکل دهی تمدن ما داشته است.
به هر حال تعریفات مختلفی برای شیشه ها بیان شده است. دراین مقاله سعی می کنیم بگوییم چرا واژه های شیشه ای (glassy)، زجاجی (Vitreous) و آمورف (amor phous) همگی برای توصیف شیشه استفاده می شوند. همچنین سعی داریم جواب این سوال را بدهیم که: «شیشه چیست؟»
هنگام مطالعه ی این مقاله باید دو ذهنیت را داشته باشید:
1) ادعای Sturkey:"شیشه در دماهای بالا یک محلول شیمیایی است."
2) اگر شیشه که مایع فوق سرد شده است، پس جامد نیست وبنابراین یک ماده ی سرامیکی نیست (اما شیشه یک ماده ی سرامیکی است)

تعریف

تعریف کلاسیک شیشه براساس روش تاریخی تشکیل آن انجام شده است. البته این روش تعریف یک روش بسیار غیر معقولی برای تعریف هر ماده است. این مسئله باعث شده است تا امروز شیشه به چندین روش مختلف تعریف شود:
تعریف کلاسیک: شیشه یک مایع فوق سرد شده است(Supercooled liquid) مشکل بوجود آمده دراین تعریف این است که در برخی موارد می توان یک شیشه ی ویژه را به روشی تولید کرد که هیچگاه درحالت مایع قرار نداشته باشد.
ASTM شیشه را به صورت زیر تعریف کرده است:
"شیشه یک محصول غیر آلی از ترکیبی مذاب است که بدون آنکه کریستالی شود، سرد وصلب می گردد."
این تعریف نیز همان چیزی است که در تعریف کلاسیک آمده است. اما دراین تعریف شیشه ی پلیمری استثناء شده است. به وضوح مشخص است که استناد کردن به روش تولید برای تعریف یک گروه از مواد ایده آل و مناسب نمی باشد.

تعاریف دیگر :

1)" شیشه یک ماده ی جامد است که نظم دوربعد از خود نشان نمی دهد."
نداشتن نظم دوربعد یعنی ساختار شیشه درفواصل یک، دو یا سه برابر فاصله ی اجزای سازنده، دارای نظم نیست. این تعریف براساس مشاهدات حاصله از تفرق اشعه X، میکروسکوپ الکترونی عبوری (TEM) و... استوار است اما این تعریف نیز کمی قراردادی است زیرا به اندازه ی اجزاء تشکیل دهنده بستگی دارد.
2)" شیشه یک مایع است که قابلیت جاری شدن خود را از دست داده است."
این تعریف استوار است اما از تعریفی که بوسیله ی ASTM ارائه شده است فراگیرتر است .همچنین این تعریف از خاصیت مکانیکی برای تعریف شیشه استفاده می کند. درحقیقت این تعریف عملاً با دیدگاه فیزیک مدرن درباره ی شیشه مطابقت دارد.
اکثر شیشه هایی که ما در مورد آنها توضیح می دهیم، شیشه های با شبکه ی اکسیدی است . (مخصوصاً سیلیکات ها) تعریف ما از چنین شیشه هایی عبارتست از:
تجمعی جامد از تتراگونال هایی است که می توانند رئوس خود را به اشتراک گذاشته و البته این مواد نظم دور بعد ندارند.
دراین مقاله ما تنها درمورد شیشه های سرامیکی بحث می کنیم اما باید بدانیم که علاوه بر شیشه های سرامیکی، شیشه های فلزی و پلیمری نیز وجود دارد. شیشه های فلزی ترکیبات پیچیده ای هستند که در آنها عمل کریستالیزاسیون انجام نشده است. این مسئله بوسیله ی سریع سرد کردن فلز مذاب بوجود می آید.(این فرآیند اسپلات کوئنچینگ نامیده می شود). درادامه به بیان ویژگی شیشه ها می پردازیم:

ساختار

شیشه ها در اصل جامد های غیر کریستالی (یا آمورفی) هستند که در اغلب موارد از فریز شدن یک مایع فوق سرد شده بدست می آیند. دراین موارد نظم دور برد در آرایش اتمی وجود ندارد. البته نظم کوتاه برد (زیر 1nm) وجود دارد. این مواد دارای آرایش منظمی از سلولهای واحد نیستند.همانگونه که گفتیم شواهدی وجود دارد که ثابت می کند در شیشه ها نظم کوتاه برد وجود دارد.این نظم کوتاه برد به دلیل آرایش اتمی درمجاورت هر اتم (البته در فاصله ی کوتاه) بدست می آید. تلاش های فراوانی برای توصیف شیشه ها انجام شده است. که به بیان علت تشکیل شدن یا نشدن شیشه ها بحث می کند. دراین زمینه ما ازدو دیدگاه به شیشه ها نگاه می کنیم:
1) توجه به ساختار
2) توجه به مباحث کنیتیکی کریستالیزاسیون
درمورد اول ما به بیان هندسه ی اجزای تشکیل دهنده ی شیشه ها می پردازیم. همچنین دراین زمینه به بیان پیوندهای بین اتمی واستحکام پیوندها می پردازیم . درمورد دوم ما به بیان چگونگی دگرگونی های مایع به جامد در طی فرآیند سرد شدن می پردازیم.
دمای تبدیل شدن شیشه ای ( Tg )
درشکل 1 نموداری نشان داده شده است که در آن حجم ویژه به عنوان تابعی از دما رسم شده است.

شیشه ها (1)

این دیاگرام فرمی از دیاگرام استعاله ی دما – زمان (T.T.T) برای شیشه است. درهنگام سرد شدن مایع از دمای بالا دو پدید ه ممکن است در نقطه ی انجماد (Tm) اتفاق می افتد که عبارتند از :
1) اگر مایع کریستالیزه شود تغییرات حجم و سرعت سرد کردن گسسته است.
2) اگر کریستالیزاسیون اتفاق نیفتد، مایع به حالت فوق سرد شده تبدیل می شود و حجم در نزدیک دمای ذوب کاهش می یابد.
دردمای تبدیل شدن شیشه ای (Tg)، شیب نمودار کاهش می یابد و به شیب جامد کریستالی نزدیک می شود. این شکستگی بوجود آمده در نمودار سرد کردن نشان دهنده ی گذرگاه مایع فوق سرد شده به شیشه است. زیر دمای Tgساختار شیشه درحالت آسایش نیست زیرا این مواد اکنون جامد هستند. دراین ناحیه از Tg ویسکوزیته تقریبا شیشه ها (1) است. ضریب انبساط حالت شیشه ای معمولا نزدیک به ضریب انبساط جامد کریستالی است. اگر از سرعت های سرد کردن پایین تر استفاده شود، میزان آسایش ساختار افزایش می یابد. ومایع فوق سرد شده در دمای پایین تر تشکیل می شود. و شیشه ی حاصله ممکن است دانسیته ی بالاتری بدست آورند. (همانگونه که در شکل 1 دیده می شود)
فیزیک شیشه جنبه ی تردی آن را مورد بررسی قرار می دهد. در واقع این ویژگی یک ویژگی مایعات شیشه ساز در بالای دمای Tgاست واندزه ای از استعکام پیوندهای بین اتمی است. در ادامه ما درمورد شیشه ی نامحلول در آب یا بطری های شیشه ای آب صحبت می کنیم. البته چیزی که آگاهی کمتری از آن است این است که ما می توانیم آب را با سریع سرد کردن در اتاق مایع به حالت شیشه ای در آوریم. ماده ی حاصله یک شیشه ترد است اما این مسئله فهمیده شده است که بیشتر آب موجود در جهان به همین شکل وجود دارد.
تاریخچه
شیشه ماده ای است که پیوندی عمیق با تاریخچه ی انسان دارد. یکی از شواهد این مسئله استفاده از ابسیدیان (obsidian) یک شیشه ی طبیعی توسط بشر است. هیچ کس نمی داند که اولین جسم شیشه ای در چه زمانی ساخته شده است. قدیمی ترین یافته ها به 7000 سال پیش از میلاد برمی گردد. (البته ممکن است یافته هایی پیش از این تاریخ نیز وجود داشته باشد). درکاوش های باستان شناسی در بین النهرین روش های تولید شیشه کشف شده است . این کارها 4500 سال پیش از میلاد مسیح بوده است ومربوط به روش های تولید وسایل شیشه ای بوده است نه لعاب های مورد استفاده در وسایل سفالی. استفاده از شیشه در لعاب کاری سفال حتی به دوران های پیشین می رسد.

شیشه ها (1)

تقریبا در 3000 سال پیش از میلاد مسیح شیشه گران مصری شروع به تولید جواهر آلات شیشه ای و ظروف شیشه ای کوچک کردند. شیشه هم به عنوان یک جسم دکوری وهم به عنوان یک وسیله ی مورد استفاده در زندگی روزمره به شمار می آمد. قطعاتی از جواهر آلات شیشه ای در کاوش های اطراف کوه های مصر پیدا شده است. مثالی از این جواهرآلات شیشه ی فیزوزه ای آبی است که در شکل 2 دیده می شود. تقر یبا 1500 سال پیش از میلاد مسیح شیشه گران مصری ( در دوره ی touthmosis سوم ) روشی برای تولید قطعات تو خالی قابل استفاده، توسعه دادند. یک مثال قابل توجه از این نوع ساختار یک شیشه ی توخالی است که شبیه به سرماهی است (شکل 3) این ظرف بین سال های 1352 و 1336 قبل از میلاد ساخته شده است واین نظریه وجود دارد که برای نگه داری روغن خوش بو استفاده می شده است.

شیشه ها (1)

الگوی موجی این ظرف بسیار خاص است. در واقع این ظرف بوسیله ی کشیده شدن یک جسم تیز به شیشه ی خمیری شده تولید شده است.
نویسنده ی رومیPliny Fhe Elder (23-79 میلادی) اختراع شیشه را به صورت زیر توصیف می کند:
روزی یک کشتی که متعلق به چند تاجر نیتروم (Nitrum) بود در کنار ساحل لبنان کنونی توقف می کند. هنگام پخت غذا به دلیل نبود سنگ در ساحل، خدمه کشتی از کلوخ های نیترومی که در کشتی وجود داشته است. استفاده می کنند تا بتوانند دیگ غذا را در مکان مناسب استقرار دهند. پس از آنکه آتش روش شد، کلوخه ها با ماسه های ساحلی واکنش داده و تشکیل شیشه ی مذاب می دهد. این اولین منشع پدید آمدن شیشه است.
نیتروم (Nitrum) یک نوع سدیم کربنات (Soda) طبیعی است .این ماده یکی از اجزای مهم در شیشه های قدیمی و مدرن است. خاکستر گیاهان نیز یک منبع فقیر از سدیم برای شیشه گران فراهم می کند. گیاهان علف شوره (Saltwort) و رازیانه ی آبی (glass wort) از جمله گیاهانی هستند که برای مهیا شدن سدیم از آنها استفاده می شده است.
یکی از معمولی ترین روش ها برای شکل دهی شیشه روش دمش هوا است. اگر چه این تکنیک بیش از دوهزار سال پیش توسعه یافت، لوله های تولیدی به روش دمش در طی زمان تغییری نکرده است. توسعه ی عمده که دراین زمینه انجام شده است، روش دمش اتوماتیک است که برای تولید شیشه های بطری و حباب های لامپ استفاده می شود. دراین روش به قطعه ای شیشه در داخل قالب هوا دمیده می شود. و بدین شکل شیشه به شکل قالب در می آید. مهمترین مرحله ی رشد در تاریخ شیشه سازی مخصوصا درطی قرن بیستم مربوط به توسعه های اتفاق افتاده در زمینه ی تکنولوژی های تولید می باشد. این توسعه ها منجر به کاهش هزینه ی تولید محصولات شیشه ای می شود

در ادامه به بیان خواص شیشه ها می پردازیم:

ویسکوزیته ( η )

ویسکوزیته یک ویژگی کلیدی شیشه هاست.ما نیاز داریم تا درمورد ویسکوزیته ی شیشه در دماهای مختلف اطلاع داشته باشیم. و بتوانیم دمای مورد نیاز برا ی شکل دهی وآنیلینگ آن را تشخیص دهیم. ویسکوزیته یک ویژگی مکانیکی است. فرمول ویسکوزیتد به صورت زیر است:

شیشه ها (2)

دراین فرمول:
η : ویسکوزیته، F: نیروی مورد نیاز برای کشیدن یکی از صفحات موازی که در میان آنها مایع مورد نظر قرار دارد: ،d: فاصله ی صفحات، A: مساحت صفحات، V: سرعت حرکت صفحه. ویسکوزیته در واقع پاسخ یک مایع دربرابر تنش برشی است. مایعات دارای ویسکوزیته ای هستند که با واحد سانتی پوآز (CP) اندازه گیری می شود. واحد اندازه گیری ویسکوزیته ی گازها میکروپوآز(mp) است.

شیشه ها (2)

جدول 1 لیستی از اعداد ویسکوزیته ای است که برای فرآیندهای شیشه سازی مهم هستند. اعداد داده شده در جدول 2 نیز برای تعریف ویژگی های برجسته ی شیشه (با تأکید بر روی فرآیند) آورده شده است. بسیاری از اعداد آورده شده درجدول ویسکوزیته ها استاندارد هستند مثلا (2003) ASTMC338-93 یک روش تست استاندارد است که نقطه نرم شدگی شیشه بوسیله ی آن تعیین می شود.
محاسبه ی نقطه ی نرم شدگی شیشه بوسیله ی اندازه گیری دمایی که در آن یک فیبر شیشه ای استوانه ای با قطر شیشه ها (2) طول بوسیله ی وزن خودش تغییر طول می دهد. نرخ تغییر طول یک میلی متر بردقیقه است . در این روش 100 میلی متر از بخش بالایی فیبر بوسیله ی کوره ی خاصی با سرعت گرم شدنشیشه ها (2) گرم می شود.

شیشه ها (2)

ویسکوزیته ی برخی ازمایعات عمومی در جدول 2 آورده شده است. توجه کنید که در دمای کارپذیری شیشه ویسکوزیته ای شبیه به عسل در دمای اتاق دارد. به طور نمونه برای یک شیشه ی سیلیکاتی سودالایم این ویسکوزیته در دمایشیشه ها (2) بدست می آید. این جدول همچنین نشان می دهد که یک جامد دارای ویسکوزیته ای بیش ازشیشه ها (2) دسی پو آز است. ویسکوزیته ی به طور نمایی با تغییر دما ، تغییر می کند ( همانگونه که در شکل 1 برای انواع شیشه ی سیلیکاتی دیده می شود.) دمای فیکتیو (fictive temperature) دمایی است که در آن ساختار مایع به حالت شیشه ای تبدیل می شود. این دما بوسیله ی تقاطع منحنی های برونیابی شده در حالت دما بالا و دما پایین در نمودار ویسکوزیته – دما بدست می آید. دمای فیکتیو (Tf) مانند Tg به تبدیلات ساختاری شیشه بستگی دارد. البته Tg اندکی کمتر از Tf است.

شیشه ها (2)

شکل 2 وابستگی ویسکوزیته به دما را برای اکسیدهای شیشه ساز نشان می دهد. شما باید توجه کنید که بوسیله ی شیب این خطوط می توان انرژی اکتیواسیون جریان ویسکوز (EV) را بدست آوریم.

شیشه ها (2)

جدول 3 اعداد ویسکوزیته وسرعت های کریستالیزاسیون (v) برخی شیشه ها را نشان می دهد. سرعت کریستالیزاسیون مربوط می شود به سرعت تبادل مایع/جامد. V بسیار کم بیان کننده ی قابلیت شیشه سازی استثنایی ماده است.البته کریستالیزاسیون مذاب جامد شده ی سیلیس بسیار مشکل است.

شیشه ها (2)

روش های متعددی برای اندازه گیری ویسکوزیته وجود دارد. این روش ها با توجه به میزان ویسکوزیته انتخاب می شود.

شیشه ها (2)

شماتیک دو روش اول اندازه گیری ویسکوزیته در شکل 3 نشان داده شده است:

شیشه ها (2)

شیشه ( خلاصه ای از خواص )
 

شیشه ماده ای خنثی است. این مسئله به محیط بستگی دارد. اگر شیشه یک ماده ی سیلیکاتی باشد، این مسئله درست است . البته همه ی شیشه ها خنثی نیستند. مثلا بیوگلاس (bioglass)
شیشه یک ماده ی هموژن است. این مسئله نیز به نحوه ی شکل دهی و ترکیب شیمیایی شیشه بستگی دارد. ما می توانیم با استفاده از فرآیندهای خاص شیشه را به صورت غیر هموژن در آوریم.
شیشه می تواند تغییر شکل دهد. این مسئله عموماً درست می باشد و دلیلی است برای قابلیت بازیافت شیشه ها. برخی از شیشه ها به نحوه ای ساخته می شوند که بوسیله ی نور، انتشار نور در داخل آن وتابش نور و...تغییر ماهیت می دهد.
شیشه دارای ضریب انبساط کوچک است. البته همه ی شیشه ها مناسب استفاده شدن در کاربردهای حرارتی مانند ظروف پیرکس نیستند.
شیشه ها شفاف اند (trans Parent) این خاصیت برای الیاف نوری ضروری است. البته ما می توانیم با انجام عملیات های خاص شیشه به صورت اپک یا مات در آوریم.
بسیاری از شیشه های اولیه شفافیت کامل نداشتند زیرا در ساختار آنها ناخالصی وحباب هوا وجود داشت.
شیشه ارزان است. البته این مسئله برای شیشه های پنجره صحیح است. اما درمورد فیلم های نازک شیشه ای این مسئله صحیح نمی باشد. برخی از شیشه های قرمز رنگ بوسیله ی دپینگ (doping) طلا در آنها تولید می شود. که قیمت برخی از ظروف تولیدی از آن به پیش از 50 دلار می رسد.
شیشه یک ماده ی بالک است مگر در حالتی که آن را به صورت یک فیلم نازک ، یک فیلم انیتر گرانولار (IGF) یا یک سرامیک کریستالی رشد دهیم.

برخی از خواص مکانیکی شیشه

استحکام تئوریک شیشه ی سیلیکاتی درحدود 10GPa است. البته با حضور عیوب سطحی (ترک ها وجوانه ها ) این استحکام کاهش می یابد. شیشه ها موادی الاستیک هستند اما تحت کشش می شکنند. می توان استحکام این مواد را بوسیله ی ایجاد لایه های سطحی فشرده و یا بوسیله ی از بین بردن ترک های سطحی (با اسید شوئی یا پدید آوردن پوشش محافظ) افزایش داد. مثالی از این روش ها پدید آوردن ترک های اضافی در ساختار قطعات شیشه ای تزئینی به منظور بهبود خواص مکانیکی آنهاست. در این روش از سرد کردن شیشه ی مذاب در آب جهت ایجاد تنش های اضافه بهره برده می شود . در این حالت سطح قطعه ی شیشه ای مذاب زودتر از مرکز آن سرد می شود و بنابراین تنش های اضافی پدید می آید. قطعات جامد شده به این شیوه را می توان با چکش و بدون اینکه بشکنند چکش کاری کرد.

برخی از ویژگی های الکتریکی شیشه

شیشه معمولا دارای مقاومت الکتریکی بالایی است. که علت آن تفاوت زیاد میان باندهای انرژی (گپ بزرگ) در این ماده است. در مواردی که شیشه رساناست . بار بوسیله ی یون ها منتقل می شود.(در این مورد یون های قلیایی مانندشیشه ها (2) دارای سرعت انتقال بار بالایی هستند). در واقع به همین دلیل است که با افزایش دما رسانایی به شدت افزایش می یابد. رسانایی درشیشه های مختلف، متفاوت است.علت آن متفاوت بودن نوع شبکه ی این شیشه هاست. در شیشه هایی که دارای بیش از یک یون قلیایی هستند. پدیده ی جالبی رخ می دهد. رسانایی تولیدی در این نوع شیشه ها به طور مشخصی از شیشه های دارای یک یون کمتر است. این نوع شیشه ها در کاربردهای مختلف مانند لامپ های با توان بالا استفاده می شوند. ثابت دی الکتریک شیشه واقعاً بالاست اما نه به حدی که بتوان از آن در کاربردهای حافظه ای پیشرفته مانند حافظه ی با دستیابی دینامیک و رندوم (DRAMS) استفاده کرد. ظرفیت الکتریکی یک ماده میزان بار ذخیره شده در داخل ماده است. این خاصیت به ضخامت دی الکتریک بستگی دارد. همانطور که ضخامت دی الکتریک کمتر می شود، ظرفیت الکتریکی افزایش می یابد. اما کم کردن ضخامت نیز مشکلاتی به همراه دارد. مثلا با کاهش ضخامت احتمال شکست دی الکتریک بیشتر می شود. شیشه ی سیلیسی دارای مقاومت دی الکتریک بالاتری نسبت به سایر شیشه هاست. اما مقاومت این دی الکتریک نیز در حد دی الکتریک های پلیمری مانند رزین فنولیک نیست.

برخی از خواص اپتیکی شیشه

شفافیت دربرابر نور فرا بنفش ، مرئی و فرو سرخ به چندین فاکتور بستگی دارد. یکی از این فاکتورها طول موج تفرق است که بوسیله ی ناخالصی ها تغییر می کند. لبه ی فرو سرخ (IRedge) و لبه ی فرا بنفش ((uv edge اعدادی هستند که نشان دهنده ی فرکانس قطع شدن عبور این موج ها هستند. یک مانع لبه UV edge blocker)UV) از عبور UV جلوگیری می کند و این در حالی است که یک عبور دهنده ی لبه یUV (UV edge tran Smitter) اجازه ی عبور نور UV را می دهد.

عیوب در شیشه ها

اگر چه شیشه یک ماده ی آمورف است ولی مانند مواد کریستالی دارای عیوب و رسوبات است. و همچنین دچار جدایش فاز می شود. شیشه را می توان برای حبس کردن عناصر رادیو اکتیو استفاده کرد .در این عناصر مانند عیوب نقطه ای یا فاز ثانویه تشکیل می شوند. همچنین سرعت نفوذ این عناصر از میان شیشه بر روی میزان آن ها در شیشه تأثیر دارند. این مسئله استفاده می شود تا بتوان مواد رادیو اکتیو یا سایر مواد را کنترل کرد.

شیشه ی غیر هموژن

به دلیل آنکه شیشه یک مایع فوق سرد شده است. نمی توان گفت که این ماده حتما باید هموژن باشد. شیشه های خاص می توانند بدون نیاز به فرآیند کریستالیزاسیون به دو فاز تبدیل شوند. هنگامی که این دو فاز شیشه ای باشند این مسأله باعث می شود که سدی در برابر جدایش فازی پدید نیاید. در مورد فرآیند جدایش فازی مایع – مایع ممکن است مرحله ای برای جوانه زنی وجود داشته باشد. البته در این نوع تبدیلات ممکن است استعاله ی اسپینودال (Spinodal) نیز رخ می دهد. که هر دوی این استعاله ها به نفوذ وابسته اند.
قوانین امتزاج ناپذیری در شیشه ها بسیار مهم است. این مسئله مخصوصاً در شیشه های تولید شده با تکنولوژی روز نمود دارد. برای مثال امتزاج ناپذیری در شکل دهی شیشه – سرامیک ها ، تولید شیشه ی وایکور (Vycor) و شیشه های اپتیکی و تشکیل رسوب در شیشه ها مهم می باشد. بسیاری از اکسیدهای دوتایی و سه تایی در کنار سیلیس از خود مشکلات امتزاج پذیری نشان می دهند.
در دیاگرام فازی ناحیه ای وجود دارد که یک مایع به دو مایع با ترکیب شیمیایی متفاوت تبدیل می شود. این ناحیه گپ امتزاج پذیری (imisciblity gap) نامیده می شود. در زیر برخی از سیستم هایی که مشکل امتزاج پذیری دارند را نام برده ایم:

شیشه ها (2)

شیشه ها (2)

شکل 4 دیاگرام فازیشیشه ها (2) را نشان می دهد. در دمای پایین و در گوشه ی غنی از سیلیس دیاگرام ، فاز مایع به دو بخش مایع با ترکیب شیمیایی متفاوت تبدیل می شود. این دو مایع به صورت دو شکل گنبد مانند در شکل نشان داده شده اند. خط تیره نشان دهنده ی خط تقریبی ناحیه ی امتزاج ناپذیری است. مشکلی که در اندازه گیری این خط وجود دارد. این است که این پدیده در دمای پایین رخ می دهد و از این رو سرعت آن پایین است . و از این رو اندازه گیری آن مشکل است. دراین وضعیت میل جدایش فازی بیشتر از میل به کریستالیزاسیون است . البته کریستالیزاسیون مساعد تر از جدایش فازی است اما به دلیل آنکه جدایش فازی نیازی به باز آرایی اتم ها ندارد، این پدیده رخ می دهد. به عنوان یک قانون کلی برای سیلیس باید گفت که امتزاج ناپذیری با افزودنشیشه ها (2) افزایش می یابد اما با افزودنشیشه ها (2) کم می شود. در شیشه های وایکور از قوانین جدایش فازی استفاده می شود. در فرآیند تولید شیشه وایکور، شیشه ای پدید می آید که دارایشیشه ها (2) و 4 درصد تخلخل است.این نوع شیشه به عنوان فیلتر وبیومواد مخصوصا در جاهایی که تخلخل مهم می باشد، استفاده می شود. در فرآیند تولید وایکور، شیشه ای تولید می شود که پس از فرآیند شکل دهی دنس می گردد و شیشه ای با سیلیس خالص پدید می آید که در دمای پایین تر نسبت به کوارتز خالص شکل دهی گشته است

شیشه ی آلومینیوم – ایتریمی

شیشه های آلومینیوم –ایتریایی (YA) دارای درصد آلومینایی در گسترده ی تقریبی 75.6- 59.8 هستند. با این درصد آلومینایک شیشه ی دو فازی تشکیل می شود که در آن یک فاز قطره مانند در فاز دیگر تشکیل شده است. این شیشه به طور خود بخودی به صورت شیشه ی آلومینیوم – ایتریمی یا مخلوطی ازشیشه ها (3) تبدیل می شود. درشیشه های YA پدیده ای به نام پلی مورفیزم (Polymorphism) رخ می دهد

شیشه ی رنگی

اگر چه در بیشتر کاربردهای شیشه نیاز است تا این ماده بی رنگ باشد اما در برخی از کاربردها نیاز است شیشه رنگی باشد. هنگامی که پنجره های یک کلیسا رنگی باشد، تأثیر پذیری ازمحیط بیشتر می شود . درشیشه ها معمولا بوسیله ی افزودن اکسیدهای انتقالی و یا اکسیدهای عناصر خاک های کمیاب (rave –eavth) به بچ ماده ی اولیه ی آنها، رنگی می شوند. جدول 1 لیستی از رنگ های تولیدی بوسیله ی مواد رنگی کننده ی شیشه هاست . زرد کم رنگ، نارنجی و رنگ های قرمز بوسیله ی فلزات گران بها درحالت کلوئیدی تولید می شود. طلا (Au) رنگ قرمز، یا قوتی تولید می کند. (البته این شیشه ها گران قیمت هستند). سولفید کادمیم (cds) محصولاتی با رنگ زرد تولید می کند. اما هنگامی که علاوه بر se ، cds نیز استفاده شود. محصولاتی با رنگ قرمز یا قوتی با شدت رنگ بالا تولید می شود.

شیشه ها (3)

شیشه بوسیله ی افزودن دوپانت ها (dopants) رنگرزی می شوند. در واقع با افزودن این دو پانت ها در شیشه عیوب نقطه ای پدید می آوریم. رنگ شیشه به نوع دو پانت و حالت اکسیداسیون آن بستگی دارد.
دو پانت ها می توانند اثر بی رنگ کننده (decdorizo) ، پوشش دهنده (mask) یا اصلاح کننده (modify) داشته باشند. ما می توانیم اثرات رنگی آهن را بوسیله ی افزایش cr خنثی کنیم؛ البته اگر درصدشیشه ها (3) زیاد باشد اضافی به صورتشیشه ها (3) خارج می شود. اگر این شیشه به روش دمیدن شکل دهی شود، این پلیت لت هایشیشه ها (3) منظم گشته و شیشه ای اپک به نام آونتورین کرومی (chromium aventurine) تولید می کنند. مس (cu) برای تولید شیشه ی آبی مصری (Egyptian Blue glass) استفاده می شود.
CO (کبالت ) دربرخی از شیشه های پالایش یافته ی تولید در قرن دوازدهم استفاده می شده است. البته Co در تولید لعاب های پرسلانی مورد استفاده در چین ( در دوره ی سلسله ی منیگ وتانگ) استفاده می شده است. کبالت مورد استفاده در این لعاب ها رنگ آبی کبالتی تولید می کند.
با افزودن Se به شیشه های دپ شده با Cds باعث پدید آمدن رنگ یاقوتی سلینومی (Selenium Ruby) می شود. جزئیات پدید آمده ازهر کدام از این رنگ ها به ترکیب شیمیایی و شرایط پخت شیشه بستگی دارد.
شرکت کورینگ (Cornig) میکرو بارکدهایی با شیشه دپ شده با خاکهای کم یاب تولید کرده است. خاکهای کم یاب دارای باندهای نشر کم پهنا هستند و از میان 13 عنصر خاکهای قلیایی که مورد آزمایش قرار گرفته ، تنها 4 عنصر (Tm,Ce,Tb و Dy) می توانند در برابر تابش UV برانگیخته شوند. و لذا می توان از آنها در شناسایی بوسیله ی UV استفاده کرد. این نوع بارکدها همچنین مشکلات تداخل با سایر بارکدها را نیز ندارد. از این بارکدها در کاربردهای بیولوژیکی استفاده می شود زیرا سمی نیستند.(البته بر چسب زنی با کوانتوم دات ها خطرات کمتری دارد) و می توان از آنها در کاربردهای ژنتیکی استفاده کرد. با استفاده از چند عنصر خاکی کمیاب می توان ترکیب رنگی بیشتر پدید آورد.
شیشه های رنگی خاص شامل موارد زیر می شود :

شیشه ی یاقوتی یا کرانبری ( Cranberry )
 

شیشه ی یاقوتی با افزودن Au به شیشه سربی با حضور Sn پدید می آید. شیشه ی کرانبری که اولین بار در سال 1685 گزارش شده است، یک نوع شیشه ی بی رنگ (معمولاً صورتی کم رنگ ) است. علت پدید آمدن این رنگ در صد کم طلای موجود در آن است . راز تولید شیشه قرمز رنگ برای قرن ها ی زیادی گم شده بود و در قرن هفدهم دوباره کشف شد.

شیشه ی اورانیومی یا وازلینی

محصولات اورانیومی هنگامی که در شیشه ی با سرب بالا استفاده شود، رنگ قرمز تیره تولید می کند. البته شیشه های اورانیومی دیگری نیز وجود دارد که با صطلاح به آنها شیشه های وازلینی (Vaseline glass) می گویند. این نوع شیشه ها دارای رنگ سبز هستند. مسأله ای که این نوع شیشه ها را خاص کرده است این است که این نوع شیشه ها هنگام تابش اشعه ی UV به آنها ، خاصیت فلئورسانس پیدا می کنند. از سال 1940 تنها اورانیوم تهی شده (uranium depleted) به عنوان دو پانت استفاده می شود. علت استفاده از این نوع دو پانت، فراوانی آن است. اما از 100 سال گذشته به بعد اورانیوم طبیعی (natural uranium) استفاده می شود.

شیشه ها (3)

شکل 1 مثالی از یک شیشه ی وازلینی است.

لیزر شیشه ای

عناصر خاکهای کم یاب (rave – earth elements) مانند Nd در تولید شیشه های لیزر و سایر وسایل اپتیکی کاربرد دارند. (شکل 2) . لیزر شیشه ای دپ شده با Nd (Nd-doped glass laser) مانند یک لیزر یاقوتی (ruby laser) کار می کند . اگر چه نوع شیشه ای دارای تفاوت هایی است . میله ی لیزر قطری بینشیشه ها (1) اینچ دارد و معمولا بوسیله ی یک لامپ حلزونی تخلیه می شود. علت استفاده از لامپ های حلزونی این است که طول غیر بار دار این نوع لامپ ها از لامپ های خطی طولانی تر است. لیزر شیشه ای دپ شده با Nd دارای بازدهی بیش از 2% است. این بازده 4 برابر بازده یک لیزر یاقوتی است. به دلیل آنکه رسانایی گرمایی شیشه پایین است بنابراین نیاز به زمان بیشتری برای خنک سازی است.

شیشه ها (3)

رسوبات در شیشه

وجود رسوبات در شیشه عموما اجتناب ناپذیر است. سوال این است که چه زمانی طول می کشد تا رسوبات تشکیل شود. (مخصوصا اگر جوانه زنی هموژن باشد). ما ممکن است عوامل هسته زا برای تسریع جوانه زنی به شیشه اضافه کنیم. جوانه زنی کریستال ها در شیشه از تئوری کلاسیک پیروی می کند. رسوبات تشکیل شده در شیشه می تواند موجب رنگی شدن شیشه شود.

شیشه به عنوان لعاب

لعاب ها مانند شیشه ها در همه جا دیده می شوند. لعاب کاری (glazing) استفاده از ویژگی های ویسکوز شیشه و تشکیل یک لایه ی یک پارچه و صاف بر روی یک زیر لایه ی سرامیکی است.
مینا کاری (enameling) تشکیل همان لایه بر روی یک زیر لایه ی فلزی است. چیزی که باید به آن توجه کرد این است که عموما لعاب ها قدمت زیادتری دارند. در ادامه به بیان برخی از اصطلاحات لعاب می پردازیم:

زیر لعاب ( underglaze )

هنگامی که یک بیسکوییت سرامیکی را می خواهیم مورد عملیات دکور قرار دهیم باید قبل از آن یک لعاب کاری بر روی آن انجام دهیم که این نوع لعاب را زیر لعاب گویند. این لایه به علت تشکیل بهتر دکور بر روی بدنه اعمال می شود. پس از آن که فرآیند دکوراسیون جسم سرامیکی انجام شود برروی آن یک لعاب دیگر اعمال می شود. البته این لعاب پیش از پخت دکور اعمال می شود.
عیب کراولینگ لعاب ( glaze craweling ) این عیب که در لعاب اتفاق می افتد بدین صورت است که لعاب از لایه ی سرامیکی زیرین جدا می گردد. این پدیده به دلیل عدم ترشوندگی بیسکوییت سرامیکی بالعاب در طی فرآیند پخت اتفاق می افتد.
لعاب ترک خورده ( crackle glaze )اگر انبساط گرماییشیشه ها (3) لعاب از سرامیک بستر بزرگ تر باشد، لعاب ممکن است در طی فرآیند سرد کردن (در طی پخت) بشکند. هنگامی که غلظت یون سدیم و پتاسیم در لعاب بیشتر باشد، ترک ها بیشتر پدید می آیند. هنگامی که سرعت سرد کردن بالا رود ترک های حاصل ریزتر می شوند.
لعابهای سلادون (celadon )، تنموکو (tenmoku)، راکو (raku) و کوپر ( copper) لعاب های ویژه ای هستند که در دنیای هنر سرامیک یافت می شوند.
لعاب های سلادوناین لعاب ها اولین بار در حدود 3500 سال پیش تولید شده اند. این لعاب ها دارای گستره ی رنگی از آبی کم رنگ تا سبز مایل به زرد هستند و می توانند رنگی کاملا تیره پدید آورند. رنگ تولیدی در این لعاب ها بوسیله ی آهن تولید می شود(3.o - o.5 در صدشیشه ها (3) به لعاب افزوده می شود). ظروف لعاب خورده توسط این نوع لعاب سپس در دمای تقریباًشیشه ها (3) پخت می گردند. ظروف تولید شده با این لعاب ها زیبایی خاصی داشته و در کاربردهای تزئینی استفاده می شوند. مثلا کوزه ی لعاب خورده با این لعاب که درکشور کره تولید شده است، درسال 1946 از سوی کشور کره به هاری ترومن رئیس جمهور آمریکا هدیه شد. امروزه این ظرف که 23cm ارتفاع دارد قیمتی برابر با 3 میلیون دلار دارد.
لعاب تنموکواین نوع لعاب در زمان سلسله ی سونگ (sung Dynasty) بوجود آمده است. و دارای رنگ قهوه ای تیره یا حتی سیاه است. برای ایجاد این رنگ میزان 8-5 درصد وزنیشیشه ها (3) به لعاب افزوده می شود. تشکیل مناسب این نوع لعاب به شرایط اکسایش – کاهش اتمسفر پخت بستگی دارد. و در شرایط مختلف اکسایش و کاهش رنگ های متنوعی پدید می آید. در لعاب های کوپرنیز از کربنات مس به عنوان منبع Cuاستفاده می شود. البته در طی فرآیند پختشیشه ها (3) تجزیه گشته و Cuoباقی می ماند. Cuo تولید نیز با مونواکسیدکربن (CO) موجود در کوره واکنش داده تا ذرات مس در لعاب تشکیل شوند. این ذرات رنگ قرمز به لعاب می دهند.
لعاب های راکولعاب های راکو اغلباً لعاب هایی فلزی به نظر می رسند. (اگر بوسیله ی یک لایه از فلز Ti پوشش داده شده باشند)
یک روش پیشرفته در تولید لعاب های راکو بدین صورت است که ظروف سرامیکی به شیوه ی معمولی پخت می شوند سپس آنها را در داخل یک محیط کاهنده مانند خاک اره وارد می کنند و سپس آنها را قبل از آنکه بتوانند اکسید شوند، به سرعت سرد می کنند. این نوع لعاب ها اغلبا حالت استثنا داشته و می توانند با زمان تغییر کنند. این مسئله ساده است. زیرا آنها در طی فرآیندهای بعدی تولید اکسید می شوند. این نوع لعاب بر خلاف سایر لعاب ها خنثی نبوده و تنها برای دکوراسیون استفاده می شوند.
لعاب های کریستالی ( crystalline glaze )این نوع لعاب ها ، لعاب هایی دکوراسیونی هستند اما به طور مستقیم با تکنولوژی تشکیل شیشه – سرامیک در ارتباطند. کریستال ها بوسیله ی سرد کردن آهسته لعاب ایجاد می شوند. این سرد کردن آهسته به کریستال های لعاب اجازه ی رشد کردن می دهند. رشد این کریستال ها مد نظر است؛ زیرا لعاب ضخامت کمی داشته و از این رو کریستال ها باید به صورت پلیت لت (platelets) در آیند. برای آنکه عمل رشد کریستال ها بهتر انجام شود از جوانه زاهای تیتانیایی استفاده می شود. این نوع جوانه زاها در لعاب های باویسکوزیته ی پایین استفاده می شوند و در آنهاشیشه ها (3) تشکیل می شود. ترکیب شیمیایی این نوع لعاب ها بسیار مهم است. در آن شیشه ها (3) وشیشه ها (3) به میزان کم و Pbo به میزان 10-8 درصد وزنی استفاده می شود. رشد کریستال با اضافه شدن fe به لعاب افزایش می یابد. اما این اضافه شدن می تواند همچنین موجب پدید آمدن اثراتی بر سایر دو پانت های اضافه شده به لعاب شود.
سفالگران امروزی ازشیشه ها (3) به عنوان اصلاح کننده و تولید کننده ی کریستال های ویلمایت (Crystals Willemite) استفاده می کنند. (ویلمایت یک مینرال کمیاب از روی است). این تکنیک نیازمند مهارت ویژه است. زیرا افزودن مقادیر زیادشیشه ها (3) به لعاب باعث می شود ویسکوزیته ی آن حتی در دماهای پایین نیز کم باشد، بنابراین این مسئله باعث می شود که لعاب از روی سطح سفالی جریان پیدا کند. رشد اسفرولیتی (Spherulite growth) از جوانه زا در لعاب در شکل 3 نشان داده شده است. هر اسفرولیت در واقع توده ای از کریستال های شعاعی است که با توجه به مرکز اسفرولیت دورهم گرد آمده اند.

شیشه ها (1)

لعاب های اپک ( opaque glazes ) اگر به لعاب مذاب کریستال هایی افزوده شود، لعاب می تواند اپک شود. برای این کار می توان ازO_2 S_n یا زیر کن استفاده کرد. که زیر کن ارزان تر است .شیشه ها (3) برای تولید رنگ سفید در لعاب های زیرکنی (Zircon glaze) استفاده می شود. برای اپک کردن کمتر ازشیشه ها (3) استفاده می شود زیرا کریستال های روتایل طلایی رنگ هستند. و بنابراین لعاب را به رنگ زرد در می آورند. ما همچنین می توانیم با تشکیل کریستال لعاب را اپک کنیم (مثلا ولاستونیت:شیشه ها (3). این کار بوسیله ی عملیات حرارتی مناسب، حبس کردن گاز (هوا یاشیشه ها (3) ) ) و یا بوسیله ی جدایش فازی مایع – مایع انجام می شود. لعاب های مات (Matt glazes) بوسیله ی تشکیل کریستال های بسیار کوچک در لعاب بوجود می آیند (مثلا کریستال های ولاستونیت برای لعاب های مات – آهکی و وبلیمایت (شیشه ها (3):Willemite ) برای لعاب های مات – زینک). کریستال های ریز ولاستونیت بوسیله ی افزودن کلسیت به لعاب پایه سیلیس تشکیل می شود. یک روش دیگر برای این کار افزودن مقادیر زیادی از ماده ی کریستالی به لعاب است تا در طی فرآیند پخت درصدی از آن به صورت کریستالی باقی بماند

رنگ در لعاب و لعاب موضوعاتی هستند که امروزه تحقیقات فراوانی بر روی آنها به عمل آورده شده است. امروزه رنگ های جدیدی بوسیله ی افزودن نانو ذرات در لعاب پدید می آید. عموما نانو ذرات نقره و طلا رنگ طلایی بوجود می آورند. و نانو ذرات مس رنگ قرمز بوجود می آورند. توضیح در مورد نحوه ی پدید آمدن رنگ در لعاب واقعاً پیچیده تر از نحوه ی پدید آمدن رنگ در شیشه هاست. زیرا لعاب بر روی یک لایه اعمال می شود و از این سو نباید ترانسپارنت باشد. همچنین لعاب یک لایه ی نازک است و در اتمسفر مختلف (کاهنده – اکسید کننده) بوجود می آید از این دو بررسی عوامل موثر بر تشکیل یک لعاب مشکل است.

لعاب های رنگی ( Colored glazes )

در لعاب های رنگی باید از پیگمنت های سرامیکی با پایداری مناسب بهره برد. از اکسیدهای رنگ زای ارزان قیمت می توان برای ایجاد رنگ در محصولات متنوع سفالی بهره برد. البته بسیاری از مواد رنگ زا برای لعاب همانهایی هستند که ما برای رنگرزی شیشه از آنها استفاده می کنیم
اکسید کبالت شیشه ها (4) یک اکسید سیاه رنگ است اما کمتر از یک درصد وزنی از آن در لعاب ایجاد رنگ آبی تیره می کند (اگر چه در بیشتر موارد از کربنات کبالت استفاده می شود).
به دلیل آنکه شیشه ها (4) در این گونه لعاب ها بوجود می آید، ویسکوزیته ی لعاب تغییر می کند.
اکسید کروم که تا 3-2% وزنی نیز می تواند به لعاب افزوده شود به جای رنگ سبز، رنگهای زرد، صورتی یا قهوه ای بوجود می آورد (رنگ قرمز در حضور سرب در ترکیب لعاب اولیه پدید می آید. اگر Zn در لعاب اولیه وجود داشته باشد، رنگ لعاب قهوه ای می شود مگر آنکه سرب ها هم وجود داشته باشد. که در صورت وجود سرب و روی در لعاب اولیه رنگ زرد پدید می آید).
شیشه ها (4)که به صورت کربنات به لعاب افزوده می شود، رنگ لعاب را به صورت قهوه ای در آورده البته این ماده می تواند رنگ قرمز، بنفش و حتی سیاه نیز تولید کند. که این تغییر رنگ به درصد سدیم موجود در لعاب اولیه بستگی دارد. افزودن Cuo به اندازه ی %2-1 وزنی به یک لعاب با سدیم بسیار کم سبب پدید آمدن رنگ فیروزه ای می شود. این درحالی است که افزودن بیش از 3% از این رنگ زا باعث پدید آمدن رنگ سبز یا آبی می شود. اگر درصد Cuo در لعاب افزایش یابد، لعاب ظاهری فلزی مانند مفرغ به خود می گیرد. اگر لعاب دارای 0.3– 2 درصد وزنی Cuo در اتمسفر کاهنده پخت شود، رنگ قرمز مسی پدید می آید. این رنگ به دلیل حضور ذرات کلوئیدی CU درلعاب بوجود می آید.
اگر یک لعاب رنگ زرد داشته باشد، این رنگ ممکن است بوسیله ی افزودن Cds یا Cdse بوجود آمده باشد. البته این نوع افزودنی های رنگ زا ممکن است رنگ های قرمز یا نارنجی را نیز پدید آورند. درصورت حضور سرب در این نوع لعاب ها ، Pds تشکیل می شود که باعث سیاه شدن لعاب می شود. زیرکن در صنعت برای کمک کردن به پایدار شدن این نوع رنگ ها (برپایه ی cd) استفاده می شود. درحقیقت شیشه ها (4) (زیر کن وانادیومی آبی رنگ) و شیشه ها (4)(pr,zr) (زیر کن پراسئودیومی زرد رنگ) مهم ترین تثبیت کننده های مورد استفاده در این رنگ هاست. هنگامی که اورانیوم به لعاب اضافه شود، به جای پدید آوردن رنگ زرد کم رنگ، رنگ قهوه ای تیره پدید می آید. (اورانیوم در شیشه های وازلینی تولید رنگ زرد کم رنگ می کند). البته بسته به ترکیب لعاب ، اورانیوم می تواند رنگ های قرمز یا نارنجی روشن نیز بدهد.

لعاب نمکی ( saltglaze )

دراین نوع فرآیند لعاب کاری سفال در کوره های با دمای بالا با نمک واکنش می دهد. در واقع سفالگر نمک را بر روی سفال اعمال می کند. این فرآیند هنگامی اتفاق می افتد که سفال در داخل کوره است. این فن بوسیله ی سفالگران ایرانی وانگلیسی در دهه ی 1700 ابداع گشته است. همچنین شما می توانید مثال های فراوانی از فرآیند رنگ آمیزی بوسیله ی اکسیدهای فلزی را در آلمان ببنید. در این نوع لعاب ها نمک با رس واکنش داده و تشکیل لایه ای شیشه ای بر روی سطح می دهد. این تکنیک دقیقاً فرآیند خوردگی خاک نسوز در دمای بالاست (بوسیله ی سود سوز آور).
واژه ی مینا (enamel) معمولا در هنگامی استفاده می شود که یک لایه ی لعابی بر روی فلز اعمال می شود. البته این واژه در هنگامی که یک لایه لعابی بر روی لعاب اولیه اعمال می شود نیز استفاده می شود. بازار مصرف مینا بسیار بزرگ است. این بازار از لوازم بهداشتی تا جواهر آلات گسترده است.

خوردگی شیشه و لعاب

این تصور وجود دارد که شیشه خنثی است اما باید بدانید که اسید سیتریک و اسید استیک موجود در غذاها و میوه ها می توانند بایون های موجود در شیشه واکنش دهند و ترکیبات کمپلکس پدید آورند. با خروج یون های قلیایی از داخل شیشه یون های هیدروژن مثبت جایگزین آنها می شود. هنگامی که بخواهیم استحکام سطح شیشه را افزایش دهیم باید یون های پتاسیم و سدیم مثبت را با لیتیم مثبت ( شیشه ها (4) ) جایگزین کنیم. در شیشه ی آلایش یافته (Stain glass) می توان یون نقره ی مثبت و مس را جایگزین شیشه ها (4) کرد.
همانند مواد کریستالی ، شیشه ها نیز دارای عیوب کریستالی اند. یکی از چالش هایی که ما با آنها روبرو هستیم محاسبه ی خواص بوجود آمده ازعیوب (مانند نفوذ) در شیشه هاست. زیرا در شیشه ها شبکه ی مرجع وجود ندارد.

انواع شیشه های سرامیکی

همه ی شیشه ها براساس تتراهدرال های سیلیسی ایجاد نمی شوند؛ واحدهای ساختاری این شیشه ها در جدول 1 آورده شده است. برخی از ترکیبات این شیشه ها نیز در جدول 2 آورده شده است.

شیشه ها (4)

شیشه ها (4)

شیشه ی سیلیکاتی ( سودالایم )

این شیشه ها بر پایه ی شیشه ها (4) هستند. (معمولا این نوع شیشه ها علاوه بر این مواد دارای شیشه ها (4) نیز هستند.) این نوع شیشه نستبا ارزان هستند و دارای دوام خوبی نیز هستند همچنین از این نوع شیشه به طور فراوان در صنعت بسته بندی و ساختمان استفاده می شود. ضریب انبساط حرارتی شیشه ها (4) این نوع شیشه ها ناچیز نیست. همچنین این نوع از شیشه ها عایق های خوبی نیستند. استفاده های عمده از این نوع شیشه در صفحات شیشه ای ،بطری ها ، وسایل غذا خوری و صنعت الکترونیک (حباب لامپ) است. شیشه های آلومینو سیلیکاتی قلیایی (شیشه ها (4)= عنصر قلیایی) دارای ضریب انبساط حرارتی پایینی است. این نوع شیشه دارای دوام و خواص عایق کاری بهتری است. وهمچنین نسبت به سایر شیشه های هم گروه استحکام بالاتری دارد. استفاده های این نوع شیشه عبارتست از تیوپ های اختراق، حباب های لامپ هالوژن و به عنوان بسترهای صنعت الکترونیک کاربرد دارد.

شیشه ی سربی

ترکیب عمومی این شیشه ها سیلیکات های قلیایی سربی استشیشه ها (4). در این نوع شیشه ها Pbo به جای CaO در شیشه ی سودالایمی قرار گرفته است. این نوع شیشه دارای مقاومت بالایی است. همچنین ضریب انبساط حرارتی آن بالاست. و دمای نرم شوندگی پایینی دارد. دلیل آنکه از این نوع شیشه ها در تولید ظروف کریستال استفاده می شود این است که ضریب شکست این نوع شیشه بالاست و علاوه بر این که از این شیشه ها در ظروف تزئینی استفاده می شود، از آنها در ساخت تیوپ های لامپ، لامپ تصویر تلویزیون و تیوپ های ترمومترها استفاده می شود. در ظروف کریستال انگلیسی که به صورت سنتی تولید می شوند، میزان Pbo حداقل 30% است. برطبق رهنمود اتحادیه ی اروپا میزان Pbo باید بیش از 24 درصد باشد. همچنین بر طبق استاندارد اروپا شیشه های کریستال سربی باز یافت نمی شوند. شیشه های سربی که برای ساخت حفاظ های تابشی استفاده می شوند ممکن است دارای بیش از 65% Pbo باشند. کاربرد این گونه شیشه ها در لامپ تصویر تلویزیون است اگر چه شیشه های باریمی برای ساخت صفحه و تابلوهای تلویزیون استفاده می شود. (تفنگ الکترونی تلویزیون اشعه ی x ساتع می کند که این نوع شیشه باید این تابش ها را جذب کند.)شیشه های سرب – بوراتی می توانند به عنوان لحیم های شیشه ای استفاده شوند. این نوع شیشه ها دارای در صد کمیشیشه ها (4) است و کاملا خنثی است.
شیشه های فیلنیتی (flint glass) دارای تفرق بالایی است. در واقع این نوع شیشه ها از نوع شیشه های سیلیکاتی قلیایی ـ سربی است که از ذوب سنگ های فیلنیتی ساخته شده اند(فیلنیت فرم خالص سیلیس است) .لازم به توضیح است که این نوع سنگ کلسینه شده و به طور فراوان در ساخت بدنه های سرامیکی استفاده می شود.

شیشه ی بورانی ( شیشه ی بورو سیلیکاتی )

شیشه های بوروسیلیکاتی قلیاییشیشه ها (4) به خاطر ضریب انبساط حرارتیشیشه ها (4) کوچکشان ویژه هستند. این نوع شیشه دوام بالایی داشته و خواص الکتریکی مفیدی دارند. پیرکس (Pyrex) که یک نوع ماده در تولید وسایل پخت و پز است . از جنس بروسیلیکات است .شیشه ی بروسیلیکاتی به طور وسیع در فرآیندهای شیمیایی استفاده می شود. برخی از شیشه های براتی دارای دمای ذوب پایینیشیشه ها (4) هستند از این رو آنها را می توان به همراه سایر شیشه ها استفاده کرد. شیشه ی بروسیلیکاتی – زنیکی به شیشه های منفعل شهرت دارند. این شیشه ها مواد قلیایی ندارند و از این رو از آنها می توان در ساخت اجزای الکترونیکی سیلیسیمی استفاده کرد.

سیلیس فیوزد

این نوع شیشه از نوع سیلیس خالص است. این شیشه ها ، شیشه های سیلیکاتی برای کاربردهای دما بالا هستند. ضریب انبساط حرارتی این نوع شیشه ها نزدیک به صفر است. این نوع شیشه ها برای تولید آینه های تلسکوپ و زیر لایه ها (Substrates) استفاده می شود. به خاطر داشتن ضریب انبساط حرارتی نزدیک به صفر به این شیشه ها ، شیشه های با انبساط حرارتی بسیار پایین (VLE Silica) می گویند .
شیشه های VLE دارای 7 درصد وزنیشیشه ها (4) برای تولید لفافه های لیتوگرافی نوری (masks photolithography) استفاده می شود. البته به خاطر دمای بالای فرآیند شکل دهی این شیشه ها ؛ می توان به جای آنها از شیشه های وایکور استفاده کرد.

شیشه ی فسفاتی ( phosphate – glass )
 

شیشه های فسفاتی شیشه های مهمی هستند زیرا این نوع شیشه ها خاصیت نیمه رسانایی دارند. یکی از کاربرد این مواد در ساخت تقویت کننده های الکترون (electron multipliers) است . در این نوع وسایل با استفاده از دپ کردن Er (افزودنشیشه ها (4) ) ، این تقویت کننده ها ساخته می شود. کایتون های موجود در این نوع شیشه ها معمولا V و P هستند اما لابراتوار ملی او آ ک ریچ (Oak Ridge National labroatory) یک نوع شیشه ی فسفاتی اندیوم – سربی تولید کرده است که دارای ضریب شکست بالایی است. از ویژگی های دیگر این شیشه می توان به دمای ذوب پایین و خاصیت ترانسپارنتی در برابر گسترده ی وسیعی از طول موج ها را نام برد. به دلیل آنکه این نوع شیشه می تواند درصد بالایی از عناصر خاکهای کم یاب را در خود حل کنند، از آنها در تولید وسایل نوری اکتیو مانند آمپلی فایرهای فیبر اپتیک و لیزرها استفاده می شود. شیشه های فسفاتی دپ شده با Nd در لیزرهای حالت جامد استفاده می شوند. ترکیب شیمیایی نمونه وار از این نوع شیشه عبارتست ازشیشه ها (4) است. که در صد Nd بین O.2-2.O درصد مولی است.

شیشه ی چالکوژیندی ( Chalcogenide glass )

این نوع شیشه براساس Se,As و Te بوجود می آید. این شیشه ها نور فرو سرخ را از خود عبور می دهند و نیمه رسانا های غیر اکسیدی هستند. از این نوع شیشه در وسایل و لنزهای الکترونیکی ویژه استفاده می شود. در این وسایل هنگامی که ولتاژ اعمالی به آنها از میزان بحرانی فراتر رود، به طور ناگهانی تغییر رسانایی رخ می دهد. کاربرد این نوع شیشه ها بسیار خاص است زیرا این شیشه ها دوام پایینی داشته و دمای نرم شوندگی شان پایین است.

شیشه ی فلورایدی ( fluoride glass )

عموماً شیشه های هالیدی بر پایه یشیشه ها (4) را شیشه های فلورایدی می گویند. کاربرد این نوع شیشه ها در وسایل همسو کننده نوری (optical waveguides) است. و درجاهایی که قیمت توجیه پذیر باشد استفاده می شوند.

شیشه ی طبیعی

این مسئله که شیشه در طبیعت بوجود می آید حتی این پدیده یک امر نسبتاً معمولی است، باعث شگفتی بسیاری از مردم می شود. تکتیت ها (tektites) درهنگام برخورد شهاب سنگ ها به زمین و در دهانه ی حاصله از برخورد شهاب سنگ پدید می آیند. مولد اویت (Moldavite) نیز یک شیشه ی سبز رنگ است که در مولداوی (Moldavia) یافت می شود . فولگلاریت (fulgarite) نیز تیوپ های شکننده از شیشه هستند که در هنگام برخورد برق آسمان به خاکهای ماسه ای پدید می آید. ابسیدیان (obsidian) نیز یک نوع شیشه است که در جریان های آتش فشانی تشکیل می شود. رنگ سیاه رنگ این نوع شیشه به خاطر ناخالصی پدید می آید. در طی دوره ی پارینه سنگی از ابسیدیان در ساخت وسایل استفاده می شده است. سنگ پا (Pamice) یکی دیگر از شیشه هایی است که از فوران های آتش فشانی تشکیل می شود. این ماده می تواند تخلخل های فراوانی داشته باشد. (درصورتی که ماده ی اولیه ی تشکیل دهنده ی آن دارای مواد گازی فراوانی باشد). سنگ پا شکل متخلخل ابسیدیان است

شیشه ها

مقدمه:

دراین مقاله ها در مورد انواع مختلف شیشه و برخی از کاربردهای آنها صحبت می کنیم.
شیشه ها یکی از انواع مهم موادمهندسی محسوب می شوند. این مواد در پنجره ها، ساخت بطری، لیزرها، الیاف نوری، عایق ها، لعاب کاری (glazing) ومینا کاری (enamelihg)، چاقوی جراحی، وسایل هنری وتابلوهای راهنمایی - رانندگی استفاده می شوند.
شیشه ها معمولا بازیافت می شوند واز این رو دوستدار محیط زیست هستند.مصریان آثار شیشه ای متنوعی بر جای گذاشته اند ولی آنها اولین کسانی نبودند که از این ماده استفاده می کردند.در دوران های دیرینه سنگی (paleolithic Times) شیشه های اولیه و شیشه های طبیعی (Obsidian: نوعی شیشه ی مصنوعی بدست آمده از آتش فشان ها ) بسیاراهمیت داشتند به خاطر اهمیت زیاد این ماده می توان گفت که شیشه نقش مهمی در شکل دهی تمدن ما داشته است.
به هر حال تعریفات مختلفی برای شیشه ها بیان شده است. دراین مقاله سعی می کنیم بگوییم چرا واژه های شیشه ای (glassy)، زجاجی (Vitreous) و آمورف (amor phous) همگی برای توصیف شیشه استفاده می شوند. همچنین سعی داریم جواب این سوال را بدهیم که: «شیشه چیست؟»
هنگام مطالعه ی این مقاله باید دو ذهنیت را داشته باشید:
1) ادعای Sturkey:"شیشه در دماهای بالا یک محلول شیمیایی است."
2) اگر شیشه که مایع فوق سرد شده است، پس جامد نیست وبنابراین یک ماده ی سرامیکی نیست (اما شیشه یک ماده ی سرامیکی است)

تعریف

تعریف کلاسیک شیشه براساس روش تاریخی تشکیل آن انجام شده است. البته این روش تعریف یک روش بسیار غیر معقولی برای تعریف هر ماده است. این مسئله باعث شده است تا امروز شیشه به چندین روش مختلف تعریف شود:
تعریف کلاسیک: شیشه یک مایع فوق سرد شده است(Supercooled liquid) مشکل بوجود آمده دراین تعریف این است که در برخی موارد می توان یک شیشه ی ویژه را به روشی تولید کرد که هیچگاه درحالت مایع قرار نداشته باشد.
ASTM شیشه را به صورت زیر تعریف کرده است:
"شیشه یک محصول غیر آلی از ترکیبی مذاب است که بدون آنکه کریستالی شود، سرد وصلب می گردد."
این تعریف نیز همان چیزی است که در تعریف کلاسیک آمده است. اما دراین تعریف شیشه ی پلیمری استثناء شده است. به وضوح مشخص است که استناد کردن به روش تولید برای تعریف یک گروه از مواد ایده آل و مناسب نمی باشد.

تعاریف دیگر :

1)" شیشه یک ماده ی جامد است که نظم دوربعد از خود نشان نمی دهد."
نداشتن نظم دوربعد یعنی ساختار شیشه درفواصل یک، دو یا سه برابر فاصله ی اجزای سازنده، دارای نظم نیست. این تعریف براساس مشاهدات حاصله از تفرق اشعه X، میکروسکوپ الکترونی عبوری (TEM) و... استوار است اما این تعریف نیز کمی قراردادی است زیرا به اندازه ی اجزاء تشکیل دهنده بستگی دارد.
2)" شیشه یک مایع است که قابلیت جاری شدن خود را از دست داده است."
این تعریف استوار است اما از تعریفی که بوسیله ی ASTM ارائه شده است فراگیرتر است .همچنین این تعریف از خاصیت مکانیکی برای تعریف شیشه استفاده می کند. درحقیقت این تعریف عملاً با دیدگاه فیزیک مدرن درباره ی شیشه مطابقت دارد.
اکثر شیشه هایی که ما در مورد آنها توضیح می دهیم، شیشه های با شبکه ی اکسیدی است . (مخصوصاً سیلیکات ها) تعریف ما از چنین شیشه هایی عبارتست از:
تجمعی جامد از تتراگونال هایی است که می توانند رئوس خود را به اشتراک گذاشته و البته این مواد نظم دور بعد ندارند.
دراین مقاله ما تنها درمورد شیشه های سرامیکی بحث می کنیم اما باید بدانیم که علاوه بر شیشه های سرامیکی، شیشه های فلزی و پلیمری نیز وجود دارد. شیشه های فلزی ترکیبات پیچیده ای هستند که در آنها عمل کریستالیزاسیون انجام نشده است. این مسئله بوسیله ی سریع سرد کردن فلز مذاب بوجود می آید.(این فرآیند اسپلات کوئنچینگ نامیده می شود). درادامه به بیان ویژگی شیشه ها می پردازیم:

ساختار

شیشه ها در اصل جامد های غیر کریستالی (یا آمورفی) هستند که در اغلب موارد از فریز شدن یک مایع فوق سرد شده بدست می آیند. دراین موارد نظم دور برد در آرایش اتمی وجود ندارد. البته نظم کوتاه برد (زیر 1nm) وجود دارد. این مواد دارای آرایش منظمی از سلولهای واحد نیستند.همانگونه که گفتیم شواهدی وجود دارد که ثابت می کند در شیشه ها نظم کوتاه برد وجود دارد.این نظم کوتاه برد به دلیل آرایش اتمی درمجاورت هر اتم (البته در فاصله ی کوتاه) بدست می آید. تلاش های فراوانی برای توصیف شیشه ها انجام شده است. که به بیان علت تشکیل شدن یا نشدن شیشه ها بحث می کند. دراین زمینه ما ازدو دیدگاه به شیشه ها نگاه می کنیم:
1) توجه به ساختار
2) توجه به مباحث کنیتیکی کریستالیزاسیون
درمورد اول ما به بیان هندسه ی اجزای تشکیل دهنده ی شیشه ها می پردازیم. همچنین دراین زمینه به بیان پیوندهای بین اتمی واستحکام پیوندها می پردازیم . درمورد دوم ما به بیان چگونگی دگرگونی های مایع به جامد در طی فرآیند سرد شدن می پردازیم.
دمای تبدیل شدن شیشه ای ( Tg )
درشکل 1 نموداری نشان داده شده است که در آن حجم ویژه به عنوان تابعی از دما رسم شده است.

شیشه ها (1)

این دیاگرام فرمی از دیاگرام استعاله ی دما – زمان (T.T.T) برای شیشه است. درهنگام سرد شدن مایع از دمای بالا دو پدید ه ممکن است در نقطه ی انجماد (Tm) اتفاق می افتد که عبارتند از :
1) اگر مایع کریستالیزه شود تغییرات حجم و سرعت سرد کردن گسسته است.
2) اگر کریستالیزاسیون اتفاق نیفتد، مایع به حالت فوق سرد شده تبدیل می شود و حجم در نزدیک دمای ذوب کاهش می یابد.
دردمای تبدیل شدن شیشه ای (Tg)، شیب نمودار کاهش می یابد و به شیب جامد کریستالی نزدیک می شود. این شکستگی بوجود آمده در نمودار سرد کردن نشان دهنده ی گذرگاه مایع فوق سرد شده به شیشه است. زیر دمای Tgساختار شیشه درحالت آسایش نیست زیرا این مواد اکنون جامد هستند. دراین ناحیه از Tg ویسکوزیته تقریبا شیشه ها (1) است. ضریب انبساط حالت شیشه ای معمولا نزدیک به ضریب انبساط جامد کریستالی است. اگر از سرعت های سرد کردن پایین تر استفاده شود، میزان آسایش ساختار افزایش می یابد. ومایع فوق سرد شده در دمای پایین تر تشکیل می شود. و شیشه ی حاصله ممکن است دانسیته ی بالاتری بدست آورند. (همانگونه که در شکل 1 دیده می شود)
فیزیک شیشه جنبه ی تردی آن را مورد بررسی قرار می دهد. در واقع این ویژگی یک ویژگی مایعات شیشه ساز در بالای دمای Tgاست واندزه ای از استعکام پیوندهای بین اتمی است. در ادامه ما درمورد شیشه ی نامحلول در آب یا بطری های شیشه ای آب صحبت می کنیم. البته چیزی که آگاهی کمتری از آن است این است که ما می توانیم آب را با سریع سرد کردن در اتاق مایع به حالت شیشه ای در آوریم. ماده ی حاصله یک شیشه ترد است اما این مسئله فهمیده شده است که بیشتر آب موجود در جهان به همین شکل وجود دارد.
تاریخچه
شیشه ماده ای است که پیوندی عمیق با تاریخچه ی انسان دارد. یکی از شواهد این مسئله استفاده از ابسیدیان (obsidian) یک شیشه ی طبیعی توسط بشر است. هیچ کس نمی داند که اولین جسم شیشه ای در چه زمانی ساخته شده است. قدیمی ترین یافته ها به 7000 سال پیش از میلاد برمی گردد. (البته ممکن است یافته هایی پیش از این تاریخ نیز وجود داشته باشد). درکاوش های باستان شناسی در بین النهرین روش های تولید شیشه کشف شده است . این کارها 4500 سال پیش از میلاد مسیح بوده است ومربوط به روش های تولید وسایل شیشه ای بوده است نه لعاب های مورد استفاده در وسایل سفالی. استفاده از شیشه در لعاب کاری سفال حتی به دوران های پیشین می رسد.

شیشه ها (1)

تقریبا در 3000 سال پیش از میلاد مسیح شیشه گران مصری شروع به تولید جواهر آلات شیشه ای و ظروف شیشه ای کوچک کردند. شیشه هم به عنوان یک جسم دکوری وهم به عنوان یک وسیله ی مورد استفاده در زندگی روزمره به شمار می آمد. قطعاتی از جواهر آلات شیشه ای در کاوش های اطراف کوه های مصر پیدا شده است. مثالی از این جواهرآلات شیشه ی فیزوزه ای آبی است که در شکل 2 دیده می شود. تقر یبا 1500 سال پیش از میلاد مسیح شیشه گران مصری ( در دوره ی touthmosis سوم ) روشی برای تولید قطعات تو خالی قابل استفاده، توسعه دادند. یک مثال قابل توجه از این نوع ساختار یک شیشه ی توخالی است که شبیه به سرماهی است (شکل 3) این ظرف بین سال های 1352 و 1336 قبل از میلاد ساخته شده است واین نظریه وجود دارد که برای نگه داری روغن خوش بو استفاده می شده است.

شیشه ها (1)

الگوی موجی این ظرف بسیار خاص است. در واقع این ظرف بوسیله ی کشیده شدن یک جسم تیز به شیشه ی خمیری شده تولید شده است.
نویسنده ی رومیPliny Fhe Elder (23-79 میلادی) اختراع شیشه را به صورت زیر توصیف می کند:
روزی یک کشتی که متعلق به چند تاجر نیتروم (Nitrum) بود در کنار ساحل لبنان کنونی توقف می کند. هنگام پخت غذا به دلیل نبود سنگ در ساحل، خدمه کشتی از کلوخ های نیترومی که در کشتی وجود داشته است. استفاده می کنند تا بتوانند دیگ غذا را در مکان مناسب استقرار دهند. پس از آنکه آتش روش شد، کلوخه ها با ماسه های ساحلی واکنش داده و تشکیل شیشه ی مذاب می دهد. این اولین منشع پدید آمدن شیشه است.
نیتروم (Nitrum) یک نوع سدیم کربنات (Soda) طبیعی است .این ماده یکی از اجزای مهم در شیشه های قدیمی و مدرن است. خاکستر گیاهان نیز یک منبع فقیر از سدیم برای شیشه گران فراهم می کند. گیاهان علف شوره (Saltwort) و رازیانه ی آبی (glass wort) از جمله گیاهانی هستند که برای مهیا شدن سدیم از آنها استفاده می شده است.
یکی از معمولی ترین روش ها برای شکل دهی شیشه روش دمش هوا است. اگر چه این تکنیک بیش از دوهزار سال پیش توسعه یافت، لوله های تولیدی به روش دمش در طی زمان تغییری نکرده است. توسعه ی عمده که دراین زمینه انجام شده است، روش دمش اتوماتیک است که برای تولید شیشه های بطری و حباب های لامپ استفاده می شود. دراین روش به قطعه ای شیشه در داخل قالب هوا دمیده می شود. و بدین شکل شیشه به شکل قالب در می آید. مهمترین مرحله ی رشد در تاریخ شیشه سازی مخصوصا درطی قرن بیستم مربوط به توسعه های اتفاق افتاده در زمینه ی تکنولوژی های تولید می باشد. این توسعه ها منجر به کاهش هزینه ی تولید محصولات شیشه ای می شود

در ادامه به بیان خواص شیشه ها می پردازیم:

ویسکوزیته ( η )

ویسکوزیته یک ویژگی کلیدی شیشه هاست.ما نیاز داریم تا درمورد ویسکوزیته ی شیشه در دماهای مختلف اطلاع داشته باشیم. و بتوانیم دمای مورد نیاز برا ی شکل دهی وآنیلینگ آن را تشخیص دهیم. ویسکوزیته یک ویژگی مکانیکی است. فرمول ویسکوزیتد به صورت زیر است:

شیشه ها (2)

دراین فرمول:
η : ویسکوزیته، F: نیروی مورد نیاز برای کشیدن یکی از صفحات موازی که در میان آنها مایع مورد نظر قرار دارد: ،d: فاصله ی صفحات، A: مساحت صفحات، V: سرعت حرکت صفحه. ویسکوزیته در واقع پاسخ یک مایع دربرابر تنش برشی است. مایعات دارای ویسکوزیته ای هستند که با واحد سانتی پوآز (CP) اندازه گیری می شود. واحد اندازه گیری ویسکوزیته ی گازها میکروپوآز(mp) است.

شیشه ها (2)

جدول 1 لیستی از اعداد ویسکوزیته ای است که برای فرآیندهای شیشه سازی مهم هستند. اعداد داده شده در جدول 2 نیز برای تعریف ویژگی های برجسته ی شیشه (با تأکید بر روی فرآیند) آورده شده است. بسیاری از اعداد آورده شده درجدول ویسکوزیته ها استاندارد هستند مثلا (2003) ASTMC338-93 یک روش تست استاندارد است که نقطه نرم شدگی شیشه بوسیله ی آن تعیین می شود.
محاسبه ی نقطه ی نرم شدگی شیشه بوسیله ی اندازه گیری دمایی که در آن یک فیبر شیشه ای استوانه ای با قطر شیشه ها (2) طول بوسیله ی وزن خودش تغییر طول می دهد. نرخ تغییر طول یک میلی متر بردقیقه است . در این روش 100 میلی متر از بخش بالایی فیبر بوسیله ی کوره ی خاصی با سرعت گرم شدنشیشه ها (2) گرم می شود.

شیشه ها (2)

ویسکوزیته ی برخی ازمایعات عمومی در جدول 2 آورده شده است. توجه کنید که در دمای کارپذیری شیشه ویسکوزیته ای شبیه به عسل در دمای اتاق دارد. به طور نمونه برای یک شیشه ی سیلیکاتی سودالایم این ویسکوزیته در دمایشیشه ها (2) بدست می آید. این جدول همچنین نشان می دهد که یک جامد دارای ویسکوزیته ای بیش ازشیشه ها (2) دسی پو آز است. ویسکوزیته ی به طور نمایی با تغییر دما ، تغییر می کند ( همانگونه که در شکل 1 برای انواع شیشه ی سیلیکاتی دیده می شود.) دمای فیکتیو (fictive temperature) دمایی است که در آن ساختار مایع به حالت شیشه ای تبدیل می شود. این دما بوسیله ی تقاطع منحنی های برونیابی شده در حالت دما بالا و دما پایین در نمودار ویسکوزیته – دما بدست می آید. دمای فیکتیو (Tf) مانند Tg به تبدیلات ساختاری شیشه بستگی دارد. البته Tg اندکی کمتر از Tf است.

شیشه ها (2)

شکل 2 وابستگی ویسکوزیته به دما را برای اکسیدهای شیشه ساز نشان می دهد. شما باید توجه کنید که بوسیله ی شیب این خطوط می توان انرژی اکتیواسیون جریان ویسکوز (EV) را بدست آوریم.

شیشه ها (2)

جدول 3 اعداد ویسکوزیته وسرعت های کریستالیزاسیون (v) برخی شیشه ها را نشان می دهد. سرعت کریستالیزاسیون مربوط می شود به سرعت تبادل مایع/جامد. V بسیار کم بیان کننده ی قابلیت شیشه سازی استثنایی ماده است.البته کریستالیزاسیون مذاب جامد شده ی سیلیس بسیار مشکل است.

شیشه ها (2)

روش های متعددی برای اندازه گیری ویسکوزیته وجود دارد. این روش ها با توجه به میزان ویسکوزیته انتخاب می شود.

شیشه ها (2)

شماتیک دو روش اول اندازه گیری ویسکوزیته در شکل 3 نشان داده شده است:

شیشه ها (2)

شیشه ( خلاصه ای از خواص )
 

شیشه ماده ای خنثی است. این مسئله به محیط بستگی دارد. اگر شیشه یک ماده ی سیلیکاتی باشد، این مسئله درست است . البته همه ی شیشه ها خنثی نیستند. مثلا بیوگلاس (bioglass)
شیشه یک ماده ی هموژن است. این مسئله نیز به نحوه ی شکل دهی و ترکیب شیمیایی شیشه بستگی دارد. ما می توانیم با استفاده از فرآیندهای خاص شیشه را به صورت غیر هموژن در آوریم.
شیشه می تواند تغییر شکل دهد. این مسئله عموماً درست می باشد و دلیلی است برای قابلیت بازیافت شیشه ها. برخی از شیشه ها به نحوه ای ساخته می شوند که بوسیله ی نور، انتشار نور در داخل آن وتابش نور و...تغییر ماهیت می دهد.
شیشه دارای ضریب انبساط کوچک است. البته همه ی شیشه ها مناسب استفاده شدن در کاربردهای حرارتی مانند ظروف پیرکس نیستند.
شیشه ها شفاف اند (trans Parent) این خاصیت برای الیاف نوری ضروری است. البته ما می توانیم با انجام عملیات های خاص شیشه به صورت اپک یا مات در آوریم.
بسیاری از شیشه های اولیه شفافیت کامل نداشتند زیرا در ساختار آنها ناخالصی وحباب هوا وجود داشت.
شیشه ارزان است. البته این مسئله برای شیشه های پنجره صحیح است. اما درمورد فیلم های نازک شیشه ای این مسئله صحیح نمی باشد. برخی از شیشه های قرمز رنگ بوسیله ی دپینگ (doping) طلا در آنها تولید می شود. که قیمت برخی از ظروف تولیدی از آن به پیش از 50 دلار می رسد.
شیشه یک ماده ی بالک است مگر در حالتی که آن را به صورت یک فیلم نازک ، یک فیلم انیتر گرانولار (IGF) یا یک سرامیک کریستالی رشد دهیم.

برخی از خواص مکانیکی شیشه

استحکام تئوریک شیشه ی سیلیکاتی درحدود 10GPa است. البته با حضور عیوب سطحی (ترک ها وجوانه ها ) این استحکام کاهش می یابد. شیشه ها موادی الاستیک هستند اما تحت کشش می شکنند. می توان استحکام این مواد را بوسیله ی ایجاد لایه های سطحی فشرده و یا بوسیله ی از بین بردن ترک های سطحی (با اسید شوئی یا پدید آوردن پوشش محافظ) افزایش داد. مثالی از این روش ها پدید آوردن ترک های اضافی در ساختار قطعات شیشه ای تزئینی به منظور بهبود خواص مکانیکی آنهاست. در این روش از سرد کردن شیشه ی مذاب در آب جهت ایجاد تنش های اضافه بهره برده می شود . در این حالت سطح قطعه ی شیشه ای مذاب زودتر از مرکز آن سرد می شود و بنابراین تنش های اضافی پدید می آید. قطعات جامد شده به این شیوه را می توان با چکش و بدون اینکه بشکنند چکش کاری کرد.

برخی از ویژگی های الکتریکی شیشه

شیشه معمولا دارای مقاومت الکتریکی بالایی است. که علت آن تفاوت زیاد میان باندهای انرژی (گپ بزرگ) در این ماده است. در مواردی که شیشه رساناست . بار بوسیله ی یون ها منتقل می شود.(در این مورد یون های قلیایی مانندشیشه ها (2) دارای سرعت انتقال بار بالایی هستند). در واقع به همین دلیل است که با افزایش دما رسانایی به شدت افزایش می یابد. رسانایی درشیشه های مختلف، متفاوت است.علت آن متفاوت بودن نوع شبکه ی این شیشه هاست. در شیشه هایی که دارای بیش از یک یون قلیایی هستند. پدیده ی جالبی رخ می دهد. رسانایی تولیدی در این نوع شیشه ها به طور مشخصی از شیشه های دارای یک یون کمتر است. این نوع شیشه ها در کاربردهای مختلف مانند لامپ های با توان بالا استفاده می شوند. ثابت دی الکتریک شیشه واقعاً بالاست اما نه به حدی که بتوان از آن در کاربردهای حافظه ای پیشرفته مانند حافظه ی با دستیابی دینامیک و رندوم (DRAMS) استفاده کرد. ظرفیت الکتریکی یک ماده میزان بار ذخیره شده در داخل ماده است. این خاصیت به ضخامت دی الکتریک بستگی دارد. همانطور که ضخامت دی الکتریک کمتر می شود، ظرفیت الکتریکی افزایش می یابد. اما کم کردن ضخامت نیز مشکلاتی به همراه دارد. مثلا با کاهش ضخامت احتمال شکست دی الکتریک بیشتر می شود. شیشه ی سیلیسی دارای مقاومت دی الکتریک بالاتری نسبت به سایر شیشه هاست. اما مقاومت این دی الکتریک نیز در حد دی الکتریک های پلیمری مانند رزین فنولیک نیست.

برخی از خواص اپتیکی شیشه

شفافیت دربرابر نور فرا بنفش ، مرئی و فرو سرخ به چندین فاکتور بستگی دارد. یکی از این فاکتورها طول موج تفرق است که بوسیله ی ناخالصی ها تغییر می کند. لبه ی فرو سرخ (IRedge) و لبه ی فرا بنفش ((uv edge اعدادی هستند که نشان دهنده ی فرکانس قطع شدن عبور این موج ها هستند. یک مانع لبه UV edge blocker)UV) از عبور UV جلوگیری می کند و این در حالی است که یک عبور دهنده ی لبه یUV (UV edge tran Smitter) اجازه ی عبور نور UV را می دهد.

عیوب در شیشه ها

اگر چه شیشه یک ماده ی آمورف است ولی مانند مواد کریستالی دارای عیوب و رسوبات است. و همچنین دچار جدایش فاز می شود. شیشه را می توان برای حبس کردن عناصر رادیو اکتیو استفاده کرد .در این عناصر مانند عیوب نقطه ای یا فاز ثانویه تشکیل می شوند. همچنین سرعت نفوذ این عناصر از میان شیشه بر روی میزان آن ها در شیشه تأثیر دارند. این مسئله استفاده می شود تا بتوان مواد رادیو اکتیو یا سایر مواد را کنترل کرد.

شیشه ی غیر هموژن

به دلیل آنکه شیشه یک مایع فوق سرد شده است. نمی توان گفت که این ماده حتما باید هموژن باشد. شیشه های خاص می توانند بدون نیاز به فرآیند کریستالیزاسیون به دو فاز تبدیل شوند. هنگامی که این دو فاز شیشه ای باشند این مسأله باعث می شود که سدی در برابر جدایش فازی پدید نیاید. در مورد فرآیند جدایش فازی مایع – مایع ممکن است مرحله ای برای جوانه زنی وجود داشته باشد. البته در این نوع تبدیلات ممکن است استعاله ی اسپینودال (Spinodal) نیز رخ می دهد. که هر دوی این استعاله ها به نفوذ وابسته اند.
قوانین امتزاج ناپذیری در شیشه ها بسیار مهم است. این مسئله مخصوصاً در شیشه های تولید شده با تکنولوژی روز نمود دارد. برای مثال امتزاج ناپذیری در شکل دهی شیشه – سرامیک ها ، تولید شیشه ی وایکور (Vycor) و شیشه های اپتیکی و تشکیل رسوب در شیشه ها مهم می باشد. بسیاری از اکسیدهای دوتایی و سه تایی در کنار سیلیس از خود مشکلات امتزاج پذیری نشان می دهند.
در دیاگرام فازی ناحیه ای وجود دارد که یک مایع به دو مایع با ترکیب شیمیایی متفاوت تبدیل می شود. این ناحیه گپ امتزاج پذیری (imisciblity gap) نامیده می شود. در زیر برخی از سیستم هایی که مشکل امتزاج پذیری دارند را نام برده ایم:

شیشه ها (2)

شیشه ها (2)

شکل 4 دیاگرام فازیشیشه ها (2) را نشان می دهد. در دمای پایین و در گوشه ی غنی از سیلیس دیاگرام ، فاز مایع به دو بخش مایع با ترکیب شیمیایی متفاوت تبدیل می شود. این دو مایع به صورت دو شکل گنبد مانند در شکل نشان داده شده اند. خط تیره نشان دهنده ی خط تقریبی ناحیه ی امتزاج ناپذیری است. مشکلی که در اندازه گیری این خط وجود دارد. این است که این پدیده در دمای پایین رخ می دهد و از این رو سرعت آن پایین است . و از این رو اندازه گیری آن مشکل است. دراین وضعیت میل جدایش فازی بیشتر از میل به کریستالیزاسیون است . البته کریستالیزاسیون مساعد تر از جدایش فازی است اما به دلیل آنکه جدایش فازی نیازی به باز آرایی اتم ها ندارد، این پدیده رخ می دهد. به عنوان یک قانون کلی برای سیلیس باید گفت که امتزاج ناپذیری با افزودنشیشه ها (2) افزایش می یابد اما با افزودنشیشه ها (2) کم می شود. در شیشه های وایکور از قوانین جدایش فازی استفاده می شود. در فرآیند تولید شیشه وایکور، شیشه ای پدید می آید که دارایشیشه ها (2) و 4 درصد تخلخل است.این نوع شیشه به عنوان فیلتر وبیومواد مخصوصا در جاهایی که تخلخل مهم می باشد، استفاده می شود. در فرآیند تولید وایکور، شیشه ای تولید می شود که پس از فرآیند شکل دهی دنس می گردد و شیشه ای با سیلیس خالص پدید می آید که در دمای پایین تر نسبت به کوارتز خالص شکل دهی گشته است

شیشه ی آلومینیوم – ایتریمی

شیشه های آلومینیوم –ایتریایی (YA) دارای درصد آلومینایی در گسترده ی تقریبی 75.6- 59.8 هستند. با این درصد آلومینایک شیشه ی دو فازی تشکیل می شود که در آن یک فاز قطره مانند در فاز دیگر تشکیل شده است. این شیشه به طور خود بخودی به صورت شیشه ی آلومینیوم – ایتریمی یا مخلوطی ازشیشه ها (3) تبدیل می شود. درشیشه های YA پدیده ای به نام پلی مورفیزم (Polymorphism) رخ می دهد

شیشه ی رنگی

اگر چه در بیشتر کاربردهای شیشه نیاز است تا این ماده بی رنگ باشد اما در برخی از کاربردها نیاز است شیشه رنگی باشد. هنگامی که پنجره های یک کلیسا رنگی باشد، تأثیر پذیری ازمحیط بیشتر می شود . درشیشه ها معمولا بوسیله ی افزودن اکسیدهای انتقالی و یا اکسیدهای عناصر خاک های کمیاب (rave –eavth) به بچ ماده ی اولیه ی آنها، رنگی می شوند. جدول 1 لیستی از رنگ های تولیدی بوسیله ی مواد رنگی کننده ی شیشه هاست . زرد کم رنگ، نارنجی و رنگ های قرمز بوسیله ی فلزات گران بها درحالت کلوئیدی تولید می شود. طلا (Au) رنگ قرمز، یا قوتی تولید می کند. (البته این شیشه ها گران قیمت هستند). سولفید کادمیم (cds) محصولاتی با رنگ زرد تولید می کند. اما هنگامی که علاوه بر se ، cds نیز استفاده شود. محصولاتی با رنگ قرمز یا قوتی با شدت رنگ بالا تولید می شود.

شیشه ها (3)

شیشه بوسیله ی افزودن دوپانت ها (dopants) رنگرزی می شوند. در واقع با افزودن این دو پانت ها در شیشه عیوب نقطه ای پدید می آوریم. رنگ شیشه به نوع دو پانت و حالت اکسیداسیون آن بستگی دارد.
دو پانت ها می توانند اثر بی رنگ کننده (decdorizo) ، پوشش دهنده (mask) یا اصلاح کننده (modify) داشته باشند. ما می توانیم اثرات رنگی آهن را بوسیله ی افزایش cr خنثی کنیم؛ البته اگر درصدشیشه ها (3) زیاد باشد اضافی به صورتشیشه ها (3) خارج می شود. اگر این شیشه به روش دمیدن شکل دهی شود، این پلیت لت هایشیشه ها (3) منظم گشته و شیشه ای اپک به نام آونتورین کرومی (chromium aventurine) تولید می کنند. مس (cu) برای تولید شیشه ی آبی مصری (Egyptian Blue glass) استفاده می شود.
CO (کبالت ) دربرخی از شیشه های پالایش یافته ی تولید در قرن دوازدهم استفاده می شده است. البته Co در تولید لعاب های پرسلانی مورد استفاده در چین ( در دوره ی سلسله ی منیگ وتانگ) استفاده می شده است. کبالت مورد استفاده در این لعاب ها رنگ آبی کبالتی تولید می کند.
با افزودن Se به شیشه های دپ شده با Cds باعث پدید آمدن رنگ یاقوتی سلینومی (Selenium Ruby) می شود. جزئیات پدید آمده ازهر کدام از این رنگ ها به ترکیب شیمیایی و شرایط پخت شیشه بستگی دارد.
شرکت کورینگ (Cornig) میکرو بارکدهایی با شیشه دپ شده با خاکهای کم یاب تولید کرده است. خاکهای کم یاب دارای باندهای نشر کم پهنا هستند و از میان 13 عنصر خاکهای قلیایی که مورد آزمایش قرار گرفته ، تنها 4 عنصر (Tm,Ce,Tb و Dy) می توانند در برابر تابش UV برانگیخته شوند. و لذا می توان از آنها در شناسایی بوسیله ی UV استفاده کرد. این نوع بارکدها همچنین مشکلات تداخل با سایر بارکدها را نیز ندارد. از این بارکدها در کاربردهای بیولوژیکی استفاده می شود زیرا سمی نیستند.(البته بر چسب زنی با کوانتوم دات ها خطرات کمتری دارد) و می توان از آنها در کاربردهای ژنتیکی استفاده کرد. با استفاده از چند عنصر خاکی کمیاب می توان ترکیب رنگی بیشتر پدید آورد.
شیشه های رنگی خاص شامل موارد زیر می شود :

شیشه ی یاقوتی یا کرانبری ( Cranberry )
 

شیشه ی یاقوتی با افزودن Au به شیشه سربی با حضور Sn پدید می آید. شیشه ی کرانبری که اولین بار در سال 1685 گزارش شده است، یک نوع شیشه ی بی رنگ (معمولاً صورتی کم رنگ ) است. علت پدید آمدن این رنگ در صد کم طلای موجود در آن است . راز تولید شیشه قرمز رنگ برای قرن ها ی زیادی گم شده بود و در قرن هفدهم دوباره کشف شد.

شیشه ی اورانیومی یا وازلینی

محصولات اورانیومی هنگامی که در شیشه ی با سرب بالا استفاده شود، رنگ قرمز تیره تولید می کند. البته شیشه های اورانیومی دیگری نیز وجود دارد که با صطلاح به آنها شیشه های وازلینی (Vaseline glass) می گویند. این نوع شیشه ها دارای رنگ سبز هستند. مسأله ای که این نوع شیشه ها را خاص کرده است این است که این نوع شیشه ها هنگام تابش اشعه ی UV به آنها ، خاصیت فلئورسانس پیدا می کنند. از سال 1940 تنها اورانیوم تهی شده (uranium depleted) به عنوان دو پانت استفاده می شود. علت استفاده از این نوع دو پانت، فراوانی آن است. اما از 100 سال گذشته به بعد اورانیوم طبیعی (natural uranium) استفاده می شود.

شیشه ها (3)

شکل 1 مثالی از یک شیشه ی وازلینی است.

لیزر شیشه ای

عناصر خاکهای کم یاب (rave – earth elements) مانند Nd در تولید شیشه های لیزر و سایر وسایل اپتیکی کاربرد دارند. (شکل 2) . لیزر شیشه ای دپ شده با Nd (Nd-doped glass laser) مانند یک لیزر یاقوتی (ruby laser) کار می کند . اگر چه نوع شیشه ای دارای تفاوت هایی است . میله ی لیزر قطری بینشیشه ها (1) اینچ دارد و معمولا بوسیله ی یک لامپ حلزونی تخلیه می شود. علت استفاده از لامپ های حلزونی این است که طول غیر بار دار این نوع لامپ ها از لامپ های خطی طولانی تر است. لیزر شیشه ای دپ شده با Nd دارای بازدهی بیش از 2% است. این بازده 4 برابر بازده یک لیزر یاقوتی است. به دلیل آنکه رسانایی گرمایی شیشه پایین است بنابراین نیاز به زمان بیشتری برای خنک سازی است.

شیشه ها (3)

رسوبات در شیشه

وجود رسوبات در شیشه عموما اجتناب ناپذیر است. سوال این است که چه زمانی طول می کشد تا رسوبات تشکیل شود. (مخصوصا اگر جوانه زنی هموژن باشد). ما ممکن است عوامل هسته زا برای تسریع جوانه زنی به شیشه اضافه کنیم. جوانه زنی کریستال ها در شیشه از تئوری کلاسیک پیروی می کند. رسوبات تشکیل شده در شیشه می تواند موجب رنگی شدن شیشه شود.

شیشه به عنوان لعاب

لعاب ها مانند شیشه ها در همه جا دیده می شوند. لعاب کاری (glazing) استفاده از ویژگی های ویسکوز شیشه و تشکیل یک لایه ی یک پارچه و صاف بر روی یک زیر لایه ی سرامیکی است.
مینا کاری (enameling) تشکیل همان لایه بر روی یک زیر لایه ی فلزی است. چیزی که باید به آن توجه کرد این است که عموما لعاب ها قدمت زیادتری دارند. در ادامه به بیان برخی از اصطلاحات لعاب می پردازیم:

زیر لعاب ( underglaze )

هنگامی که یک بیسکوییت سرامیکی را می خواهیم مورد عملیات دکور قرار دهیم باید قبل از آن یک لعاب کاری بر روی آن انجام دهیم که این نوع لعاب را زیر لعاب گویند. این لایه به علت تشکیل بهتر دکور بر روی بدنه اعمال می شود. پس از آن که فرآیند دکوراسیون جسم سرامیکی انجام شود برروی آن یک لعاب دیگر اعمال می شود. البته این لعاب پیش از پخت دکور اعمال می شود.
عیب کراولینگ لعاب ( glaze craweling ) این عیب که در لعاب اتفاق می افتد بدین صورت است که لعاب از لایه ی سرامیکی زیرین جدا می گردد. این پدیده به دلیل عدم ترشوندگی بیسکوییت سرامیکی بالعاب در طی فرآیند پخت اتفاق می افتد.
لعاب ترک خورده ( crackle glaze )اگر انبساط گرماییشیشه ها (3) لعاب از سرامیک بستر بزرگ تر باشد، لعاب ممکن است در طی فرآیند سرد کردن (در طی پخت) بشکند. هنگامی که غلظت یون سدیم و پتاسیم در لعاب بیشتر باشد، ترک ها بیشتر پدید می آیند. هنگامی که سرعت سرد کردن بالا رود ترک های حاصل ریزتر می شوند.
لعابهای سلادون (celadon )، تنموکو (tenmoku)، راکو (raku) و کوپر ( copper) لعاب های ویژه ای هستند که در دنیای هنر سرامیک یافت می شوند.
لعاب های سلادوناین لعاب ها اولین بار در حدود 3500 سال پیش تولید شده اند. این لعاب ها دارای گستره ی رنگی از آبی کم رنگ تا سبز مایل به زرد هستند و می توانند رنگی کاملا تیره پدید آورند. رنگ تولیدی در این لعاب ها بوسیله ی آهن تولید می شود(3.o - o.5 در صدشیشه ها (3) به لعاب افزوده می شود). ظروف لعاب خورده توسط این نوع لعاب سپس در دمای تقریباًشیشه ها (3) پخت می گردند. ظروف تولید شده با این لعاب ها زیبایی خاصی داشته و در کاربردهای تزئینی استفاده می شوند. مثلا کوزه ی لعاب خورده با این لعاب که درکشور کره تولید شده است، درسال 1946 از سوی کشور کره به هاری ترومن رئیس جمهور آمریکا هدیه شد. امروزه این ظرف که 23cm ارتفاع دارد قیمتی برابر با 3 میلیون دلار دارد.
لعاب تنموکواین نوع لعاب در زمان سلسله ی سونگ (sung Dynasty) بوجود آمده است. و دارای رنگ قهوه ای تیره یا حتی سیاه است. برای ایجاد این رنگ میزان 8-5 درصد وزنیشیشه ها (3) به لعاب افزوده می شود. تشکیل مناسب این نوع لعاب به شرایط اکسایش – کاهش اتمسفر پخت بستگی دارد. و در شرایط مختلف اکسایش و کاهش رنگ های متنوعی پدید می آید. در لعاب های کوپرنیز از کربنات مس به عنوان منبع Cuاستفاده می شود. البته در طی فرآیند پختشیشه ها (3) تجزیه گشته و Cuoباقی می ماند. Cuo تولید نیز با مونواکسیدکربن (CO) موجود در کوره واکنش داده تا ذرات مس در لعاب تشکیل شوند. این ذرات رنگ قرمز به لعاب می دهند.
لعاب های راکولعاب های راکو اغلباً لعاب هایی فلزی به نظر می رسند. (اگر بوسیله ی یک لایه از فلز Ti پوشش داده شده باشند)
یک روش پیشرفته در تولید لعاب های راکو بدین صورت است که ظروف سرامیکی به شیوه ی معمولی پخت می شوند سپس آنها را در داخل یک محیط کاهنده مانند خاک اره وارد می کنند و سپس آنها را قبل از آنکه بتوانند اکسید شوند، به سرعت سرد می کنند. این نوع لعاب ها اغلبا حالت استثنا داشته و می توانند با زمان تغییر کنند. این مسئله ساده است. زیرا آنها در طی فرآیندهای بعدی تولید اکسید می شوند. این نوع لعاب بر خلاف سایر لعاب ها خنثی نبوده و تنها برای دکوراسیون استفاده می شوند.
لعاب های کریستالی ( crystalline glaze )این نوع لعاب ها ، لعاب هایی دکوراسیونی هستند اما به طور مستقیم با تکنولوژی تشکیل شیشه – سرامیک در ارتباطند. کریستال ها بوسیله ی سرد کردن آهسته لعاب ایجاد می شوند. این سرد کردن آهسته به کریستال های لعاب اجازه ی رشد کردن می دهند. رشد این کریستال ها مد نظر است؛ زیرا لعاب ضخامت کمی داشته و از این رو کریستال ها باید به صورت پلیت لت (platelets) در آیند. برای آنکه عمل رشد کریستال ها بهتر انجام شود از جوانه زاهای تیتانیایی استفاده می شود. این نوع جوانه زاها در لعاب های باویسکوزیته ی پایین استفاده می شوند و در آنهاشیشه ها (3) تشکیل می شود. ترکیب شیمیایی این نوع لعاب ها بسیار مهم است. در آن شیشه ها (3) وشیشه ها (3) به میزان کم و Pbo به میزان 10-8 درصد وزنی استفاده می شود. رشد کریستال با اضافه شدن fe به لعاب افزایش می یابد. اما این اضافه شدن می تواند همچنین موجب پدید آمدن اثراتی بر سایر دو پانت های اضافه شده به لعاب شود.
سفالگران امروزی ازشیشه ها (3) به عنوان اصلاح کننده و تولید کننده ی کریستال های ویلمایت (Crystals Willemite) استفاده می کنند. (ویلمایت یک مینرال کمیاب از روی است). این تکنیک نیازمند مهارت ویژه است. زیرا افزودن مقادیر زیادشیشه ها (3) به لعاب باعث می شود ویسکوزیته ی آن حتی در دماهای پایین نیز کم باشد، بنابراین این مسئله باعث می شود که لعاب از روی سطح سفالی جریان پیدا کند. رشد اسفرولیتی (Spherulite growth) از جوانه زا در لعاب در شکل 3 نشان داده شده است. هر اسفرولیت در واقع توده ای از کریستال های شعاعی است که با توجه به مرکز اسفرولیت دورهم گرد آمده اند.

شیشه ها (1)

لعاب های اپک ( opaque glazes ) اگر به لعاب مذاب کریستال هایی افزوده شود، لعاب می تواند اپک شود. برای این کار می توان ازO_2 S_n یا زیر کن استفاده کرد. که زیر کن ارزان تر است .شیشه ها (3) برای تولید رنگ سفید در لعاب های زیرکنی (Zircon glaze) استفاده می شود. برای اپک کردن کمتر ازشیشه ها (3) استفاده می شود زیرا کریستال های روتایل طلایی رنگ هستند. و بنابراین لعاب را به رنگ زرد در می آورند. ما همچنین می توانیم با تشکیل کریستال لعاب را اپک کنیم (مثلا ولاستونیت:شیشه ها (3). این کار بوسیله ی عملیات حرارتی مناسب، حبس کردن گاز (هوا یاشیشه ها (3) ) ) و یا بوسیله ی جدایش فازی مایع – مایع انجام می شود. لعاب های مات (Matt glazes) بوسیله ی تشکیل کریستال های بسیار کوچک در لعاب بوجود می آیند (مثلا کریستال های ولاستونیت برای لعاب های مات – آهکی و وبلیمایت (شیشه ها (3):Willemite ) برای لعاب های مات – زینک). کریستال های ریز ولاستونیت بوسیله ی افزودن کلسیت به لعاب پایه سیلیس تشکیل می شود. یک روش دیگر برای این کار افزودن مقادیر زیادی از ماده ی کریستالی به لعاب است تا در طی فرآیند پخت درصدی از آن به صورت کریستالی باقی بماند

رنگ در لعاب و لعاب موضوعاتی هستند که امروزه تحقیقات فراوانی بر روی آنها به عمل آورده شده است. امروزه رنگ های جدیدی بوسیله ی افزودن نانو ذرات در لعاب پدید می آید. عموما نانو ذرات نقره و طلا رنگ طلایی بوجود می آورند. و نانو ذرات مس رنگ قرمز بوجود می آورند. توضیح در مورد نحوه ی پدید آمدن رنگ در لعاب واقعاً پیچیده تر از نحوه ی پدید آمدن رنگ در شیشه هاست. زیرا لعاب بر روی یک لایه اعمال می شود و از این سو نباید ترانسپارنت باشد. همچنین لعاب یک لایه ی نازک است و در اتمسفر مختلف (کاهنده – اکسید کننده) بوجود می آید از این دو بررسی عوامل موثر بر تشکیل یک لعاب مشکل است.

لعاب های رنگی ( Colored glazes )

در لعاب های رنگی باید از پیگمنت های سرامیکی با پایداری مناسب بهره برد. از اکسیدهای رنگ زای ارزان قیمت می توان برای ایجاد رنگ در محصولات متنوع سفالی بهره برد. البته بسیاری از مواد رنگ زا برای لعاب همانهایی هستند که ما برای رنگرزی شیشه از آنها استفاده می کنیم
اکسید کبالت شیشه ها (4) یک اکسید سیاه رنگ است اما کمتر از یک درصد وزنی از آن در لعاب ایجاد رنگ آبی تیره می کند (اگر چه در بیشتر موارد از کربنات کبالت استفاده می شود).
به دلیل آنکه شیشه ها (4) در این گونه لعاب ها بوجود می آید، ویسکوزیته ی لعاب تغییر می کند.
اکسید کروم که تا 3-2% وزنی نیز می تواند به لعاب افزوده شود به جای رنگ سبز، رنگهای زرد، صورتی یا قهوه ای بوجود می آورد (رنگ قرمز در حضور سرب در ترکیب لعاب اولیه پدید می آید. اگر Zn در لعاب اولیه وجود داشته باشد، رنگ لعاب قهوه ای می شود مگر آنکه سرب ها هم وجود داشته باشد. که در صورت وجود سرب و روی در لعاب اولیه رنگ زرد پدید می آید).
شیشه ها (4)که به صورت کربنات به لعاب افزوده می شود، رنگ لعاب را به صورت قهوه ای در آورده البته این ماده می تواند رنگ قرمز، بنفش و حتی سیاه نیز تولید کند. که این تغییر رنگ به درصد سدیم موجود در لعاب اولیه بستگی دارد. افزودن Cuo به اندازه ی %2-1 وزنی به یک لعاب با سدیم بسیار کم سبب پدید آمدن رنگ فیروزه ای می شود. این درحالی است که افزودن بیش از 3% از این رنگ زا باعث پدید آمدن رنگ سبز یا آبی می شود. اگر درصد Cuo در لعاب افزایش یابد، لعاب ظاهری فلزی مانند مفرغ به خود می گیرد. اگر لعاب دارای 0.3– 2 درصد وزنی Cuo در اتمسفر کاهنده پخت شود، رنگ قرمز مسی پدید می آید. این رنگ به دلیل حضور ذرات کلوئیدی CU درلعاب بوجود می آید.
اگر یک لعاب رنگ زرد داشته باشد، این رنگ ممکن است بوسیله ی افزودن Cds یا Cdse بوجود آمده باشد. البته این نوع افزودنی های رنگ زا ممکن است رنگ های قرمز یا نارنجی را نیز پدید آورند. درصورت حضور سرب در این نوع لعاب ها ، Pds تشکیل می شود که باعث سیاه شدن لعاب می شود. زیرکن در صنعت برای کمک کردن به پایدار شدن این نوع رنگ ها (برپایه ی cd) استفاده می شود. درحقیقت شیشه ها (4) (زیر کن وانادیومی آبی رنگ) و شیشه ها (4)(pr,zr) (زیر کن پراسئودیومی زرد رنگ) مهم ترین تثبیت کننده های مورد استفاده در این رنگ هاست. هنگامی که اورانیوم به لعاب اضافه شود، به جای پدید آوردن رنگ زرد کم رنگ، رنگ قهوه ای تیره پدید می آید. (اورانیوم در شیشه های وازلینی تولید رنگ زرد کم رنگ می کند). البته بسته به ترکیب لعاب ، اورانیوم می تواند رنگ های قرمز یا نارنجی روشن نیز بدهد.

لعاب نمکی ( saltglaze )

دراین نوع فرآیند لعاب کاری سفال در کوره های با دمای بالا با نمک واکنش می دهد. در واقع سفالگر نمک را بر روی سفال اعمال می کند. این فرآیند هنگامی اتفاق می افتد که سفال در داخل کوره است. این فن بوسیله ی سفالگران ایرانی وانگلیسی در دهه ی 1700 ابداع گشته است. همچنین شما می توانید مثال های فراوانی از فرآیند رنگ آمیزی بوسیله ی اکسیدهای فلزی را در آلمان ببنید. در این نوع لعاب ها نمک با رس واکنش داده و تشکیل لایه ای شیشه ای بر روی سطح می دهد. این تکنیک دقیقاً فرآیند خوردگی خاک نسوز در دمای بالاست (بوسیله ی سود سوز آور).
واژه ی مینا (enamel) معمولا در هنگامی استفاده می شود که یک لایه ی لعابی بر روی فلز اعمال می شود. البته این واژه در هنگامی که یک لایه لعابی بر روی لعاب اولیه اعمال می شود نیز استفاده می شود. بازار مصرف مینا بسیار بزرگ است. این بازار از لوازم بهداشتی تا جواهر آلات گسترده است.

خوردگی شیشه و لعاب

این تصور وجود دارد که شیشه خنثی است اما باید بدانید که اسید سیتریک و اسید استیک موجود در غذاها و میوه ها می توانند بایون های موجود در شیشه واکنش دهند و ترکیبات کمپلکس پدید آورند. با خروج یون های قلیایی از داخل شیشه یون های هیدروژن مثبت جایگزین آنها می شود. هنگامی که بخواهیم استحکام سطح شیشه را افزایش دهیم باید یون های پتاسیم و سدیم مثبت را با لیتیم مثبت ( شیشه ها (4) ) جایگزین کنیم. در شیشه ی آلایش یافته (Stain glass) می توان یون نقره ی مثبت و مس را جایگزین شیشه ها (4) کرد.
همانند مواد کریستالی ، شیشه ها نیز دارای عیوب کریستالی اند. یکی از چالش هایی که ما با آنها روبرو هستیم محاسبه ی خواص بوجود آمده ازعیوب (مانند نفوذ) در شیشه هاست. زیرا در شیشه ها شبکه ی مرجع وجود ندارد.

انواع شیشه های سرامیکی

همه ی شیشه ها براساس تتراهدرال های سیلیسی ایجاد نمی شوند؛ واحدهای ساختاری این شیشه ها در جدول 1 آورده شده است. برخی از ترکیبات این شیشه ها نیز در جدول 2 آورده شده است.

شیشه ها (4)

شیشه ها (4)

شیشه ی سیلیکاتی ( سودالایم )

این شیشه ها بر پایه ی شیشه ها (4) هستند. (معمولا این نوع شیشه ها علاوه بر این مواد دارای شیشه ها (4) نیز هستند.) این نوع شیشه نستبا ارزان هستند و دارای دوام خوبی نیز هستند همچنین از این نوع شیشه به طور فراوان در صنعت بسته بندی و ساختمان استفاده می شود. ضریب انبساط حرارتی شیشه ها (4) این نوع شیشه ها ناچیز نیست. همچنین این نوع از شیشه ها عایق های خوبی نیستند. استفاده های عمده از این نوع شیشه در صفحات شیشه ای ،بطری ها ، وسایل غذا خوری و صنعت الکترونیک (حباب لامپ) است. شیشه های آلومینو سیلیکاتی قلیایی (شیشه ها (4)= عنصر قلیایی) دارای ضریب انبساط حرارتی پایینی است. این نوع شیشه دارای دوام و خواص عایق کاری بهتری است. وهمچنین نسبت به سایر شیشه های هم گروه استحکام بالاتری دارد. استفاده های این نوع شیشه عبارتست از تیوپ های اختراق، حباب های لامپ هالوژن و به عنوان بسترهای صنعت الکترونیک کاربرد دارد.

شیشه ی سربی

ترکیب عمومی این شیشه ها سیلیکات های قلیایی سربی استشیشه ها (4). در این نوع شیشه ها Pbo به جای CaO در شیشه ی سودالایمی قرار گرفته است. این نوع شیشه دارای مقاومت بالایی است. همچنین ضریب انبساط حرارتی آن بالاست. و دمای نرم شوندگی پایینی دارد. دلیل آنکه از این نوع شیشه ها در تولید ظروف کریستال استفاده می شود این است که ضریب شکست این نوع شیشه بالاست و علاوه بر این که از این شیشه ها در ظروف تزئینی استفاده می شود، از آنها در ساخت تیوپ های لامپ، لامپ تصویر تلویزیون و تیوپ های ترمومترها استفاده می شود. در ظروف کریستال انگلیسی که به صورت سنتی تولید می شوند، میزان Pbo حداقل 30% است. برطبق رهنمود اتحادیه ی اروپا میزان Pbo باید بیش از 24 درصد باشد. همچنین بر طبق استاندارد اروپا شیشه های کریستال سربی باز یافت نمی شوند. شیشه های سربی که برای ساخت حفاظ های تابشی استفاده می شوند ممکن است دارای بیش از 65% Pbo باشند. کاربرد این گونه شیشه ها در لامپ تصویر تلویزیون است اگر چه شیشه های باریمی برای ساخت صفحه و تابلوهای تلویزیون استفاده می شود. (تفنگ الکترونی تلویزیون اشعه ی x ساتع می کند که این نوع شیشه باید این تابش ها را جذب کند.)شیشه های سرب – بوراتی می توانند به عنوان لحیم های شیشه ای استفاده شوند. این نوع شیشه ها دارای در صد کمیشیشه ها (4) است و کاملا خنثی است.
شیشه های فیلنیتی (flint glass) دارای تفرق بالایی است. در واقع این نوع شیشه ها از نوع شیشه های سیلیکاتی قلیایی ـ سربی است که از ذوب سنگ های فیلنیتی ساخته شده اند(فیلنیت فرم خالص سیلیس است) .لازم به توضیح است که این نوع سنگ کلسینه شده و به طور فراوان در ساخت بدنه های سرامیکی استفاده می شود.

شیشه ی بورانی ( شیشه ی بورو سیلیکاتی )

شیشه های بوروسیلیکاتی قلیاییشیشه ها (4) به خاطر ضریب انبساط حرارتیشیشه ها (4) کوچکشان ویژه هستند. این نوع شیشه دوام بالایی داشته و خواص الکتریکی مفیدی دارند. پیرکس (Pyrex) که یک نوع ماده در تولید وسایل پخت و پز است . از جنس بروسیلیکات است .شیشه ی بروسیلیکاتی به طور وسیع در فرآیندهای شیمیایی استفاده می شود. برخی از شیشه های براتی دارای دمای ذوب پایینیشیشه ها (4) هستند از این رو آنها را می توان به همراه سایر شیشه ها استفاده کرد. شیشه ی بروسیلیکاتی – زنیکی به شیشه های منفعل شهرت دارند. این شیشه ها مواد قلیایی ندارند و از این رو از آنها می توان در ساخت اجزای الکترونیکی سیلیسیمی استفاده کرد.

سیلیس فیوزد

این نوع شیشه از نوع سیلیس خالص است. این شیشه ها ، شیشه های سیلیکاتی برای کاربردهای دما بالا هستند. ضریب انبساط حرارتی این نوع شیشه ها نزدیک به صفر است. این نوع شیشه ها برای تولید آینه های تلسکوپ و زیر لایه ها (Substrates) استفاده می شود. به خاطر داشتن ضریب انبساط حرارتی نزدیک به صفر به این شیشه ها ، شیشه های با انبساط حرارتی بسیار پایین (VLE Silica) می گویند .
شیشه های VLE دارای 7 درصد وزنیشیشه ها (4) برای تولید لفافه های لیتوگرافی نوری (masks photolithography) استفاده می شود. البته به خاطر دمای بالای فرآیند شکل دهی این شیشه ها ؛ می توان به جای آنها از شیشه های وایکور استفاده کرد.

شیشه ی فسفاتی ( phosphate – glass )
 

شیشه های فسفاتی شیشه های مهمی هستند زیرا این نوع شیشه ها خاصیت نیمه رسانایی دارند. یکی از کاربرد این مواد در ساخت تقویت کننده های الکترون (electron multipliers) است . در این نوع وسایل با استفاده از دپ کردن Er (افزودنشیشه ها (4) ) ، این تقویت کننده ها ساخته می شود. کایتون های موجود در این نوع شیشه ها معمولا V و P هستند اما لابراتوار ملی او آ ک ریچ (Oak Ridge National labroatory) یک نوع شیشه ی فسفاتی اندیوم – سربی تولید کرده است که دارای ضریب شکست بالایی است. از ویژگی های دیگر این شیشه می توان به دمای ذوب پایین و خاصیت ترانسپارنتی در برابر گسترده ی وسیعی از طول موج ها را نام برد. به دلیل آنکه این نوع شیشه می تواند درصد بالایی از عناصر خاکهای کم یاب را در خود حل کنند، از آنها در تولید وسایل نوری اکتیو مانند آمپلی فایرهای فیبر اپتیک و لیزرها استفاده می شود. شیشه های فسفاتی دپ شده با Nd در لیزرهای حالت جامد استفاده می شوند. ترکیب شیمیایی نمونه وار از این نوع شیشه عبارتست ازشیشه ها (4) است. که در صد Nd بین O.2-2.O درصد مولی است.

شیشه ی چالکوژیندی ( Chalcogenide glass )

این نوع شیشه براساس Se,As و Te بوجود می آید. این شیشه ها نور فرو سرخ را از خود عبور می دهند و نیمه رسانا های غیر اکسیدی هستند. از این نوع شیشه در وسایل و لنزهای الکترونیکی ویژه استفاده می شود. در این وسایل هنگامی که ولتاژ اعمالی به آنها از میزان بحرانی فراتر رود، به طور ناگهانی تغییر رسانایی رخ می دهد. کاربرد این نوع شیشه ها بسیار خاص است زیرا این شیشه ها دوام پایینی داشته و دمای نرم شوندگی شان پایین است.

شیشه ی فلورایدی ( fluoride glass )

عموماً شیشه های هالیدی بر پایه یشیشه ها (4) را شیشه های فلورایدی می گویند. کاربرد این نوع شیشه ها در وسایل همسو کننده نوری (optical waveguides) است. و درجاهایی که قیمت توجیه پذیر باشد استفاده می شوند.

شیشه ی طبیعی

این مسئله که شیشه در طبیعت بوجود می آید حتی این پدیده یک امر نسبتاً معمولی است، باعث شگفتی بسیاری از مردم می شود. تکتیت ها (tektites) درهنگام برخورد شهاب سنگ ها به زمین و در دهانه ی حاصله از برخورد شهاب سنگ پدید می آیند. مولد اویت (Moldavite) نیز یک شیشه ی سبز رنگ است که در مولداوی (Moldavia) یافت می شود . فولگلاریت (fulgarite) نیز تیوپ های شکننده از شیشه هستند که در هنگام برخورد برق آسمان به خاکهای ماسه ای پدید می آید. ابسیدیان (obsidian) نیز یک نوع شیشه است که در جریان های آتش فشانی تشکیل می شود. رنگ سیاه رنگ این نوع شیشه به خاطر ناخالصی پدید می آید. در طی دوره ی پارینه سنگی از ابسیدیان در ساخت وسایل استفاده می شده است. سنگ پا (Pamice) یکی دیگر از شیشه هایی است که از فوران های آتش فشانی تشکیل می شود. این ماده می تواند تخلخل های فراوانی داشته باشد. (درصورتی که ماده ی اولیه ی تشکیل دهنده ی آن دارای مواد گازی فراوانی باشد). سنگ پا شکل متخلخل ابسیدیان است

شیشه ها

مقدمه:

دراین مقاله ها در مورد انواع مختلف شیشه و برخی از کاربردهای آنها صحبت می کنیم.
شیشه ها یکی از انواع مهم موادمهندسی محسوب می شوند. این مواد در پنجره ها، ساخت بطری، لیزرها، الیاف نوری، عایق ها، لعاب کاری (glazing) ومینا کاری (enamelihg)، چاقوی جراحی، وسایل هنری وتابلوهای راهنمایی - رانندگی استفاده می شوند.
شیشه ها معمولا بازیافت می شوند واز این رو دوستدار محیط زیست هستند.مصریان آثار شیشه ای متنوعی بر جای گذاشته اند ولی آنها اولین کسانی نبودند که از این ماده استفاده می کردند.در دوران های دیرینه سنگی (paleolithic Times) شیشه های اولیه و شیشه های طبیعی (Obsidian: نوعی شیشه ی مصنوعی بدست آمده از آتش فشان ها ) بسیاراهمیت داشتند به خاطر اهمیت زیاد این ماده می توان گفت که شیشه نقش مهمی در شکل دهی تمدن ما داشته است.
به هر حال تعریفات مختلفی برای شیشه ها بیان شده است. دراین مقاله سعی می کنیم بگوییم چرا واژه های شیشه ای (glassy)، زجاجی (Vitreous) و آمورف (amor phous) همگی برای توصیف شیشه استفاده می شوند. همچنین سعی داریم جواب این سوال را بدهیم که: «شیشه چیست؟»
هنگام مطالعه ی این مقاله باید دو ذهنیت را داشته باشید:
1) ادعای Sturkey:"شیشه در دماهای بالا یک محلول شیمیایی است."
2) اگر شیشه که مایع فوق سرد شده است، پس جامد نیست وبنابراین یک ماده ی سرامیکی نیست (اما شیشه یک ماده ی سرامیکی است)

تعریف

تعریف کلاسیک شیشه براساس روش تاریخی تشکیل آن انجام شده است. البته این روش تعریف یک روش بسیار غیر معقولی برای تعریف هر ماده است. این مسئله باعث شده است تا امروز شیشه به چندین روش مختلف تعریف شود:
تعریف کلاسیک: شیشه یک مایع فوق سرد شده است(Supercooled liquid) مشکل بوجود آمده دراین تعریف این است که در برخی موارد می توان یک شیشه ی ویژه را به روشی تولید کرد که هیچگاه درحالت مایع قرار نداشته باشد.
ASTM شیشه را به صورت زیر تعریف کرده است:
"شیشه یک محصول غیر آلی از ترکیبی مذاب است که بدون آنکه کریستالی شود، سرد وصلب می گردد."
این تعریف نیز همان چیزی است که در تعریف کلاسیک آمده است. اما دراین تعریف شیشه ی پلیمری استثناء شده است. به وضوح مشخص است که استناد کردن به روش تولید برای تعریف یک گروه از مواد ایده آل و مناسب نمی باشد.

تعاریف دیگر :

1)" شیشه یک ماده ی جامد است که نظم دوربعد از خود نشان نمی دهد."
نداشتن نظم دوربعد یعنی ساختار شیشه درفواصل یک، دو یا سه برابر فاصله ی اجزای سازنده، دارای نظم نیست. این تعریف براساس مشاهدات حاصله از تفرق اشعه X، میکروسکوپ الکترونی عبوری (TEM) و... استوار است اما این تعریف نیز کمی قراردادی است زیرا به اندازه ی اجزاء تشکیل دهنده بستگی دارد.
2)" شیشه یک مایع است که قابلیت جاری شدن خود را از دست داده است."
این تعریف استوار است اما از تعریفی که بوسیله ی ASTM ارائه شده است فراگیرتر است .همچنین این تعریف از خاصیت مکانیکی برای تعریف شیشه استفاده می کند. درحقیقت این تعریف عملاً با دیدگاه فیزیک مدرن درباره ی شیشه مطابقت دارد.
اکثر شیشه هایی که ما در مورد آنها توضیح می دهیم، شیشه های با شبکه ی اکسیدی است . (مخصوصاً سیلیکات ها) تعریف ما از چنین شیشه هایی عبارتست از:
تجمعی جامد از تتراگونال هایی است که می توانند رئوس خود را به اشتراک گذاشته و البته این مواد نظم دور بعد ندارند.
دراین مقاله ما تنها درمورد شیشه های سرامیکی بحث می کنیم اما باید بدانیم که علاوه بر شیشه های سرامیکی، شیشه های فلزی و پلیمری نیز وجود دارد. شیشه های فلزی ترکیبات پیچیده ای هستند که در آنها عمل کریستالیزاسیون انجام نشده است. این مسئله بوسیله ی سریع سرد کردن فلز مذاب بوجود می آید.(این فرآیند اسپلات کوئنچینگ نامیده می شود). درادامه به بیان ویژگی شیشه ها می پردازیم:

ساختار

شیشه ها در اصل جامد های غیر کریستالی (یا آمورفی) هستند که در اغلب موارد از فریز شدن یک مایع فوق سرد شده بدست می آیند. دراین موارد نظم دور برد در آرایش اتمی وجود ندارد. البته نظم کوتاه برد (زیر 1nm) وجود دارد. این مواد دارای آرایش منظمی از سلولهای واحد نیستند.همانگونه که گفتیم شواهدی وجود دارد که ثابت می کند در شیشه ها نظم کوتاه برد وجود دارد.این نظم کوتاه برد به دلیل آرایش اتمی درمجاورت هر اتم (البته در فاصله ی کوتاه) بدست می آید. تلاش های فراوانی برای توصیف شیشه ها انجام شده است. که به بیان علت تشکیل شدن یا نشدن شیشه ها بحث می کند. دراین زمینه ما ازدو دیدگاه به شیشه ها نگاه می کنیم:
1) توجه به ساختار
2) توجه به مباحث کنیتیکی کریستالیزاسیون
درمورد اول ما به بیان هندسه ی اجزای تشکیل دهنده ی شیشه ها می پردازیم. همچنین دراین زمینه به بیان پیوندهای بین اتمی واستحکام پیوندها می پردازیم . درمورد دوم ما به بیان چگونگی دگرگونی های مایع به جامد در طی فرآیند سرد شدن می پردازیم.
دمای تبدیل شدن شیشه ای ( Tg )
درشکل 1 نموداری نشان داده شده است که در آن حجم ویژه به عنوان تابعی از دما رسم شده است.

شیشه ها (1)

این دیاگرام فرمی از دیاگرام استعاله ی دما – زمان (T.T.T) برای شیشه است. درهنگام سرد شدن مایع از دمای بالا دو پدید ه ممکن است در نقطه ی انجماد (Tm) اتفاق می افتد که عبارتند از :
1) اگر مایع کریستالیزه شود تغییرات حجم و سرعت سرد کردن گسسته است.
2) اگر کریستالیزاسیون اتفاق نیفتد، مایع به حالت فوق سرد شده تبدیل می شود و حجم در نزدیک دمای ذوب کاهش می یابد.
دردمای تبدیل شدن شیشه ای (Tg)، شیب نمودار کاهش می یابد و به شیب جامد کریستالی نزدیک می شود. این شکستگی بوجود آمده در نمودار سرد کردن نشان دهنده ی گذرگاه مایع فوق سرد شده به شیشه است. زیر دمای Tgساختار شیشه درحالت آسایش نیست زیرا این مواد اکنون جامد هستند. دراین ناحیه از Tg ویسکوزیته تقریبا شیشه ها (1) است. ضریب انبساط حالت شیشه ای معمولا نزدیک به ضریب انبساط جامد کریستالی است. اگر از سرعت های سرد کردن پایین تر استفاده شود، میزان آسایش ساختار افزایش می یابد. ومایع فوق سرد شده در دمای پایین تر تشکیل می شود. و شیشه ی حاصله ممکن است دانسیته ی بالاتری بدست آورند. (همانگونه که در شکل 1 دیده می شود)
فیزیک شیشه جنبه ی تردی آن را مورد بررسی قرار می دهد. در واقع این ویژگی یک ویژگی مایعات شیشه ساز در بالای دمای Tgاست واندزه ای از استعکام پیوندهای بین اتمی است. در ادامه ما درمورد شیشه ی نامحلول در آب یا بطری های شیشه ای آب صحبت می کنیم. البته چیزی که آگاهی کمتری از آن است این است که ما می توانیم آب را با سریع سرد کردن در اتاق مایع به حالت شیشه ای در آوریم. ماده ی حاصله یک شیشه ترد است اما این مسئله فهمیده شده است که بیشتر آب موجود در جهان به همین شکل وجود دارد.
تاریخچه
شیشه ماده ای است که پیوندی عمیق با تاریخچه ی انسان دارد. یکی از شواهد این مسئله استفاده از ابسیدیان (obsidian) یک شیشه ی طبیعی توسط بشر است. هیچ کس نمی داند که اولین جسم شیشه ای در چه زمانی ساخته شده است. قدیمی ترین یافته ها به 7000 سال پیش از میلاد برمی گردد. (البته ممکن است یافته هایی پیش از این تاریخ نیز وجود داشته باشد). درکاوش های باستان شناسی در بین النهرین روش های تولید شیشه کشف شده است . این کارها 4500 سال پیش از میلاد مسیح بوده است ومربوط به روش های تولید وسایل شیشه ای بوده است نه لعاب های مورد استفاده در وسایل سفالی. استفاده از شیشه در لعاب کاری سفال حتی به دوران های پیشین می رسد.

شیشه ها (1)

تقریبا در 3000 سال پیش از میلاد مسیح شیشه گران مصری شروع به تولید جواهر آلات شیشه ای و ظروف شیشه ای کوچک کردند. شیشه هم به عنوان یک جسم دکوری وهم به عنوان یک وسیله ی مورد استفاده در زندگی روزمره به شمار می آمد. قطعاتی از جواهر آلات شیشه ای در کاوش های اطراف کوه های مصر پیدا شده است. مثالی از این جواهرآلات شیشه ی فیزوزه ای آبی است که در شکل 2 دیده می شود. تقر یبا 1500 سال پیش از میلاد مسیح شیشه گران مصری ( در دوره ی touthmosis سوم ) روشی برای تولید قطعات تو خالی قابل استفاده، توسعه دادند. یک مثال قابل توجه از این نوع ساختار یک شیشه ی توخالی است که شبیه به سرماهی است (شکل 3) این ظرف بین سال های 1352 و 1336 قبل از میلاد ساخته شده است واین نظریه وجود دارد که برای نگه داری روغن خوش بو استفاده می شده است.

شیشه ها (1)

الگوی موجی این ظرف بسیار خاص است. در واقع این ظرف بوسیله ی کشیده شدن یک جسم تیز به شیشه ی خمیری شده تولید شده است.
نویسنده ی رومیPliny Fhe Elder (23-79 میلادی) اختراع شیشه را به صورت زیر توصیف می کند:
روزی یک کشتی که متعلق به چند تاجر نیتروم (Nitrum) بود در کنار ساحل لبنان کنونی توقف می کند. هنگام پخت غذا به دلیل نبود سنگ در ساحل، خدمه کشتی از کلوخ های نیترومی که در کشتی وجود داشته است. استفاده می کنند تا بتوانند دیگ غذا را در مکان مناسب استقرار دهند. پس از آنکه آتش روش شد، کلوخه ها با ماسه های ساحلی واکنش داده و تشکیل شیشه ی مذاب می دهد. این اولین منشع پدید آمدن شیشه است.
نیتروم (Nitrum) یک نوع سدیم کربنات (Soda) طبیعی است .این ماده یکی از اجزای مهم در شیشه های قدیمی و مدرن است. خاکستر گیاهان نیز یک منبع فقیر از سدیم برای شیشه گران فراهم می کند. گیاهان علف شوره (Saltwort) و رازیانه ی آبی (glass wort) از جمله گیاهانی هستند که برای مهیا شدن سدیم از آنها استفاده می شده است.
یکی از معمولی ترین روش ها برای شکل دهی شیشه روش دمش هوا است. اگر چه این تکنیک بیش از دوهزار سال پیش توسعه یافت، لوله های تولیدی به روش دمش در طی زمان تغییری نکرده است. توسعه ی عمده که دراین زمینه انجام شده است، روش دمش اتوماتیک است که برای تولید شیشه های بطری و حباب های لامپ استفاده می شود. دراین روش به قطعه ای شیشه در داخل قالب هوا دمیده می شود. و بدین شکل شیشه به شکل قالب در می آید. مهمترین مرحله ی رشد در تاریخ شیشه سازی مخصوصا درطی قرن بیستم مربوط به توسعه های اتفاق افتاده در زمینه ی تکنولوژی های تولید می باشد. این توسعه ها منجر به کاهش هزینه ی تولید محصولات شیشه ای می شود

در ادامه به بیان خواص شیشه ها می پردازیم:

ویسکوزیته ( η )

ویسکوزیته یک ویژگی کلیدی شیشه هاست.ما نیاز داریم تا درمورد ویسکوزیته ی شیشه در دماهای مختلف اطلاع داشته باشیم. و بتوانیم دمای مورد نیاز برا ی شکل دهی وآنیلینگ آن را تشخیص دهیم. ویسکوزیته یک ویژگی مکانیکی است. فرمول ویسکوزیتد به صورت زیر است:

شیشه ها (2)

دراین فرمول:
η : ویسکوزیته، F: نیروی مورد نیاز برای کشیدن یکی از صفحات موازی که در میان آنها مایع مورد نظر قرار دارد: ،d: فاصله ی صفحات، A: مساحت صفحات، V: سرعت حرکت صفحه. ویسکوزیته در واقع پاسخ یک مایع دربرابر تنش برشی است. مایعات دارای ویسکوزیته ای هستند که با واحد سانتی پوآز (CP) اندازه گیری می شود. واحد اندازه گیری ویسکوزیته ی گازها میکروپوآز(mp) است.

شیشه ها (2)

جدول 1 لیستی از اعداد ویسکوزیته ای است که برای فرآیندهای شیشه سازی مهم هستند. اعداد داده شده در جدول 2 نیز برای تعریف ویژگی های برجسته ی شیشه (با تأکید بر روی فرآیند) آورده شده است. بسیاری از اعداد آورده شده درجدول ویسکوزیته ها استاندارد هستند مثلا (2003) ASTMC338-93 یک روش تست استاندارد است که نقطه نرم شدگی شیشه بوسیله ی آن تعیین می شود.
محاسبه ی نقطه ی نرم شدگی شیشه بوسیله ی اندازه گیری دمایی که در آن یک فیبر شیشه ای استوانه ای با قطر شیشه ها (2) طول بوسیله ی وزن خودش تغییر طول می دهد. نرخ تغییر طول یک میلی متر بردقیقه است . در این روش 100 میلی متر از بخش بالایی فیبر بوسیله ی کوره ی خاصی با سرعت گرم شدنشیشه ها (2) گرم می شود.

شیشه ها (2)

ویسکوزیته ی برخی ازمایعات عمومی در جدول 2 آورده شده است. توجه کنید که در دمای کارپذیری شیشه ویسکوزیته ای شبیه به عسل در دمای اتاق دارد. به طور نمونه برای یک شیشه ی سیلیکاتی سودالایم این ویسکوزیته در دمایشیشه ها (2) بدست می آید. این جدول همچنین نشان می دهد که یک جامد دارای ویسکوزیته ای بیش ازشیشه ها (2) دسی پو آز است. ویسکوزیته ی به طور نمایی با تغییر دما ، تغییر می کند ( همانگونه که در شکل 1 برای انواع شیشه ی سیلیکاتی دیده می شود.) دمای فیکتیو (fictive temperature) دمایی است که در آن ساختار مایع به حالت شیشه ای تبدیل می شود. این دما بوسیله ی تقاطع منحنی های برونیابی شده در حالت دما بالا و دما پایین در نمودار ویسکوزیته – دما بدست می آید. دمای فیکتیو (Tf) مانند Tg به تبدیلات ساختاری شیشه بستگی دارد. البته Tg اندکی کمتر از Tf است.

شیشه ها (2)

شکل 2 وابستگی ویسکوزیته به دما را برای اکسیدهای شیشه ساز نشان می دهد. شما باید توجه کنید که بوسیله ی شیب این خطوط می توان انرژی اکتیواسیون جریان ویسکوز (EV) را بدست آوریم.

شیشه ها (2)

جدول 3 اعداد ویسکوزیته وسرعت های کریستالیزاسیون (v) برخی شیشه ها را نشان می دهد. سرعت کریستالیزاسیون مربوط می شود به سرعت تبادل مایع/جامد. V بسیار کم بیان کننده ی قابلیت شیشه سازی استثنایی ماده است.البته کریستالیزاسیون مذاب جامد شده ی سیلیس بسیار مشکل است.

شیشه ها (2)

روش های متعددی برای اندازه گیری ویسکوزیته وجود دارد. این روش ها با توجه به میزان ویسکوزیته انتخاب می شود.

شیشه ها (2)

شماتیک دو روش اول اندازه گیری ویسکوزیته در شکل 3 نشان داده شده است:

شیشه ها (2)

شیشه ( خلاصه ای از خواص )
 

شیشه ماده ای خنثی است. این مسئله به محیط بستگی دارد. اگر شیشه یک ماده ی سیلیکاتی باشد، این مسئله درست است . البته همه ی شیشه ها خنثی نیستند. مثلا بیوگلاس (bioglass)
شیشه یک ماده ی هموژن است. این مسئله نیز به نحوه ی شکل دهی و ترکیب شیمیایی شیشه بستگی دارد. ما می توانیم با استفاده از فرآیندهای خاص شیشه را به صورت غیر هموژن در آوریم.
شیشه می تواند تغییر شکل دهد. این مسئله عموماً درست می باشد و دلیلی است برای قابلیت بازیافت شیشه ها. برخی از شیشه ها به نحوه ای ساخته می شوند که بوسیله ی نور، انتشار نور در داخل آن وتابش نور و...تغییر ماهیت می دهد.
شیشه دارای ضریب انبساط کوچک است. البته همه ی شیشه ها مناسب استفاده شدن در کاربردهای حرارتی مانند ظروف پیرکس نیستند.
شیشه ها شفاف اند (trans Parent) این خاصیت برای الیاف نوری ضروری است. البته ما می توانیم با انجام عملیات های خاص شیشه به صورت اپک یا مات در آوریم.
بسیاری از شیشه های اولیه شفافیت کامل نداشتند زیرا در ساختار آنها ناخالصی وحباب هوا وجود داشت.
شیشه ارزان است. البته این مسئله برای شیشه های پنجره صحیح است. اما درمورد فیلم های نازک شیشه ای این مسئله صحیح نمی باشد. برخی از شیشه های قرمز رنگ بوسیله ی دپینگ (doping) طلا در آنها تولید می شود. که قیمت برخی از ظروف تولیدی از آن به پیش از 50 دلار می رسد.
شیشه یک ماده ی بالک است مگر در حالتی که آن را به صورت یک فیلم نازک ، یک فیلم انیتر گرانولار (IGF) یا یک سرامیک کریستالی رشد دهیم.

برخی از خواص مکانیکی شیشه

استحکام تئوریک شیشه ی سیلیکاتی درحدود 10GPa است. البته با حضور عیوب سطحی (ترک ها وجوانه ها ) این استحکام کاهش می یابد. شیشه ها موادی الاستیک هستند اما تحت کشش می شکنند. می توان استحکام این مواد را بوسیله ی ایجاد لایه های سطحی فشرده و یا بوسیله ی از بین بردن ترک های سطحی (با اسید شوئی یا پدید آوردن پوشش محافظ) افزایش داد. مثالی از این روش ها پدید آوردن ترک های اضافی در ساختار قطعات شیشه ای تزئینی به منظور بهبود خواص مکانیکی آنهاست. در این روش از سرد کردن شیشه ی مذاب در آب جهت ایجاد تنش های اضافه بهره برده می شود . در این حالت سطح قطعه ی شیشه ای مذاب زودتر از مرکز آن سرد می شود و بنابراین تنش های اضافی پدید می آید. قطعات جامد شده به این شیوه را می توان با چکش و بدون اینکه بشکنند چکش کاری کرد.

برخی از ویژگی های الکتریکی شیشه

شیشه معمولا دارای مقاومت الکتریکی بالایی است. که علت آن تفاوت زیاد میان باندهای انرژی (گپ بزرگ) در این ماده است. در مواردی که شیشه رساناست . بار بوسیله ی یون ها منتقل می شود.(در این مورد یون های قلیایی مانندشیشه ها (2) دارای سرعت انتقال بار بالایی هستند). در واقع به همین دلیل است که با افزایش دما رسانایی به شدت افزایش می یابد. رسانایی درشیشه های مختلف، متفاوت است.علت آن متفاوت بودن نوع شبکه ی این شیشه هاست. در شیشه هایی که دارای بیش از یک یون قلیایی هستند. پدیده ی جالبی رخ می دهد. رسانایی تولیدی در این نوع شیشه ها به طور مشخصی از شیشه های دارای یک یون کمتر است. این نوع شیشه ها در کاربردهای مختلف مانند لامپ های با توان بالا استفاده می شوند. ثابت دی الکتریک شیشه واقعاً بالاست اما نه به حدی که بتوان از آن در کاربردهای حافظه ای پیشرفته مانند حافظه ی با دستیابی دینامیک و رندوم (DRAMS) استفاده کرد. ظرفیت الکتریکی یک ماده میزان بار ذخیره شده در داخل ماده است. این خاصیت به ضخامت دی الکتریک بستگی دارد. همانطور که ضخامت دی الکتریک کمتر می شود، ظرفیت الکتریکی افزایش می یابد. اما کم کردن ضخامت نیز مشکلاتی به همراه دارد. مثلا با کاهش ضخامت احتمال شکست دی الکتریک بیشتر می شود. شیشه ی سیلیسی دارای مقاومت دی الکتریک بالاتری نسبت به سایر شیشه هاست. اما مقاومت این دی الکتریک نیز در حد دی الکتریک های پلیمری مانند رزین فنولیک نیست.

برخی از خواص اپتیکی شیشه

شفافیت دربرابر نور فرا بنفش ، مرئی و فرو سرخ به چندین فاکتور بستگی دارد. یکی از این فاکتورها طول موج تفرق است که بوسیله ی ناخالصی ها تغییر می کند. لبه ی فرو سرخ (IRedge) و لبه ی فرا بنفش ((uv edge اعدادی هستند که نشان دهنده ی فرکانس قطع شدن عبور این موج ها هستند. یک مانع لبه UV edge blocker)UV) از عبور UV جلوگیری می کند و این در حالی است که یک عبور دهنده ی لبه یUV (UV edge tran Smitter) اجازه ی عبور نور UV را می دهد.

عیوب در شیشه ها

اگر چه شیشه یک ماده ی آمورف است ولی مانند مواد کریستالی دارای عیوب و رسوبات است. و همچنین دچار جدایش فاز می شود. شیشه را می توان برای حبس کردن عناصر رادیو اکتیو استفاده کرد .در این عناصر مانند عیوب نقطه ای یا فاز ثانویه تشکیل می شوند. همچنین سرعت نفوذ این عناصر از میان شیشه بر روی میزان آن ها در شیشه تأثیر دارند. این مسئله استفاده می شود تا بتوان مواد رادیو اکتیو یا سایر مواد را کنترل کرد.

شیشه ی غیر هموژن

به دلیل آنکه شیشه یک مایع فوق سرد شده است. نمی توان گفت که این ماده حتما باید هموژن باشد. شیشه های خاص می توانند بدون نیاز به فرآیند کریستالیزاسیون به دو فاز تبدیل شوند. هنگامی که این دو فاز شیشه ای باشند این مسأله باعث می شود که سدی در برابر جدایش فازی پدید نیاید. در مورد فرآیند جدایش فازی مایع – مایع ممکن است مرحله ای برای جوانه زنی وجود داشته باشد. البته در این نوع تبدیلات ممکن است استعاله ی اسپینودال (Spinodal) نیز رخ می دهد. که هر دوی این استعاله ها به نفوذ وابسته اند.
قوانین امتزاج ناپذیری در شیشه ها بسیار مهم است. این مسئله مخصوصاً در شیشه های تولید شده با تکنولوژی روز نمود دارد. برای مثال امتزاج ناپذیری در شکل دهی شیشه – سرامیک ها ، تولید شیشه ی وایکور (Vycor) و شیشه های اپتیکی و تشکیل رسوب در شیشه ها مهم می باشد. بسیاری از اکسیدهای دوتایی و سه تایی در کنار سیلیس از خود مشکلات امتزاج پذیری نشان می دهند.
در دیاگرام فازی ناحیه ای وجود دارد که یک مایع به دو مایع با ترکیب شیمیایی متفاوت تبدیل می شود. این ناحیه گپ امتزاج پذیری (imisciblity gap) نامیده می شود. در زیر برخی از سیستم هایی که مشکل امتزاج پذیری دارند را نام برده ایم:

شیشه ها (2)

شیشه ها (2)

شکل 4 دیاگرام فازیشیشه ها (2) را نشان می دهد. در دمای پایین و در گوشه ی غنی از سیلیس دیاگرام ، فاز مایع به دو بخش مایع با ترکیب شیمیایی متفاوت تبدیل می شود. این دو مایع به صورت دو شکل گنبد مانند در شکل نشان داده شده اند. خط تیره نشان دهنده ی خط تقریبی ناحیه ی امتزاج ناپذیری است. مشکلی که در اندازه گیری این خط وجود دارد. این است که این پدیده در دمای پایین رخ می دهد و از این رو سرعت آن پایین است . و از این رو اندازه گیری آن مشکل است. دراین وضعیت میل جدایش فازی بیشتر از میل به کریستالیزاسیون است . البته کریستالیزاسیون مساعد تر از جدایش فازی است اما به دلیل آنکه جدایش فازی نیازی به باز آرایی اتم ها ندارد، این پدیده رخ می دهد. به عنوان یک قانون کلی برای سیلیس باید گفت که امتزاج ناپذیری با افزودنشیشه ها (2) افزایش می یابد اما با افزودنشیشه ها (2) کم می شود. در شیشه های وایکور از قوانین جدایش فازی استفاده می شود. در فرآیند تولید شیشه وایکور، شیشه ای پدید می آید که دارایشیشه ها (2) و 4 درصد تخلخل است.این نوع شیشه به عنوان فیلتر وبیومواد مخصوصا در جاهایی که تخلخل مهم می باشد، استفاده می شود. در فرآیند تولید وایکور، شیشه ای تولید می شود که پس از فرآیند شکل دهی دنس می گردد و شیشه ای با سیلیس خالص پدید می آید که در دمای پایین تر نسبت به کوارتز خالص شکل دهی گشته است

شیشه ی آلومینیوم – ایتریمی

شیشه های آلومینیوم –ایتریایی (YA) دارای درصد آلومینایی در گسترده ی تقریبی 75.6- 59.8 هستند. با این درصد آلومینایک شیشه ی دو فازی تشکیل می شود که در آن یک فاز قطره مانند در فاز دیگر تشکیل شده است. این شیشه به طور خود بخودی به صورت شیشه ی آلومینیوم – ایتریمی یا مخلوطی ازشیشه ها (3) تبدیل می شود. درشیشه های YA پدیده ای به نام پلی مورفیزم (Polymorphism) رخ می دهد

شیشه ی رنگی

اگر چه در بیشتر کاربردهای شیشه نیاز است تا این ماده بی رنگ باشد اما در برخی از کاربردها نیاز است شیشه رنگی باشد. هنگامی که پنجره های یک کلیسا رنگی باشد، تأثیر پذیری ازمحیط بیشتر می شود . درشیشه ها معمولا بوسیله ی افزودن اکسیدهای انتقالی و یا اکسیدهای عناصر خاک های کمیاب (rave –eavth) به بچ ماده ی اولیه ی آنها، رنگی می شوند. جدول 1 لیستی از رنگ های تولیدی بوسیله ی مواد رنگی کننده ی شیشه هاست . زرد کم رنگ، نارنجی و رنگ های قرمز بوسیله ی فلزات گران بها درحالت کلوئیدی تولید می شود. طلا (Au) رنگ قرمز، یا قوتی تولید می کند. (البته این شیشه ها گران قیمت هستند). سولفید کادمیم (cds) محصولاتی با رنگ زرد تولید می کند. اما هنگامی که علاوه بر se ، cds نیز استفاده شود. محصولاتی با رنگ قرمز یا قوتی با شدت رنگ بالا تولید می شود.

شیشه ها (3)

شیشه بوسیله ی افزودن دوپانت ها (dopants) رنگرزی می شوند. در واقع با افزودن این دو پانت ها در شیشه عیوب نقطه ای پدید می آوریم. رنگ شیشه به نوع دو پانت و حالت اکسیداسیون آن بستگی دارد.
دو پانت ها می توانند اثر بی رنگ کننده (decdorizo) ، پوشش دهنده (mask) یا اصلاح کننده (modify) داشته باشند. ما می توانیم اثرات رنگی آهن را بوسیله ی افزایش cr خنثی کنیم؛ البته اگر درصدشیشه ها (3) زیاد باشد اضافی به صورتشیشه ها (3) خارج می شود. اگر این شیشه به روش دمیدن شکل دهی شود، این پلیت لت هایشیشه ها (3) منظم گشته و شیشه ای اپک به نام آونتورین کرومی (chromium aventurine) تولید می کنند. مس (cu) برای تولید شیشه ی آبی مصری (Egyptian Blue glass) استفاده می شود.
CO (کبالت ) دربرخی از شیشه های پالایش یافته ی تولید در قرن دوازدهم استفاده می شده است. البته Co در تولید لعاب های پرسلانی مورد استفاده در چین ( در دوره ی سلسله ی منیگ وتانگ) استفاده می شده است. کبالت مورد استفاده در این لعاب ها رنگ آبی کبالتی تولید می کند.
با افزودن Se به شیشه های دپ شده با Cds باعث پدید آمدن رنگ یاقوتی سلینومی (Selenium Ruby) می شود. جزئیات پدید آمده ازهر کدام از این رنگ ها به ترکیب شیمیایی و شرایط پخت شیشه بستگی دارد.
شرکت کورینگ (Cornig) میکرو بارکدهایی با شیشه دپ شده با خاکهای کم یاب تولید کرده است. خاکهای کم یاب دارای باندهای نشر کم پهنا هستند و از میان 13 عنصر خاکهای قلیایی که مورد آزمایش قرار گرفته ، تنها 4 عنصر (Tm,Ce,Tb و Dy) می توانند در برابر تابش UV برانگیخته شوند. و لذا می توان از آنها در شناسایی بوسیله ی UV استفاده کرد. این نوع بارکدها همچنین مشکلات تداخل با سایر بارکدها را نیز ندارد. از این بارکدها در کاربردهای بیولوژیکی استفاده می شود زیرا سمی نیستند.(البته بر چسب زنی با کوانتوم دات ها خطرات کمتری دارد) و می توان از آنها در کاربردهای ژنتیکی استفاده کرد. با استفاده از چند عنصر خاکی کمیاب می توان ترکیب رنگی بیشتر پدید آورد.
شیشه های رنگی خاص شامل موارد زیر می شود :

شیشه ی یاقوتی یا کرانبری ( Cranberry )
 

شیشه ی یاقوتی با افزودن Au به شیشه سربی با حضور Sn پدید می آید. شیشه ی کرانبری که اولین بار در سال 1685 گزارش شده است، یک نوع شیشه ی بی رنگ (معمولاً صورتی کم رنگ ) است. علت پدید آمدن این رنگ در صد کم طلای موجود در آن است . راز تولید شیشه قرمز رنگ برای قرن ها ی زیادی گم شده بود و در قرن هفدهم دوباره کشف شد.

شیشه ی اورانیومی یا وازلینی

محصولات اورانیومی هنگامی که در شیشه ی با سرب بالا استفاده شود، رنگ قرمز تیره تولید می کند. البته شیشه های اورانیومی دیگری نیز وجود دارد که با صطلاح به آنها شیشه های وازلینی (Vaseline glass) می گویند. این نوع شیشه ها دارای رنگ سبز هستند. مسأله ای که این نوع شیشه ها را خاص کرده است این است که این نوع شیشه ها هنگام تابش اشعه ی UV به آنها ، خاصیت فلئورسانس پیدا می کنند. از سال 1940 تنها اورانیوم تهی شده (uranium depleted) به عنوان دو پانت استفاده می شود. علت استفاده از این نوع دو پانت، فراوانی آن است. اما از 100 سال گذشته به بعد اورانیوم طبیعی (natural uranium) استفاده می شود.

شیشه ها (3)

شکل 1 مثالی از یک شیشه ی وازلینی است.

لیزر شیشه ای

عناصر خاکهای کم یاب (rave – earth elements) مانند Nd در تولید شیشه های لیزر و سایر وسایل اپتیکی کاربرد دارند. (شکل 2) . لیزر شیشه ای دپ شده با Nd (Nd-doped glass laser) مانند یک لیزر یاقوتی (ruby laser) کار می کند . اگر چه نوع شیشه ای دارای تفاوت هایی است . میله ی لیزر قطری بینشیشه ها (1) اینچ دارد و معمولا بوسیله ی یک لامپ حلزونی تخلیه می شود. علت استفاده از لامپ های حلزونی این است که طول غیر بار دار این نوع لامپ ها از لامپ های خطی طولانی تر است. لیزر شیشه ای دپ شده با Nd دارای بازدهی بیش از 2% است. این بازده 4 برابر بازده یک لیزر یاقوتی است. به دلیل آنکه رسانایی گرمایی شیشه پایین است بنابراین نیاز به زمان بیشتری برای خنک سازی است.

شیشه ها (3)

رسوبات در شیشه

وجود رسوبات در شیشه عموما اجتناب ناپذیر است. سوال این است که چه زمانی طول می کشد تا رسوبات تشکیل شود. (مخصوصا اگر جوانه زنی هموژن باشد). ما ممکن است عوامل هسته زا برای تسریع جوانه زنی به شیشه اضافه کنیم. جوانه زنی کریستال ها در شیشه از تئوری کلاسیک پیروی می کند. رسوبات تشکیل شده در شیشه می تواند موجب رنگی شدن شیشه شود.

شیشه به عنوان لعاب

لعاب ها مانند شیشه ها در همه جا دیده می شوند. لعاب کاری (glazing) استفاده از ویژگی های ویسکوز شیشه و تشکیل یک لایه ی یک پارچه و صاف بر روی یک زیر لایه ی سرامیکی است.
مینا کاری (enameling) تشکیل همان لایه بر روی یک زیر لایه ی فلزی است. چیزی که باید به آن توجه کرد این است که عموما لعاب ها قدمت زیادتری دارند. در ادامه به بیان برخی از اصطلاحات لعاب می پردازیم:

زیر لعاب ( underglaze )

هنگامی که یک بیسکوییت سرامیکی را می خواهیم مورد عملیات دکور قرار دهیم باید قبل از آن یک لعاب کاری بر روی آن انجام دهیم که این نوع لعاب را زیر لعاب گویند. این لایه به علت تشکیل بهتر دکور بر روی بدنه اعمال می شود. پس از آن که فرآیند دکوراسیون جسم سرامیکی انجام شود برروی آن یک لعاب دیگر اعمال می شود. البته این لعاب پیش از پخت دکور اعمال می شود.
عیب کراولینگ لعاب ( glaze craweling ) این عیب که در لعاب اتفاق می افتد بدین صورت است که لعاب از لایه ی سرامیکی زیرین جدا می گردد. این پدیده به دلیل عدم ترشوندگی بیسکوییت سرامیکی بالعاب در طی فرآیند پخت اتفاق می افتد.
لعاب ترک خورده ( crackle glaze )اگر انبساط گرماییشیشه ها (3) لعاب از سرامیک بستر بزرگ تر باشد، لعاب ممکن است در طی فرآیند سرد کردن (در طی پخت) بشکند. هنگامی که غلظت یون سدیم و پتاسیم در لعاب بیشتر باشد، ترک ها بیشتر پدید می آیند. هنگامی که سرعت سرد کردن بالا رود ترک های حاصل ریزتر می شوند.
لعابهای سلادون (celadon )، تنموکو (tenmoku)، راکو (raku) و کوپر ( copper) لعاب های ویژه ای هستند که در دنیای هنر سرامیک یافت می شوند.
لعاب های سلادوناین لعاب ها اولین بار در حدود 3500 سال پیش تولید شده اند. این لعاب ها دارای گستره ی رنگی از آبی کم رنگ تا سبز مایل به زرد هستند و می توانند رنگی کاملا تیره پدید آورند. رنگ تولیدی در این لعاب ها بوسیله ی آهن تولید می شود(3.o - o.5 در صدشیشه ها (3) به لعاب افزوده می شود). ظروف لعاب خورده توسط این نوع لعاب سپس در دمای تقریباًشیشه ها (3) پخت می گردند. ظروف تولید شده با این لعاب ها زیبایی خاصی داشته و در کاربردهای تزئینی استفاده می شوند. مثلا کوزه ی لعاب خورده با این لعاب که درکشور کره تولید شده است، درسال 1946 از سوی کشور کره به هاری ترومن رئیس جمهور آمریکا هدیه شد. امروزه این ظرف که 23cm ارتفاع دارد قیمتی برابر با 3 میلیون دلار دارد.
لعاب تنموکواین نوع لعاب در زمان سلسله ی سونگ (sung Dynasty) بوجود آمده است. و دارای رنگ قهوه ای تیره یا حتی سیاه است. برای ایجاد این رنگ میزان 8-5 درصد وزنیشیشه ها (3) به لعاب افزوده می شود. تشکیل مناسب این نوع لعاب به شرایط اکسایش – کاهش اتمسفر پخت بستگی دارد. و در شرایط مختلف اکسایش و کاهش رنگ های متنوعی پدید می آید. در لعاب های کوپرنیز از کربنات مس به عنوان منبع Cuاستفاده می شود. البته در طی فرآیند پختشیشه ها (3) تجزیه گشته و Cuoباقی می ماند. Cuo تولید نیز با مونواکسیدکربن (CO) موجود در کوره واکنش داده تا ذرات مس در لعاب تشکیل شوند. این ذرات رنگ قرمز به لعاب می دهند.
لعاب های راکولعاب های راکو اغلباً لعاب هایی فلزی به نظر می رسند. (اگر بوسیله ی یک لایه از فلز Ti پوشش داده شده باشند)
یک روش پیشرفته در تولید لعاب های راکو بدین صورت است که ظروف سرامیکی به شیوه ی معمولی پخت می شوند سپس آنها را در داخل یک محیط کاهنده مانند خاک اره وارد می کنند و سپس آنها را قبل از آنکه بتوانند اکسید شوند، به سرعت سرد می کنند. این نوع لعاب ها اغلبا حالت استثنا داشته و می توانند با زمان تغییر کنند. این مسئله ساده است. زیرا آنها در طی فرآیندهای بعدی تولید اکسید می شوند. این نوع لعاب بر خلاف سایر لعاب ها خنثی نبوده و تنها برای دکوراسیون استفاده می شوند.
لعاب های کریستالی ( crystalline glaze )این نوع لعاب ها ، لعاب هایی دکوراسیونی هستند اما به طور مستقیم با تکنولوژی تشکیل شیشه – سرامیک در ارتباطند. کریستال ها بوسیله ی سرد کردن آهسته لعاب ایجاد می شوند. این سرد کردن آهسته به کریستال های لعاب اجازه ی رشد کردن می دهند. رشد این کریستال ها مد نظر است؛ زیرا لعاب ضخامت کمی داشته و از این رو کریستال ها باید به صورت پلیت لت (platelets) در آیند. برای آنکه عمل رشد کریستال ها بهتر انجام شود از جوانه زاهای تیتانیایی استفاده می شود. این نوع جوانه زاها در لعاب های باویسکوزیته ی پایین استفاده می شوند و در آنهاشیشه ها (3) تشکیل می شود. ترکیب شیمیایی این نوع لعاب ها بسیار مهم است. در آن شیشه ها (3) وشیشه ها (3) به میزان کم و Pbo به میزان 10-8 درصد وزنی استفاده می شود. رشد کریستال با اضافه شدن fe به لعاب افزایش می یابد. اما این اضافه شدن می تواند همچنین موجب پدید آمدن اثراتی بر سایر دو پانت های اضافه شده به لعاب شود.
سفالگران امروزی ازشیشه ها (3) به عنوان اصلاح کننده و تولید کننده ی کریستال های ویلمایت (Crystals Willemite) استفاده می کنند. (ویلمایت یک مینرال کمیاب از روی است). این تکنیک نیازمند مهارت ویژه است. زیرا افزودن مقادیر زیادشیشه ها (3) به لعاب باعث می شود ویسکوزیته ی آن حتی در دماهای پایین نیز کم باشد، بنابراین این مسئله باعث می شود که لعاب از روی سطح سفالی جریان پیدا کند. رشد اسفرولیتی (Spherulite growth) از جوانه زا در لعاب در شکل 3 نشان داده شده است. هر اسفرولیت در واقع توده ای از کریستال های شعاعی است که با توجه به مرکز اسفرولیت دورهم گرد آمده اند.

شیشه ها (1)

لعاب های اپک ( opaque glazes ) اگر به لعاب مذاب کریستال هایی افزوده شود، لعاب می تواند اپک شود. برای این کار می توان ازO_2 S_n یا زیر کن استفاده کرد. که زیر کن ارزان تر است .شیشه ها (3) برای تولید رنگ سفید در لعاب های زیرکنی (Zircon glaze) استفاده می شود. برای اپک کردن کمتر ازشیشه ها (3) استفاده می شود زیرا کریستال های روتایل طلایی رنگ هستند. و بنابراین لعاب را به رنگ زرد در می آورند. ما همچنین می توانیم با تشکیل کریستال لعاب را اپک کنیم (مثلا ولاستونیت:شیشه ها (3). این کار بوسیله ی عملیات حرارتی مناسب، حبس کردن گاز (هوا یاشیشه ها (3) ) ) و یا بوسیله ی جدایش فازی مایع – مایع انجام می شود. لعاب های مات (Matt glazes) بوسیله ی تشکیل کریستال های بسیار کوچک در لعاب بوجود می آیند (مثلا کریستال های ولاستونیت برای لعاب های مات – آهکی و وبلیمایت (شیشه ها (3):Willemite ) برای لعاب های مات – زینک). کریستال های ریز ولاستونیت بوسیله ی افزودن کلسیت به لعاب پایه سیلیس تشکیل می شود. یک روش دیگر برای این کار افزودن مقادیر زیادی از ماده ی کریستالی به لعاب است تا در طی فرآیند پخت درصدی از آن به صورت کریستالی باقی بماند

رنگ در لعاب و لعاب موضوعاتی هستند که امروزه تحقیقات فراوانی بر روی آنها به عمل آورده شده است. امروزه رنگ های جدیدی بوسیله ی افزودن نانو ذرات در لعاب پدید می آید. عموما نانو ذرات نقره و طلا رنگ طلایی بوجود می آورند. و نانو ذرات مس رنگ قرمز بوجود می آورند. توضیح در مورد نحوه ی پدید آمدن رنگ در لعاب واقعاً پیچیده تر از نحوه ی پدید آمدن رنگ در شیشه هاست. زیرا لعاب بر روی یک لایه اعمال می شود و از این سو نباید ترانسپارنت باشد. همچنین لعاب یک لایه ی نازک است و در اتمسفر مختلف (کاهنده – اکسید کننده) بوجود می آید از این دو بررسی عوامل موثر بر تشکیل یک لعاب مشکل است.

لعاب های رنگی ( Colored glazes )

در لعاب های رنگی باید از پیگمنت های سرامیکی با پایداری مناسب بهره برد. از اکسیدهای رنگ زای ارزان قیمت می توان برای ایجاد رنگ در محصولات متنوع سفالی بهره برد. البته بسیاری از مواد رنگ زا برای لعاب همانهایی هستند که ما برای رنگرزی شیشه از آنها استفاده می کنیم
اکسید کبالت شیشه ها (4) یک اکسید سیاه رنگ است اما کمتر از یک درصد وزنی از آن در لعاب ایجاد رنگ آبی تیره می کند (اگر چه در بیشتر موارد از کربنات کبالت استفاده می شود).
به دلیل آنکه شیشه ها (4) در این گونه لعاب ها بوجود می آید، ویسکوزیته ی لعاب تغییر می کند.
اکسید کروم که تا 3-2% وزنی نیز می تواند به لعاب افزوده شود به جای رنگ سبز، رنگهای زرد، صورتی یا قهوه ای بوجود می آورد (رنگ قرمز در حضور سرب در ترکیب لعاب اولیه پدید می آید. اگر Zn در لعاب اولیه وجود داشته باشد، رنگ لعاب قهوه ای می شود مگر آنکه سرب ها هم وجود داشته باشد. که در صورت وجود سرب و روی در لعاب اولیه رنگ زرد پدید می آید).
شیشه ها (4)که به صورت کربنات به لعاب افزوده می شود، رنگ لعاب را به صورت قهوه ای در آورده البته این ماده می تواند رنگ قرمز، بنفش و حتی سیاه نیز تولید کند. که این تغییر رنگ به درصد سدیم موجود در لعاب اولیه بستگی دارد. افزودن Cuo به اندازه ی %2-1 وزنی به یک لعاب با سدیم بسیار کم سبب پدید آمدن رنگ فیروزه ای می شود. این درحالی است که افزودن بیش از 3% از این رنگ زا باعث پدید آمدن رنگ سبز یا آبی می شود. اگر درصد Cuo در لعاب افزایش یابد، لعاب ظاهری فلزی مانند مفرغ به خود می گیرد. اگر لعاب دارای 0.3– 2 درصد وزنی Cuo در اتمسفر کاهنده پخت شود، رنگ قرمز مسی پدید می آید. این رنگ به دلیل حضور ذرات کلوئیدی CU درلعاب بوجود می آید.
اگر یک لعاب رنگ زرد داشته باشد، این رنگ ممکن است بوسیله ی افزودن Cds یا Cdse بوجود آمده باشد. البته این نوع افزودنی های رنگ زا ممکن است رنگ های قرمز یا نارنجی را نیز پدید آورند. درصورت حضور سرب در این نوع لعاب ها ، Pds تشکیل می شود که باعث سیاه شدن لعاب می شود. زیرکن در صنعت برای کمک کردن به پایدار شدن این نوع رنگ ها (برپایه ی cd) استفاده می شود. درحقیقت شیشه ها (4) (زیر کن وانادیومی آبی رنگ) و شیشه ها (4)(pr,zr) (زیر کن پراسئودیومی زرد رنگ) مهم ترین تثبیت کننده های مورد استفاده در این رنگ هاست. هنگامی که اورانیوم به لعاب اضافه شود، به جای پدید آوردن رنگ زرد کم رنگ، رنگ قهوه ای تیره پدید می آید. (اورانیوم در شیشه های وازلینی تولید رنگ زرد کم رنگ می کند). البته بسته به ترکیب لعاب ، اورانیوم می تواند رنگ های قرمز یا نارنجی روشن نیز بدهد.

لعاب نمکی ( saltglaze )

دراین نوع فرآیند لعاب کاری سفال در کوره های با دمای بالا با نمک واکنش می دهد. در واقع سفالگر نمک را بر روی سفال اعمال می کند. این فرآیند هنگامی اتفاق می افتد که سفال در داخل کوره است. این فن بوسیله ی سفالگران ایرانی وانگلیسی در دهه ی 1700 ابداع گشته است. همچنین شما می توانید مثال های فراوانی از فرآیند رنگ آمیزی بوسیله ی اکسیدهای فلزی را در آلمان ببنید. در این نوع لعاب ها نمک با رس واکنش داده و تشکیل لایه ای شیشه ای بر روی سطح می دهد. این تکنیک دقیقاً فرآیند خوردگی خاک نسوز در دمای بالاست (بوسیله ی سود سوز آور).
واژه ی مینا (enamel) معمولا در هنگامی استفاده می شود که یک لایه ی لعابی بر روی فلز اعمال می شود. البته این واژه در هنگامی که یک لایه لعابی بر روی لعاب اولیه اعمال می شود نیز استفاده می شود. بازار مصرف مینا بسیار بزرگ است. این بازار از لوازم بهداشتی تا جواهر آلات گسترده است.

خوردگی شیشه و لعاب

این تصور وجود دارد که شیشه خنثی است اما باید بدانید که اسید سیتریک و اسید استیک موجود در غذاها و میوه ها می توانند بایون های موجود در شیشه واکنش دهند و ترکیبات کمپلکس پدید آورند. با خروج یون های قلیایی از داخل شیشه یون های هیدروژن مثبت جایگزین آنها می شود. هنگامی که بخواهیم استحکام سطح شیشه را افزایش دهیم باید یون های پتاسیم و سدیم مثبت را با لیتیم مثبت ( شیشه ها (4) ) جایگزین کنیم. در شیشه ی آلایش یافته (Stain glass) می توان یون نقره ی مثبت و مس را جایگزین شیشه ها (4) کرد.
همانند مواد کریستالی ، شیشه ها نیز دارای عیوب کریستالی اند. یکی از چالش هایی که ما با آنها روبرو هستیم محاسبه ی خواص بوجود آمده ازعیوب (مانند نفوذ) در شیشه هاست. زیرا در شیشه ها شبکه ی مرجع وجود ندارد.

انواع شیشه های سرامیکی

همه ی شیشه ها براساس تتراهدرال های سیلیسی ایجاد نمی شوند؛ واحدهای ساختاری این شیشه ها در جدول 1 آورده شده است. برخی از ترکیبات این شیشه ها نیز در جدول 2 آورده شده است.

شیشه ها (4)

شیشه ها (4)

شیشه ی سیلیکاتی ( سودالایم )

این شیشه ها بر پایه ی شیشه ها (4) هستند. (معمولا این نوع شیشه ها علاوه بر این مواد دارای شیشه ها (4) نیز هستند.) این نوع شیشه نستبا ارزان هستند و دارای دوام خوبی نیز هستند همچنین از این نوع شیشه به طور فراوان در صنعت بسته بندی و ساختمان استفاده می شود. ضریب انبساط حرارتی شیشه ها (4) این نوع شیشه ها ناچیز نیست. همچنین این نوع از شیشه ها عایق های خوبی نیستند. استفاده های عمده از این نوع شیشه در صفحات شیشه ای ،بطری ها ، وسایل غذا خوری و صنعت الکترونیک (حباب لامپ) است. شیشه های آلومینو سیلیکاتی قلیایی (شیشه ها (4)= عنصر قلیایی) دارای ضریب انبساط حرارتی پایینی است. این نوع شیشه دارای دوام و خواص عایق کاری بهتری است. وهمچنین نسبت به سایر شیشه های هم گروه استحکام بالاتری دارد. استفاده های این نوع شیشه عبارتست از تیوپ های اختراق، حباب های لامپ هالوژن و به عنوان بسترهای صنعت الکترونیک کاربرد دارد.

شیشه ی سربی

ترکیب عمومی این شیشه ها سیلیکات های قلیایی سربی استشیشه ها (4). در این نوع شیشه ها Pbo به جای CaO در شیشه ی سودالایمی قرار گرفته است. این نوع شیشه دارای مقاومت بالایی است. همچنین ضریب انبساط حرارتی آن بالاست. و دمای نرم شوندگی پایینی دارد. دلیل آنکه از این نوع شیشه ها در تولید ظروف کریستال استفاده می شود این است که ضریب شکست این نوع شیشه بالاست و علاوه بر این که از این شیشه ها در ظروف تزئینی استفاده می شود، از آنها در ساخت تیوپ های لامپ، لامپ تصویر تلویزیون و تیوپ های ترمومترها استفاده می شود. در ظروف کریستال انگلیسی که به صورت سنتی تولید می شوند، میزان Pbo حداقل 30% است. برطبق رهنمود اتحادیه ی اروپا میزان Pbo باید بیش از 24 درصد باشد. همچنین بر طبق استاندارد اروپا شیشه های کریستال سربی باز یافت نمی شوند. شیشه های سربی که برای ساخت حفاظ های تابشی استفاده می شوند ممکن است دارای بیش از 65% Pbo باشند. کاربرد این گونه شیشه ها در لامپ تصویر تلویزیون است اگر چه شیشه های باریمی برای ساخت صفحه و تابلوهای تلویزیون استفاده می شود. (تفنگ الکترونی تلویزیون اشعه ی x ساتع می کند که این نوع شیشه باید این تابش ها را جذب کند.)شیشه های سرب – بوراتی می توانند به عنوان لحیم های شیشه ای استفاده شوند. این نوع شیشه ها دارای در صد کمیشیشه ها (4) است و کاملا خنثی است.
شیشه های فیلنیتی (flint glass) دارای تفرق بالایی است. در واقع این نوع شیشه ها از نوع شیشه های سیلیکاتی قلیایی ـ سربی است که از ذوب سنگ های فیلنیتی ساخته شده اند(فیلنیت فرم خالص سیلیس است) .لازم به توضیح است که این نوع سنگ کلسینه شده و به طور فراوان در ساخت بدنه های سرامیکی استفاده می شود.

شیشه ی بورانی ( شیشه ی بورو سیلیکاتی )

شیشه های بوروسیلیکاتی قلیاییشیشه ها (4) به خاطر ضریب انبساط حرارتیشیشه ها (4) کوچکشان ویژه هستند. این نوع شیشه دوام بالایی داشته و خواص الکتریکی مفیدی دارند. پیرکس (Pyrex) که یک نوع ماده در تولید وسایل پخت و پز است . از جنس بروسیلیکات است .شیشه ی بروسیلیکاتی به طور وسیع در فرآیندهای شیمیایی استفاده می شود. برخی از شیشه های براتی دارای دمای ذوب پایینیشیشه ها (4) هستند از این رو آنها را می توان به همراه سایر شیشه ها استفاده کرد. شیشه ی بروسیلیکاتی – زنیکی به شیشه های منفعل شهرت دارند. این شیشه ها مواد قلیایی ندارند و از این رو از آنها می توان در ساخت اجزای الکترونیکی سیلیسیمی استفاده کرد.

سیلیس فیوزد

این نوع شیشه از نوع سیلیس خالص است. این شیشه ها ، شیشه های سیلیکاتی برای کاربردهای دما بالا هستند. ضریب انبساط حرارتی این نوع شیشه ها نزدیک به صفر است. این نوع شیشه ها برای تولید آینه های تلسکوپ و زیر لایه ها (Substrates) استفاده می شود. به خاطر داشتن ضریب انبساط حرارتی نزدیک به صفر به این شیشه ها ، شیشه های با انبساط حرارتی بسیار پایین (VLE Silica) می گویند .
شیشه های VLE دارای 7 درصد وزنیشیشه ها (4) برای تولید لفافه های لیتوگرافی نوری (masks photolithography) استفاده می شود. البته به خاطر دمای بالای فرآیند شکل دهی این شیشه ها ؛ می توان به جای آنها از شیشه های وایکور استفاده کرد.

شیشه ی فسفاتی ( phosphate – glass )
 

شیشه های فسفاتی شیشه های مهمی هستند زیرا این نوع شیشه ها خاصیت نیمه رسانایی دارند. یکی از کاربرد این مواد در ساخت تقویت کننده های الکترون (electron multipliers) است . در این نوع وسایل با استفاده از دپ کردن Er (افزودنشیشه ها (4) ) ، این تقویت کننده ها ساخته می شود. کایتون های موجود در این نوع شیشه ها معمولا V و P هستند اما لابراتوار ملی او آ ک ریچ (Oak Ridge National labroatory) یک نوع شیشه ی فسفاتی اندیوم – سربی تولید کرده است که دارای ضریب شکست بالایی است. از ویژگی های دیگر این شیشه می توان به دمای ذوب پایین و خاصیت ترانسپارنتی در برابر گسترده ی وسیعی از طول موج ها را نام برد. به دلیل آنکه این نوع شیشه می تواند درصد بالایی از عناصر خاکهای کم یاب را در خود حل کنند، از آنها در تولید وسایل نوری اکتیو مانند آمپلی فایرهای فیبر اپتیک و لیزرها استفاده می شود. شیشه های فسفاتی دپ شده با Nd در لیزرهای حالت جامد استفاده می شوند. ترکیب شیمیایی نمونه وار از این نوع شیشه عبارتست ازشیشه ها (4) است. که در صد Nd بین O.2-2.O درصد مولی است.

شیشه ی چالکوژیندی ( Chalcogenide glass )

این نوع شیشه براساس Se,As و Te بوجود می آید. این شیشه ها نور فرو سرخ را از خود عبور می دهند و نیمه رسانا های غیر اکسیدی هستند. از این نوع شیشه در وسایل و لنزهای الکترونیکی ویژه استفاده می شود. در این وسایل هنگامی که ولتاژ اعمالی به آنها از میزان بحرانی فراتر رود، به طور ناگهانی تغییر رسانایی رخ می دهد. کاربرد این نوع شیشه ها بسیار خاص است زیرا این شیشه ها دوام پایینی داشته و دمای نرم شوندگی شان پایین است.

شیشه ی فلورایدی ( fluoride glass )

عموماً شیشه های هالیدی بر پایه یشیشه ها (4) را شیشه های فلورایدی می گویند. کاربرد این نوع شیشه ها در وسایل همسو کننده نوری (optical waveguides) است. و درجاهایی که قیمت توجیه پذیر باشد استفاده می شوند.

شیشه ی طبیعی

این مسئله که شیشه در طبیعت بوجود می آید حتی این پدیده یک امر نسبتاً معمولی است، باعث شگفتی بسیاری از مردم می شود. تکتیت ها (tektites) درهنگام برخورد شهاب سنگ ها به زمین و در دهانه ی حاصله از برخورد شهاب سنگ پدید می آیند. مولد اویت (Moldavite) نیز یک شیشه ی سبز رنگ است که در مولداوی (Moldavia) یافت می شود . فولگلاریت (fulgarite) نیز تیوپ های شکننده از شیشه هستند که در هنگام برخورد برق آسمان به خاکهای ماسه ای پدید می آید. ابسیدیان (obsidian) نیز یک نوع شیشه است که در جریان های آتش فشانی تشکیل می شود. رنگ سیاه رنگ این نوع شیشه به خاطر ناخالصی پدید می آید. در طی دوره ی پارینه سنگی از ابسیدیان در ساخت وسایل استفاده می شده است. سنگ پا (Pamice) یکی دیگر از شیشه هایی است که از فوران های آتش فشانی تشکیل می شود. این ماده می تواند تخلخل های فراوانی داشته باشد. (درصورتی که ماده ی اولیه ی تشکیل دهنده ی آن دارای مواد گازی فراوانی باشد). سنگ پا شکل متخلخل ابسیدیان است

شیشه ها

مقدمه:

دراین مقاله ها در مورد انواع مختلف شیشه و برخی از کاربردهای آنها صحبت می کنیم.
شیشه ها یکی از انواع مهم موادمهندسی محسوب می شوند. این مواد در پنجره ها، ساخت بطری، لیزرها، الیاف نوری، عایق ها، لعاب کاری (glazing) ومینا کاری (enamelihg)، چاقوی جراحی، وسایل هنری وتابلوهای راهنمایی - رانندگی استفاده می شوند.
شیشه ها معمولا بازیافت می شوند واز این رو دوستدار محیط زیست هستند.مصریان آثار شیشه ای متنوعی بر جای گذاشته اند ولی آنها اولین کسانی نبودند که از این ماده استفاده می کردند.در دوران های دیرینه سنگی (paleolithic Times) شیشه های اولیه و شیشه های طبیعی (Obsidian: نوعی شیشه ی مصنوعی بدست آمده از آتش فشان ها ) بسیاراهمیت داشتند به خاطر اهمیت زیاد این ماده می توان گفت که شیشه نقش مهمی در شکل دهی تمدن ما داشته است.
به هر حال تعریفات مختلفی برای شیشه ها بیان شده است. دراین مقاله سعی می کنیم بگوییم چرا واژه های شیشه ای (glassy)، زجاجی (Vitreous) و آمورف (amor phous) همگی برای توصیف شیشه استفاده می شوند. همچنین سعی داریم جواب این سوال را بدهیم که: «شیشه چیست؟»
هنگام مطالعه ی این مقاله باید دو ذهنیت را داشته باشید:
1) ادعای Sturkey:"شیشه در دماهای بالا یک محلول شیمیایی است."
2) اگر شیشه که مایع فوق سرد شده است، پس جامد نیست وبنابراین یک ماده ی سرامیکی نیست (اما شیشه یک ماده ی سرامیکی است)

تعریف

تعریف کلاسیک شیشه براساس روش تاریخی تشکیل آن انجام شده است. البته این روش تعریف یک روش بسیار غیر معقولی برای تعریف هر ماده است. این مسئله باعث شده است تا امروز شیشه به چندین روش مختلف تعریف شود:
تعریف کلاسیک: شیشه یک مایع فوق سرد شده است(Supercooled liquid) مشکل بوجود آمده دراین تعریف این است که در برخی موارد می توان یک شیشه ی ویژه را به روشی تولید کرد که هیچگاه درحالت مایع قرار نداشته باشد.
ASTM شیشه را به صورت زیر تعریف کرده است:
"شیشه یک محصول غیر آلی از ترکیبی مذاب است که بدون آنکه کریستالی شود، سرد وصلب می گردد."
این تعریف نیز همان چیزی است که در تعریف کلاسیک آمده است. اما دراین تعریف شیشه ی پلیمری استثناء شده است. به وضوح مشخص است که استناد کردن به روش تولید برای تعریف یک گروه از مواد ایده آل و مناسب نمی باشد.

تعاریف دیگر :

1)" شیشه یک ماده ی جامد است که نظم دوربعد از خود نشان نمی دهد."
نداشتن نظم دوربعد یعنی ساختار شیشه درفواصل یک، دو یا سه برابر فاصله ی اجزای سازنده، دارای نظم نیست. این تعریف براساس مشاهدات حاصله از تفرق اشعه X، میکروسکوپ الکترونی عبوری (TEM) و... استوار است اما این تعریف نیز کمی قراردادی است زیرا به اندازه ی اجزاء تشکیل دهنده بستگی دارد.
2)" شیشه یک مایع است که قابلیت جاری شدن خود را از دست داده است."
این تعریف استوار است اما از تعریفی که بوسیله ی ASTM ارائه شده است فراگیرتر است .همچنین این تعریف از خاصیت مکانیکی برای تعریف شیشه استفاده می کند. درحقیقت این تعریف عملاً با دیدگاه فیزیک مدرن درباره ی شیشه مطابقت دارد.
اکثر شیشه هایی که ما در مورد آنها توضیح می دهیم، شیشه های با شبکه ی اکسیدی است . (مخصوصاً سیلیکات ها) تعریف ما از چنین شیشه هایی عبارتست از:
تجمعی جامد از تتراگونال هایی است که می توانند رئوس خود را به اشتراک گذاشته و البته این مواد نظم دور بعد ندارند.
دراین مقاله ما تنها درمورد شیشه های سرامیکی بحث می کنیم اما باید بدانیم که علاوه بر شیشه های سرامیکی، شیشه های فلزی و پلیمری نیز وجود دارد. شیشه های فلزی ترکیبات پیچیده ای هستند که در آنها عمل کریستالیزاسیون انجام نشده است. این مسئله بوسیله ی سریع سرد کردن فلز مذاب بوجود می آید.(این فرآیند اسپلات کوئنچینگ نامیده می شود). درادامه به بیان ویژگی شیشه ها می پردازیم:

ساختار

شیشه ها در اصل جامد های غیر کریستالی (یا آمورفی) هستند که در اغلب موارد از فریز شدن یک مایع فوق سرد شده بدست می آیند. دراین موارد نظم دور برد در آرایش اتمی وجود ندارد. البته نظم کوتاه برد (زیر 1nm) وجود دارد. این مواد دارای آرایش منظمی از سلولهای واحد نیستند.همانگونه که گفتیم شواهدی وجود دارد که ثابت می کند در شیشه ها نظم کوتاه برد وجود دارد.این نظم کوتاه برد به دلیل آرایش اتمی درمجاورت هر اتم (البته در فاصله ی کوتاه) بدست می آید. تلاش های فراوانی برای توصیف شیشه ها انجام شده است. که به بیان علت تشکیل شدن یا نشدن شیشه ها بحث می کند. دراین زمینه ما ازدو دیدگاه به شیشه ها نگاه می کنیم:
1) توجه به ساختار
2) توجه به مباحث کنیتیکی کریستالیزاسیون
درمورد اول ما به بیان هندسه ی اجزای تشکیل دهنده ی شیشه ها می پردازیم. همچنین دراین زمینه به بیان پیوندهای بین اتمی واستحکام پیوندها می پردازیم . درمورد دوم ما به بیان چگونگی دگرگونی های مایع به جامد در طی فرآیند سرد شدن می پردازیم.
دمای تبدیل شدن شیشه ای ( Tg )
درشکل 1 نموداری نشان داده شده است که در آن حجم ویژه به عنوان تابعی از دما رسم شده است.

شیشه ها (1)

این دیاگرام فرمی از دیاگرام استعاله ی دما – زمان (T.T.T) برای شیشه است. درهنگام سرد شدن مایع از دمای بالا دو پدید ه ممکن است در نقطه ی انجماد (Tm) اتفاق می افتد که عبارتند از :
1) اگر مایع کریستالیزه شود تغییرات حجم و سرعت سرد کردن گسسته است.
2) اگر کریستالیزاسیون اتفاق نیفتد، مایع به حالت فوق سرد شده تبدیل می شود و حجم در نزدیک دمای ذوب کاهش می یابد.
دردمای تبدیل شدن شیشه ای (Tg)، شیب نمودار کاهش می یابد و به شیب جامد کریستالی نزدیک می شود. این شکستگی بوجود آمده در نمودار سرد کردن نشان دهنده ی گذرگاه مایع فوق سرد شده به شیشه است. زیر دمای Tgساختار شیشه درحالت آسایش نیست زیرا این مواد اکنون جامد هستند. دراین ناحیه از Tg ویسکوزیته تقریبا شیشه ها (1) است. ضریب انبساط حالت شیشه ای معمولا نزدیک به ضریب انبساط جامد کریستالی است. اگر از سرعت های سرد کردن پایین تر استفاده شود، میزان آسایش ساختار افزایش می یابد. ومایع فوق سرد شده در دمای پایین تر تشکیل می شود. و شیشه ی حاصله ممکن است دانسیته ی بالاتری بدست آورند. (همانگونه که در شکل 1 دیده می شود)
فیزیک شیشه جنبه ی تردی آن را مورد بررسی قرار می دهد. در واقع این ویژگی یک ویژگی مایعات شیشه ساز در بالای دمای Tgاست واندزه ای از استعکام پیوندهای بین اتمی است. در ادامه ما درمورد شیشه ی نامحلول در آب یا بطری های شیشه ای آب صحبت می کنیم. البته چیزی که آگاهی کمتری از آن است این است که ما می توانیم آب را با سریع سرد کردن در اتاق مایع به حالت شیشه ای در آوریم. ماده ی حاصله یک شیشه ترد است اما این مسئله فهمیده شده است که بیشتر آب موجود در جهان به همین شکل وجود دارد.
تاریخچه
شیشه ماده ای است که پیوندی عمیق با تاریخچه ی انسان دارد. یکی از شواهد این مسئله استفاده از ابسیدیان (obsidian) یک شیشه ی طبیعی توسط بشر است. هیچ کس نمی داند که اولین جسم شیشه ای در چه زمانی ساخته شده است. قدیمی ترین یافته ها به 7000 سال پیش از میلاد برمی گردد. (البته ممکن است یافته هایی پیش از این تاریخ نیز وجود داشته باشد). درکاوش های باستان شناسی در بین النهرین روش های تولید شیشه کشف شده است . این کارها 4500 سال پیش از میلاد مسیح بوده است ومربوط به روش های تولید وسایل شیشه ای بوده است نه لعاب های مورد استفاده در وسایل سفالی. استفاده از شیشه در لعاب کاری سفال حتی به دوران های پیشین می رسد.

شیشه ها (1)

تقریبا در 3000 سال پیش از میلاد مسیح شیشه گران مصری شروع به تولید جواهر آلات شیشه ای و ظروف شیشه ای کوچک کردند. شیشه هم به عنوان یک جسم دکوری وهم به عنوان یک وسیله ی مورد استفاده در زندگی روزمره به شمار می آمد. قطعاتی از جواهر آلات شیشه ای در کاوش های اطراف کوه های مصر پیدا شده است. مثالی از این جواهرآلات شیشه ی فیزوزه ای آبی است که در شکل 2 دیده می شود. تقر یبا 1500 سال پیش از میلاد مسیح شیشه گران مصری ( در دوره ی touthmosis سوم ) روشی برای تولید قطعات تو خالی قابل استفاده، توسعه دادند. یک مثال قابل توجه از این نوع ساختار یک شیشه ی توخالی است که شبیه به سرماهی است (شکل 3) این ظرف بین سال های 1352 و 1336 قبل از میلاد ساخته شده است واین نظریه وجود دارد که برای نگه داری روغن خوش بو استفاده می شده است.

شیشه ها (1)

الگوی موجی این ظرف بسیار خاص است. در واقع این ظرف بوسیله ی کشیده شدن یک جسم تیز به شیشه ی خمیری شده تولید شده است.
نویسنده ی رومیPliny Fhe Elder (23-79 میلادی) اختراع شیشه را به صورت زیر توصیف می کند:
روزی یک کشتی که متعلق به چند تاجر نیتروم (Nitrum) بود در کنار ساحل لبنان کنونی توقف می کند. هنگام پخت غذا به دلیل نبود سنگ در ساحل، خدمه کشتی از کلوخ های نیترومی که در کشتی وجود داشته است. استفاده می کنند تا بتوانند دیگ غذا را در مکان مناسب استقرار دهند. پس از آنکه آتش روش شد، کلوخه ها با ماسه های ساحلی واکنش داده و تشکیل شیشه ی مذاب می دهد. این اولین منشع پدید آمدن شیشه است.
نیتروم (Nitrum) یک نوع سدیم کربنات (Soda) طبیعی است .این ماده یکی از اجزای مهم در شیشه های قدیمی و مدرن است. خاکستر گیاهان نیز یک منبع فقیر از سدیم برای شیشه گران فراهم می کند. گیاهان علف شوره (Saltwort) و رازیانه ی آبی (glass wort) از جمله گیاهانی هستند که برای مهیا شدن سدیم از آنها استفاده می شده است.
یکی از معمولی ترین روش ها برای شکل دهی شیشه روش دمش هوا است. اگر چه این تکنیک بیش از دوهزار سال پیش توسعه یافت، لوله های تولیدی به روش دمش در طی زمان تغییری نکرده است. توسعه ی عمده که دراین زمینه انجام شده است، روش دمش اتوماتیک است که برای تولید شیشه های بطری و حباب های لامپ استفاده می شود. دراین روش به قطعه ای شیشه در داخل قالب هوا دمیده می شود. و بدین شکل شیشه به شکل قالب در می آید. مهمترین مرحله ی رشد در تاریخ شیشه سازی مخصوصا درطی قرن بیستم مربوط به توسعه های اتفاق افتاده در زمینه ی تکنولوژی های تولید می باشد. این توسعه ها منجر به کاهش هزینه ی تولید محصولات شیشه ای می شود

در ادامه به بیان خواص شیشه ها می پردازیم:

ویسکوزیته ( η )

ویسکوزیته یک ویژگی کلیدی شیشه هاست.ما نیاز داریم تا درمورد ویسکوزیته ی شیشه در دماهای مختلف اطلاع داشته باشیم. و بتوانیم دمای مورد نیاز برا ی شکل دهی وآنیلینگ آن را تشخیص دهیم. ویسکوزیته یک ویژگی مکانیکی است. فرمول ویسکوزیتد به صورت زیر است:

شیشه ها (2)

دراین فرمول:
η : ویسکوزیته، F: نیروی مورد نیاز برای کشیدن یکی از صفحات موازی که در میان آنها مایع مورد نظر قرار دارد: ،d: فاصله ی صفحات، A: مساحت صفحات، V: سرعت حرکت صفحه. ویسکوزیته در واقع پاسخ یک مایع دربرابر تنش برشی است. مایعات دارای ویسکوزیته ای هستند که با واحد سانتی پوآز (CP) اندازه گیری می شود. واحد اندازه گیری ویسکوزیته ی گازها میکروپوآز(mp) است.

شیشه ها (2)

جدول 1 لیستی از اعداد ویسکوزیته ای است که برای فرآیندهای شیشه سازی مهم هستند. اعداد داده شده در جدول 2 نیز برای تعریف ویژگی های برجسته ی شیشه (با تأکید بر روی فرآیند) آورده شده است. بسیاری از اعداد آورده شده درجدول ویسکوزیته ها استاندارد هستند مثلا (2003) ASTMC338-93 یک روش تست استاندارد است که نقطه نرم شدگی شیشه بوسیله ی آن تعیین می شود.
محاسبه ی نقطه ی نرم شدگی شیشه بوسیله ی اندازه گیری دمایی که در آن یک فیبر شیشه ای استوانه ای با قطر شیشه ها (2) طول بوسیله ی وزن خودش تغییر طول می دهد. نرخ تغییر طول یک میلی متر بردقیقه است . در این روش 100 میلی متر از بخش بالایی فیبر بوسیله ی کوره ی خاصی با سرعت گرم شدنشیشه ها (2) گرم می شود.

شیشه ها (2)

ویسکوزیته ی برخی ازمایعات عمومی در جدول 2 آورده شده است. توجه کنید که در دمای کارپذیری شیشه ویسکوزیته ای شبیه به عسل در دمای اتاق دارد. به طور نمونه برای یک شیشه ی سیلیکاتی سودالایم این ویسکوزیته در دمایشیشه ها (2) بدست می آید. این جدول همچنین نشان می دهد که یک جامد دارای ویسکوزیته ای بیش ازشیشه ها (2) دسی پو آز است. ویسکوزیته ی به طور نمایی با تغییر دما ، تغییر می کند ( همانگونه که در شکل 1 برای انواع شیشه ی سیلیکاتی دیده می شود.) دمای فیکتیو (fictive temperature) دمایی است که در آن ساختار مایع به حالت شیشه ای تبدیل می شود. این دما بوسیله ی تقاطع منحنی های برونیابی شده در حالت دما بالا و دما پایین در نمودار ویسکوزیته – دما بدست می آید. دمای فیکتیو (Tf) مانند Tg به تبدیلات ساختاری شیشه بستگی دارد. البته Tg اندکی کمتر از Tf است.

شیشه ها (2)

شکل 2 وابستگی ویسکوزیته به دما را برای اکسیدهای شیشه ساز نشان می دهد. شما باید توجه کنید که بوسیله ی شیب این خطوط می توان انرژی اکتیواسیون جریان ویسکوز (EV) را بدست آوریم.

شیشه ها (2)

جدول 3 اعداد ویسکوزیته وسرعت های کریستالیزاسیون (v) برخی شیشه ها را نشان می دهد. سرعت کریستالیزاسیون مربوط می شود به سرعت تبادل مایع/جامد. V بسیار کم بیان کننده ی قابلیت شیشه سازی استثنایی ماده است.البته کریستالیزاسیون مذاب جامد شده ی سیلیس بسیار مشکل است.

شیشه ها (2)

روش های متعددی برای اندازه گیری ویسکوزیته وجود دارد. این روش ها با توجه به میزان ویسکوزیته انتخاب می شود.

شیشه ها (2)

شماتیک دو روش اول اندازه گیری ویسکوزیته در شکل 3 نشان داده شده است:

شیشه ها (2)

شیشه ( خلاصه ای از خواص )
 

شیشه ماده ای خنثی است. این مسئله به محیط بستگی دارد. اگر شیشه یک ماده ی سیلیکاتی باشد، این مسئله درست است . البته همه ی شیشه ها خنثی نیستند. مثلا بیوگلاس (bioglass)
شیشه یک ماده ی هموژن است. این مسئله نیز به نحوه ی شکل دهی و ترکیب شیمیایی شیشه بستگی دارد. ما می توانیم با استفاده از فرآیندهای خاص شیشه را به صورت غیر هموژن در آوریم.
شیشه می تواند تغییر شکل دهد. این مسئله عموماً درست می باشد و دلیلی است برای قابلیت بازیافت شیشه ها. برخی از شیشه ها به نحوه ای ساخته می شوند که بوسیله ی نور، انتشار نور در داخل آن وتابش نور و...تغییر ماهیت می دهد.
شیشه دارای ضریب انبساط کوچک است. البته همه ی شیشه ها مناسب استفاده شدن در کاربردهای حرارتی مانند ظروف پیرکس نیستند.
شیشه ها شفاف اند (trans Parent) این خاصیت برای الیاف نوری ضروری است. البته ما می توانیم با انجام عملیات های خاص شیشه به صورت اپک یا مات در آوریم.
بسیاری از شیشه های اولیه شفافیت کامل نداشتند زیرا در ساختار آنها ناخالصی وحباب هوا وجود داشت.
شیشه ارزان است. البته این مسئله برای شیشه های پنجره صحیح است. اما درمورد فیلم های نازک شیشه ای این مسئله صحیح نمی باشد. برخی از شیشه های قرمز رنگ بوسیله ی دپینگ (doping) طلا در آنها تولید می شود. که قیمت برخی از ظروف تولیدی از آن به پیش از 50 دلار می رسد.
شیشه یک ماده ی بالک است مگر در حالتی که آن را به صورت یک فیلم نازک ، یک فیلم انیتر گرانولار (IGF) یا یک سرامیک کریستالی رشد دهیم.

برخی از خواص مکانیکی شیشه

استحکام تئوریک شیشه ی سیلیکاتی درحدود 10GPa است. البته با حضور عیوب سطحی (ترک ها وجوانه ها ) این استحکام کاهش می یابد. شیشه ها موادی الاستیک هستند اما تحت کشش می شکنند. می توان استحکام این مواد را بوسیله ی ایجاد لایه های سطحی فشرده و یا بوسیله ی از بین بردن ترک های سطحی (با اسید شوئی یا پدید آوردن پوشش محافظ) افزایش داد. مثالی از این روش ها پدید آوردن ترک های اضافی در ساختار قطعات شیشه ای تزئینی به منظور بهبود خواص مکانیکی آنهاست. در این روش از سرد کردن شیشه ی مذاب در آب جهت ایجاد تنش های اضافه بهره برده می شود . در این حالت سطح قطعه ی شیشه ای مذاب زودتر از مرکز آن سرد می شود و بنابراین تنش های اضافی پدید می آید. قطعات جامد شده به این شیوه را می توان با چکش و بدون اینکه بشکنند چکش کاری کرد.

برخی از ویژگی های الکتریکی شیشه

شیشه معمولا دارای مقاومت الکتریکی بالایی است. که علت آن تفاوت زیاد میان باندهای انرژی (گپ بزرگ) در این ماده است. در مواردی که شیشه رساناست . بار بوسیله ی یون ها منتقل می شود.(در این مورد یون های قلیایی مانندشیشه ها (2) دارای سرعت انتقال بار بالایی هستند). در واقع به همین دلیل است که با افزایش دما رسانایی به شدت افزایش می یابد. رسانایی درشیشه های مختلف، متفاوت است.علت آن متفاوت بودن نوع شبکه ی این شیشه هاست. در شیشه هایی که دارای بیش از یک یون قلیایی هستند. پدیده ی جالبی رخ می دهد. رسانایی تولیدی در این نوع شیشه ها به طور مشخصی از شیشه های دارای یک یون کمتر است. این نوع شیشه ها در کاربردهای مختلف مانند لامپ های با توان بالا استفاده می شوند. ثابت دی الکتریک شیشه واقعاً بالاست اما نه به حدی که بتوان از آن در کاربردهای حافظه ای پیشرفته مانند حافظه ی با دستیابی دینامیک و رندوم (DRAMS) استفاده کرد. ظرفیت الکتریکی یک ماده میزان بار ذخیره شده در داخل ماده است. این خاصیت به ضخامت دی الکتریک بستگی دارد. همانطور که ضخامت دی الکتریک کمتر می شود، ظرفیت الکتریکی افزایش می یابد. اما کم کردن ضخامت نیز مشکلاتی به همراه دارد. مثلا با کاهش ضخامت احتمال شکست دی الکتریک بیشتر می شود. شیشه ی سیلیسی دارای مقاومت دی الکتریک بالاتری نسبت به سایر شیشه هاست. اما مقاومت این دی الکتریک نیز در حد دی الکتریک های پلیمری مانند رزین فنولیک نیست.

برخی از خواص اپتیکی شیشه

شفافیت دربرابر نور فرا بنفش ، مرئی و فرو سرخ به چندین فاکتور بستگی دارد. یکی از این فاکتورها طول موج تفرق است که بوسیله ی ناخالصی ها تغییر می کند. لبه ی فرو سرخ (IRedge) و لبه ی فرا بنفش ((uv edge اعدادی هستند که نشان دهنده ی فرکانس قطع شدن عبور این موج ها هستند. یک مانع لبه UV edge blocker)UV) از عبور UV جلوگیری می کند و این در حالی است که یک عبور دهنده ی لبه یUV (UV edge tran Smitter) اجازه ی عبور نور UV را می دهد.

عیوب در شیشه ها

اگر چه شیشه یک ماده ی آمورف است ولی مانند مواد کریستالی دارای عیوب و رسوبات است. و همچنین دچار جدایش فاز می شود. شیشه را می توان برای حبس کردن عناصر رادیو اکتیو استفاده کرد .در این عناصر مانند عیوب نقطه ای یا فاز ثانویه تشکیل می شوند. همچنین سرعت نفوذ این عناصر از میان شیشه بر روی میزان آن ها در شیشه تأثیر دارند. این مسئله استفاده می شود تا بتوان مواد رادیو اکتیو یا سایر مواد را کنترل کرد.

شیشه ی غیر هموژن

به دلیل آنکه شیشه یک مایع فوق سرد شده است. نمی توان گفت که این ماده حتما باید هموژن باشد. شیشه های خاص می توانند بدون نیاز به فرآیند کریستالیزاسیون به دو فاز تبدیل شوند. هنگامی که این دو فاز شیشه ای باشند این مسأله باعث می شود که سدی در برابر جدایش فازی پدید نیاید. در مورد فرآیند جدایش فازی مایع – مایع ممکن است مرحله ای برای جوانه زنی وجود داشته باشد. البته در این نوع تبدیلات ممکن است استعاله ی اسپینودال (Spinodal) نیز رخ می دهد. که هر دوی این استعاله ها به نفوذ وابسته اند.
قوانین امتزاج ناپذیری در شیشه ها بسیار مهم است. این مسئله مخصوصاً در شیشه های تولید شده با تکنولوژی روز نمود دارد. برای مثال امتزاج ناپذیری در شکل دهی شیشه – سرامیک ها ، تولید شیشه ی وایکور (Vycor) و شیشه های اپتیکی و تشکیل رسوب در شیشه ها مهم می باشد. بسیاری از اکسیدهای دوتایی و سه تایی در کنار سیلیس از خود مشکلات امتزاج پذیری نشان می دهند.
در دیاگرام فازی ناحیه ای وجود دارد که یک مایع به دو مایع با ترکیب شیمیایی متفاوت تبدیل می شود. این ناحیه گپ امتزاج پذیری (imisciblity gap) نامیده می شود. در زیر برخی از سیستم هایی که مشکل امتزاج پذیری دارند را نام برده ایم:

شیشه ها (2)

شیشه ها (2)

شکل 4 دیاگرام فازیشیشه ها (2) را نشان می دهد. در دمای پایین و در گوشه ی غنی از سیلیس دیاگرام ، فاز مایع به دو بخش مایع با ترکیب شیمیایی متفاوت تبدیل می شود. این دو مایع به صورت دو شکل گنبد مانند در شکل نشان داده شده اند. خط تیره نشان دهنده ی خط تقریبی ناحیه ی امتزاج ناپذیری است. مشکلی که در اندازه گیری این خط وجود دارد. این است که این پدیده در دمای پایین رخ می دهد و از این رو سرعت آن پایین است . و از این رو اندازه گیری آن مشکل است. دراین وضعیت میل جدایش فازی بیشتر از میل به کریستالیزاسیون است . البته کریستالیزاسیون مساعد تر از جدایش فازی است اما به دلیل آنکه جدایش فازی نیازی به باز آرایی اتم ها ندارد، این پدیده رخ می دهد. به عنوان یک قانون کلی برای سیلیس باید گفت که امتزاج ناپذیری با افزودنشیشه ها (2) افزایش می یابد اما با افزودنشیشه ها (2) کم می شود. در شیشه های وایکور از قوانین جدایش فازی استفاده می شود. در فرآیند تولید شیشه وایکور، شیشه ای پدید می آید که دارایشیشه ها (2) و 4 درصد تخلخل است.این نوع شیشه به عنوان فیلتر وبیومواد مخصوصا در جاهایی که تخلخل مهم می باشد، استفاده می شود. در فرآیند تولید وایکور، شیشه ای تولید می شود که پس از فرآیند شکل دهی دنس می گردد و شیشه ای با سیلیس خالص پدید می آید که در دمای پایین تر نسبت به کوارتز خالص شکل دهی گشته است

شیشه ی آلومینیوم – ایتریمی

شیشه های آلومینیوم –ایتریایی (YA) دارای درصد آلومینایی در گسترده ی تقریبی 75.6- 59.8 هستند. با این درصد آلومینایک شیشه ی دو فازی تشکیل می شود که در آن یک فاز قطره مانند در فاز دیگر تشکیل شده است. این شیشه به طور خود بخودی به صورت شیشه ی آلومینیوم – ایتریمی یا مخلوطی ازشیشه ها (3) تبدیل می شود. درشیشه های YA پدیده ای به نام پلی مورفیزم (Polymorphism) رخ می دهد

شیشه ی رنگی

اگر چه در بیشتر کاربردهای شیشه نیاز است تا این ماده بی رنگ باشد اما در برخی از کاربردها نیاز است شیشه رنگی باشد. هنگامی که پنجره های یک کلیسا رنگی باشد، تأثیر پذیری ازمحیط بیشتر می شود . درشیشه ها معمولا بوسیله ی افزودن اکسیدهای انتقالی و یا اکسیدهای عناصر خاک های کمیاب (rave –eavth) به بچ ماده ی اولیه ی آنها، رنگی می شوند. جدول 1 لیستی از رنگ های تولیدی بوسیله ی مواد رنگی کننده ی شیشه هاست . زرد کم رنگ، نارنجی و رنگ های قرمز بوسیله ی فلزات گران بها درحالت کلوئیدی تولید می شود. طلا (Au) رنگ قرمز، یا قوتی تولید می کند. (البته این شیشه ها گران قیمت هستند). سولفید کادمیم (cds) محصولاتی با رنگ زرد تولید می کند. اما هنگامی که علاوه بر se ، cds نیز استفاده شود. محصولاتی با رنگ قرمز یا قوتی با شدت رنگ بالا تولید می شود.

شیشه ها (3)

شیشه بوسیله ی افزودن دوپانت ها (dopants) رنگرزی می شوند. در واقع با افزودن این دو پانت ها در شیشه عیوب نقطه ای پدید می آوریم. رنگ شیشه به نوع دو پانت و حالت اکسیداسیون آن بستگی دارد.
دو پانت ها می توانند اثر بی رنگ کننده (decdorizo) ، پوشش دهنده (mask) یا اصلاح کننده (modify) داشته باشند. ما می توانیم اثرات رنگی آهن را بوسیله ی افزایش cr خنثی کنیم؛ البته اگر درصدشیشه ها (3) زیاد باشد اضافی به صورتشیشه ها (3) خارج می شود. اگر این شیشه به روش دمیدن شکل دهی شود، این پلیت لت هایشیشه ها (3) منظم گشته و شیشه ای اپک به نام آونتورین کرومی (chromium aventurine) تولید می کنند. مس (cu) برای تولید شیشه ی آبی مصری (Egyptian Blue glass) استفاده می شود.
CO (کبالت ) دربرخی از شیشه های پالایش یافته ی تولید در قرن دوازدهم استفاده می شده است. البته Co در تولید لعاب های پرسلانی مورد استفاده در چین ( در دوره ی سلسله ی منیگ وتانگ) استفاده می شده است. کبالت مورد استفاده در این لعاب ها رنگ آبی کبالتی تولید می کند.
با افزودن Se به شیشه های دپ شده با Cds باعث پدید آمدن رنگ یاقوتی سلینومی (Selenium Ruby) می شود. جزئیات پدید آمده ازهر کدام از این رنگ ها به ترکیب شیمیایی و شرایط پخت شیشه بستگی دارد.
شرکت کورینگ (Cornig) میکرو بارکدهایی با شیشه دپ شده با خاکهای کم یاب تولید کرده است. خاکهای کم یاب دارای باندهای نشر کم پهنا هستند و از میان 13 عنصر خاکهای قلیایی که مورد آزمایش قرار گرفته ، تنها 4 عنصر (Tm,Ce,Tb و Dy) می توانند در برابر تابش UV برانگیخته شوند. و لذا می توان از آنها در شناسایی بوسیله ی UV استفاده کرد. این نوع بارکدها همچنین مشکلات تداخل با سایر بارکدها را نیز ندارد. از این بارکدها در کاربردهای بیولوژیکی استفاده می شود زیرا سمی نیستند.(البته بر چسب زنی با کوانتوم دات ها خطرات کمتری دارد) و می توان از آنها در کاربردهای ژنتیکی استفاده کرد. با استفاده از چند عنصر خاکی کمیاب می توان ترکیب رنگی بیشتر پدید آورد.
شیشه های رنگی خاص شامل موارد زیر می شود :

شیشه ی یاقوتی یا کرانبری ( Cranberry )
 

شیشه ی یاقوتی با افزودن Au به شیشه سربی با حضور Sn پدید می آید. شیشه ی کرانبری که اولین بار در سال 1685 گزارش شده است، یک نوع شیشه ی بی رنگ (معمولاً صورتی کم رنگ ) است. علت پدید آمدن این رنگ در صد کم طلای موجود در آن است . راز تولید شیشه قرمز رنگ برای قرن ها ی زیادی گم شده بود و در قرن هفدهم دوباره کشف شد.

شیشه ی اورانیومی یا وازلینی

محصولات اورانیومی هنگامی که در شیشه ی با سرب بالا استفاده شود، رنگ قرمز تیره تولید می کند. البته شیشه های اورانیومی دیگری نیز وجود دارد که با صطلاح به آنها شیشه های وازلینی (Vaseline glass) می گویند. این نوع شیشه ها دارای رنگ سبز هستند. مسأله ای که این نوع شیشه ها را خاص کرده است این است که این نوع شیشه ها هنگام تابش اشعه ی UV به آنها ، خاصیت فلئورسانس پیدا می کنند. از سال 1940 تنها اورانیوم تهی شده (uranium depleted) به عنوان دو پانت استفاده می شود. علت استفاده از این نوع دو پانت، فراوانی آن است. اما از 100 سال گذشته به بعد اورانیوم طبیعی (natural uranium) استفاده می شود.

شیشه ها (3)

شکل 1 مثالی از یک شیشه ی وازلینی است.

لیزر شیشه ای

عناصر خاکهای کم یاب (rave – earth elements) مانند Nd در تولید شیشه های لیزر و سایر وسایل اپتیکی کاربرد دارند. (شکل 2) . لیزر شیشه ای دپ شده با Nd (Nd-doped glass laser) مانند یک لیزر یاقوتی (ruby laser) کار می کند . اگر چه نوع شیشه ای دارای تفاوت هایی است . میله ی لیزر قطری بینشیشه ها (1) اینچ دارد و معمولا بوسیله ی یک لامپ حلزونی تخلیه می شود. علت استفاده از لامپ های حلزونی این است که طول غیر بار دار این نوع لامپ ها از لامپ های خطی طولانی تر است. لیزر شیشه ای دپ شده با Nd دارای بازدهی بیش از 2% است. این بازده 4 برابر بازده یک لیزر یاقوتی است. به دلیل آنکه رسانایی گرمایی شیشه پایین است بنابراین نیاز به زمان بیشتری برای خنک سازی است.

شیشه ها (3)

رسوبات در شیشه

وجود رسوبات در شیشه عموما اجتناب ناپذیر است. سوال این است که چه زمانی طول می کشد تا رسوبات تشکیل شود. (مخصوصا اگر جوانه زنی هموژن باشد). ما ممکن است عوامل هسته زا برای تسریع جوانه زنی به شیشه اضافه کنیم. جوانه زنی کریستال ها در شیشه از تئوری کلاسیک پیروی می کند. رسوبات تشکیل شده در شیشه می تواند موجب رنگی شدن شیشه شود.

شیشه به عنوان لعاب

لعاب ها مانند شیشه ها در همه جا دیده می شوند. لعاب کاری (glazing) استفاده از ویژگی های ویسکوز شیشه و تشکیل یک لایه ی یک پارچه و صاف بر روی یک زیر لایه ی سرامیکی است.
مینا کاری (enameling) تشکیل همان لایه بر روی یک زیر لایه ی فلزی است. چیزی که باید به آن توجه کرد این است که عموما لعاب ها قدمت زیادتری دارند. در ادامه به بیان برخی از اصطلاحات لعاب می پردازیم:

زیر لعاب ( underglaze )

هنگامی که یک بیسکوییت سرامیکی را می خواهیم مورد عملیات دکور قرار دهیم باید قبل از آن یک لعاب کاری بر روی آن انجام دهیم که این نوع لعاب را زیر لعاب گویند. این لایه به علت تشکیل بهتر دکور بر روی بدنه اعمال می شود. پس از آن که فرآیند دکوراسیون جسم سرامیکی انجام شود برروی آن یک لعاب دیگر اعمال می شود. البته این لعاب پیش از پخت دکور اعمال می شود.
عیب کراولینگ لعاب ( glaze craweling ) این عیب که در لعاب اتفاق می افتد بدین صورت است که لعاب از لایه ی سرامیکی زیرین جدا می گردد. این پدیده به دلیل عدم ترشوندگی بیسکوییت سرامیکی بالعاب در طی فرآیند پخت اتفاق می افتد.
لعاب ترک خورده ( crackle glaze )اگر انبساط گرماییشیشه ها (3) لعاب از سرامیک بستر بزرگ تر باشد، لعاب ممکن است در طی فرآیند سرد کردن (در طی پخت) بشکند. هنگامی که غلظت یون سدیم و پتاسیم در لعاب بیشتر باشد، ترک ها بیشتر پدید می آیند. هنگامی که سرعت سرد کردن بالا رود ترک های حاصل ریزتر می شوند.
لعابهای سلادون (celadon )، تنموکو (tenmoku)، راکو (raku) و کوپر ( copper) لعاب های ویژه ای هستند که در دنیای هنر سرامیک یافت می شوند.
لعاب های سلادوناین لعاب ها اولین بار در حدود 3500 سال پیش تولید شده اند. این لعاب ها دارای گستره ی رنگی از آبی کم رنگ تا سبز مایل به زرد هستند و می توانند رنگی کاملا تیره پدید آورند. رنگ تولیدی در این لعاب ها بوسیله ی آهن تولید می شود(3.o - o.5 در صدشیشه ها (3) به لعاب افزوده می شود). ظروف لعاب خورده توسط این نوع لعاب سپس در دمای تقریباًشیشه ها (3) پخت می گردند. ظروف تولید شده با این لعاب ها زیبایی خاصی داشته و در کاربردهای تزئینی استفاده می شوند. مثلا کوزه ی لعاب خورده با این لعاب که درکشور کره تولید شده است، درسال 1946 از سوی کشور کره به هاری ترومن رئیس جمهور آمریکا هدیه شد. امروزه این ظرف که 23cm ارتفاع دارد قیمتی برابر با 3 میلیون دلار دارد.
لعاب تنموکواین نوع لعاب در زمان سلسله ی سونگ (sung Dynasty) بوجود آمده است. و دارای رنگ قهوه ای تیره یا حتی سیاه است. برای ایجاد این رنگ میزان 8-5 درصد وزنیشیشه ها (3) به لعاب افزوده می شود. تشکیل مناسب این نوع لعاب به شرایط اکسایش – کاهش اتمسفر پخت بستگی دارد. و در شرایط مختلف اکسایش و کاهش رنگ های متنوعی پدید می آید. در لعاب های کوپرنیز از کربنات مس به عنوان منبع Cuاستفاده می شود. البته در طی فرآیند پختشیشه ها (3) تجزیه گشته و Cuoباقی می ماند. Cuo تولید نیز با مونواکسیدکربن (CO) موجود در کوره واکنش داده تا ذرات مس در لعاب تشکیل شوند. این ذرات رنگ قرمز به لعاب می دهند.
لعاب های راکولعاب های راکو اغلباً لعاب هایی فلزی به نظر می رسند. (اگر بوسیله ی یک لایه از فلز Ti پوشش داده شده باشند)
یک روش پیشرفته در تولید لعاب های راکو بدین صورت است که ظروف سرامیکی به شیوه ی معمولی پخت می شوند سپس آنها را در داخل یک محیط کاهنده مانند خاک اره وارد می کنند و سپس آنها را قبل از آنکه بتوانند اکسید شوند، به سرعت سرد می کنند. این نوع لعاب ها اغلبا حالت استثنا داشته و می توانند با زمان تغییر کنند. این مسئله ساده است. زیرا آنها در طی فرآیندهای بعدی تولید اکسید می شوند. این نوع لعاب بر خلاف سایر لعاب ها خنثی نبوده و تنها برای دکوراسیون استفاده می شوند.
لعاب های کریستالی ( crystalline glaze )این نوع لعاب ها ، لعاب هایی دکوراسیونی هستند اما به طور مستقیم با تکنولوژی تشکیل شیشه – سرامیک در ارتباطند. کریستال ها بوسیله ی سرد کردن آهسته لعاب ایجاد می شوند. این سرد کردن آهسته به کریستال های لعاب اجازه ی رشد کردن می دهند. رشد این کریستال ها مد نظر است؛ زیرا لعاب ضخامت کمی داشته و از این رو کریستال ها باید به صورت پلیت لت (platelets) در آیند. برای آنکه عمل رشد کریستال ها بهتر انجام شود از جوانه زاهای تیتانیایی استفاده می شود. این نوع جوانه زاها در لعاب های باویسکوزیته ی پایین استفاده می شوند و در آنهاشیشه ها (3) تشکیل می شود. ترکیب شیمیایی این نوع لعاب ها بسیار مهم است. در آن شیشه ها (3) وشیشه ها (3) به میزان کم و Pbo به میزان 10-8 درصد وزنی استفاده می شود. رشد کریستال با اضافه شدن fe به لعاب افزایش می یابد. اما این اضافه شدن می تواند همچنین موجب پدید آمدن اثراتی بر سایر دو پانت های اضافه شده به لعاب شود.
سفالگران امروزی ازشیشه ها (3) به عنوان اصلاح کننده و تولید کننده ی کریستال های ویلمایت (Crystals Willemite) استفاده می کنند. (ویلمایت یک مینرال کمیاب از روی است). این تکنیک نیازمند مهارت ویژه است. زیرا افزودن مقادیر زیادشیشه ها (3) به لعاب باعث می شود ویسکوزیته ی آن حتی در دماهای پایین نیز کم باشد، بنابراین این مسئله باعث می شود که لعاب از روی سطح سفالی جریان پیدا کند. رشد اسفرولیتی (Spherulite growth) از جوانه زا در لعاب در شکل 3 نشان داده شده است. هر اسفرولیت در واقع توده ای از کریستال های شعاعی است که با توجه به مرکز اسفرولیت دورهم گرد آمده اند.

شیشه ها (1)

لعاب های اپک ( opaque glazes ) اگر به لعاب مذاب کریستال هایی افزوده شود، لعاب می تواند اپک شود. برای این کار می توان ازO_2 S_n یا زیر کن استفاده کرد. که زیر کن ارزان تر است .شیشه ها (3) برای تولید رنگ سفید در لعاب های زیرکنی (Zircon glaze) استفاده می شود. برای اپک کردن کمتر ازشیشه ها (3) استفاده می شود زیرا کریستال های روتایل طلایی رنگ هستند. و بنابراین لعاب را به رنگ زرد در می آورند. ما همچنین می توانیم با تشکیل کریستال لعاب را اپک کنیم (مثلا ولاستونیت:شیشه ها (3). این کار بوسیله ی عملیات حرارتی مناسب، حبس کردن گاز (هوا یاشیشه ها (3) ) ) و یا بوسیله ی جدایش فازی مایع – مایع انجام می شود. لعاب های مات (Matt glazes) بوسیله ی تشکیل کریستال های بسیار کوچک در لعاب بوجود می آیند (مثلا کریستال های ولاستونیت برای لعاب های مات – آهکی و وبلیمایت (شیشه ها (3):Willemite ) برای لعاب های مات – زینک). کریستال های ریز ولاستونیت بوسیله ی افزودن کلسیت به لعاب پایه سیلیس تشکیل می شود. یک روش دیگر برای این کار افزودن مقادیر زیادی از ماده ی کریستالی به لعاب است تا در طی فرآیند پخت درصدی از آن به صورت کریستالی باقی بماند

رنگ در لعاب و لعاب موضوعاتی هستند که امروزه تحقیقات فراوانی بر روی آنها به عمل آورده شده است. امروزه رنگ های جدیدی بوسیله ی افزودن نانو ذرات در لعاب پدید می آید. عموما نانو ذرات نقره و طلا رنگ طلایی بوجود می آورند. و نانو ذرات مس رنگ قرمز بوجود می آورند. توضیح در مورد نحوه ی پدید آمدن رنگ در لعاب واقعاً پیچیده تر از نحوه ی پدید آمدن رنگ در شیشه هاست. زیرا لعاب بر روی یک لایه اعمال می شود و از این سو نباید ترانسپارنت باشد. همچنین لعاب یک لایه ی نازک است و در اتمسفر مختلف (کاهنده – اکسید کننده) بوجود می آید از این دو بررسی عوامل موثر بر تشکیل یک لعاب مشکل است.

لعاب های رنگی ( Colored glazes )

در لعاب های رنگی باید از پیگمنت های سرامیکی با پایداری مناسب بهره برد. از اکسیدهای رنگ زای ارزان قیمت می توان برای ایجاد رنگ در محصولات متنوع سفالی بهره برد. البته بسیاری از مواد رنگ زا برای لعاب همانهایی هستند که ما برای رنگرزی شیشه از آنها استفاده می کنیم
اکسید کبالت شیشه ها (4) یک اکسید سیاه رنگ است اما کمتر از یک درصد وزنی از آن در لعاب ایجاد رنگ آبی تیره می کند (اگر چه در بیشتر موارد از کربنات کبالت استفاده می شود).
به دلیل آنکه شیشه ها (4) در این گونه لعاب ها بوجود می آید، ویسکوزیته ی لعاب تغییر می کند.
اکسید کروم که تا 3-2% وزنی نیز می تواند به لعاب افزوده شود به جای رنگ سبز، رنگهای زرد، صورتی یا قهوه ای بوجود می آورد (رنگ قرمز در حضور سرب در ترکیب لعاب اولیه پدید می آید. اگر Zn در لعاب اولیه وجود داشته باشد، رنگ لعاب قهوه ای می شود مگر آنکه سرب ها هم وجود داشته باشد. که در صورت وجود سرب و روی در لعاب اولیه رنگ زرد پدید می آید).
شیشه ها (4)که به صورت کربنات به لعاب افزوده می شود، رنگ لعاب را به صورت قهوه ای در آورده البته این ماده می تواند رنگ قرمز، بنفش و حتی سیاه نیز تولید کند. که این تغییر رنگ به درصد سدیم موجود در لعاب اولیه بستگی دارد. افزودن Cuo به اندازه ی %2-1 وزنی به یک لعاب با سدیم بسیار کم سبب پدید آمدن رنگ فیروزه ای می شود. این درحالی است که افزودن بیش از 3% از این رنگ زا باعث پدید آمدن رنگ سبز یا آبی می شود. اگر درصد Cuo در لعاب افزایش یابد، لعاب ظاهری فلزی مانند مفرغ به خود می گیرد. اگر لعاب دارای 0.3– 2 درصد وزنی Cuo در اتمسفر کاهنده پخت شود، رنگ قرمز مسی پدید می آید. این رنگ به دلیل حضور ذرات کلوئیدی CU درلعاب بوجود می آید.
اگر یک لعاب رنگ زرد داشته باشد، این رنگ ممکن است بوسیله ی افزودن Cds یا Cdse بوجود آمده باشد. البته این نوع افزودنی های رنگ زا ممکن است رنگ های قرمز یا نارنجی را نیز پدید آورند. درصورت حضور سرب در این نوع لعاب ها ، Pds تشکیل می شود که باعث سیاه شدن لعاب می شود. زیرکن در صنعت برای کمک کردن به پایدار شدن این نوع رنگ ها (برپایه ی cd) استفاده می شود. درحقیقت شیشه ها (4) (زیر کن وانادیومی آبی رنگ) و شیشه ها (4)(pr,zr) (زیر کن پراسئودیومی زرد رنگ) مهم ترین تثبیت کننده های مورد استفاده در این رنگ هاست. هنگامی که اورانیوم به لعاب اضافه شود، به جای پدید آوردن رنگ زرد کم رنگ، رنگ قهوه ای تیره پدید می آید. (اورانیوم در شیشه های وازلینی تولید رنگ زرد کم رنگ می کند). البته بسته به ترکیب لعاب ، اورانیوم می تواند رنگ های قرمز یا نارنجی روشن نیز بدهد.

لعاب نمکی ( saltglaze )

دراین نوع فرآیند لعاب کاری سفال در کوره های با دمای بالا با نمک واکنش می دهد. در واقع سفالگر نمک را بر روی سفال اعمال می کند. این فرآیند هنگامی اتفاق می افتد که سفال در داخل کوره است. این فن بوسیله ی سفالگران ایرانی وانگلیسی در دهه ی 1700 ابداع گشته است. همچنین شما می توانید مثال های فراوانی از فرآیند رنگ آمیزی بوسیله ی اکسیدهای فلزی را در آلمان ببنید. در این نوع لعاب ها نمک با رس واکنش داده و تشکیل لایه ای شیشه ای بر روی سطح می دهد. این تکنیک دقیقاً فرآیند خوردگی خاک نسوز در دمای بالاست (بوسیله ی سود سوز آور).
واژه ی مینا (enamel) معمولا در هنگامی استفاده می شود که یک لایه ی لعابی بر روی فلز اعمال می شود. البته این واژه در هنگامی که یک لایه لعابی بر روی لعاب اولیه اعمال می شود نیز استفاده می شود. بازار مصرف مینا بسیار بزرگ است. این بازار از لوازم بهداشتی تا جواهر آلات گسترده است.

خوردگی شیشه و لعاب

این تصور وجود دارد که شیشه خنثی است اما باید بدانید که اسید سیتریک و اسید استیک موجود در غذاها و میوه ها می توانند بایون های موجود در شیشه واکنش دهند و ترکیبات کمپلکس پدید آورند. با خروج یون های قلیایی از داخل شیشه یون های هیدروژن مثبت جایگزین آنها می شود. هنگامی که بخواهیم استحکام سطح شیشه را افزایش دهیم باید یون های پتاسیم و سدیم مثبت را با لیتیم مثبت ( شیشه ها (4) ) جایگزین کنیم. در شیشه ی آلایش یافته (Stain glass) می توان یون نقره ی مثبت و مس را جایگزین شیشه ها (4) کرد.
همانند مواد کریستالی ، شیشه ها نیز دارای عیوب کریستالی اند. یکی از چالش هایی که ما با آنها روبرو هستیم محاسبه ی خواص بوجود آمده ازعیوب (مانند نفوذ) در شیشه هاست. زیرا در شیشه ها شبکه ی مرجع وجود ندارد.

انواع شیشه های سرامیکی

همه ی شیشه ها براساس تتراهدرال های سیلیسی ایجاد نمی شوند؛ واحدهای ساختاری این شیشه ها در جدول 1 آورده شده است. برخی از ترکیبات این شیشه ها نیز در جدول 2 آورده شده است.

شیشه ها (4)

شیشه ها (4)

شیشه ی سیلیکاتی ( سودالایم )

این شیشه ها بر پایه ی شیشه ها (4) هستند. (معمولا این نوع شیشه ها علاوه بر این مواد دارای شیشه ها (4) نیز هستند.) این نوع شیشه نستبا ارزان هستند و دارای دوام خوبی نیز هستند همچنین از این نوع شیشه به طور فراوان در صنعت بسته بندی و ساختمان استفاده می شود. ضریب انبساط حرارتی شیشه ها (4) این نوع شیشه ها ناچیز نیست. همچنین این نوع از شیشه ها عایق های خوبی نیستند. استفاده های عمده از این نوع شیشه در صفحات شیشه ای ،بطری ها ، وسایل غذا خوری و صنعت الکترونیک (حباب لامپ) است. شیشه های آلومینو سیلیکاتی قلیایی (شیشه ها (4)= عنصر قلیایی) دارای ضریب انبساط حرارتی پایینی است. این نوع شیشه دارای دوام و خواص عایق کاری بهتری است. وهمچنین نسبت به سایر شیشه های هم گروه استحکام بالاتری دارد. استفاده های این نوع شیشه عبارتست از تیوپ های اختراق، حباب های لامپ هالوژن و به عنوان بسترهای صنعت الکترونیک کاربرد دارد.

شیشه ی سربی

ترکیب عمومی این شیشه ها سیلیکات های قلیایی سربی استشیشه ها (4). در این نوع شیشه ها Pbo به جای CaO در شیشه ی سودالایمی قرار گرفته است. این نوع شیشه دارای مقاومت بالایی است. همچنین ضریب انبساط حرارتی آن بالاست. و دمای نرم شوندگی پایینی دارد. دلیل آنکه از این نوع شیشه ها در تولید ظروف کریستال استفاده می شود این است که ضریب شکست این نوع شیشه بالاست و علاوه بر این که از این شیشه ها در ظروف تزئینی استفاده می شود، از آنها در ساخت تیوپ های لامپ، لامپ تصویر تلویزیون و تیوپ های ترمومترها استفاده می شود. در ظروف کریستال انگلیسی که به صورت سنتی تولید می شوند، میزان Pbo حداقل 30% است. برطبق رهنمود اتحادیه ی اروپا میزان Pbo باید بیش از 24 درصد باشد. همچنین بر طبق استاندارد اروپا شیشه های کریستال سربی باز یافت نمی شوند. شیشه های سربی که برای ساخت حفاظ های تابشی استفاده می شوند ممکن است دارای بیش از 65% Pbo باشند. کاربرد این گونه شیشه ها در لامپ تصویر تلویزیون است اگر چه شیشه های باریمی برای ساخت صفحه و تابلوهای تلویزیون استفاده می شود. (تفنگ الکترونی تلویزیون اشعه ی x ساتع می کند که این نوع شیشه باید این تابش ها را جذب کند.)شیشه های سرب – بوراتی می توانند به عنوان لحیم های شیشه ای استفاده شوند. این نوع شیشه ها دارای در صد کمیشیشه ها (4) است و کاملا خنثی است.
شیشه های فیلنیتی (flint glass) دارای تفرق بالایی است. در واقع این نوع شیشه ها از نوع شیشه های سیلیکاتی قلیایی ـ سربی است که از ذوب سنگ های فیلنیتی ساخته شده اند(فیلنیت فرم خالص سیلیس است) .لازم به توضیح است که این نوع سنگ کلسینه شده و به طور فراوان در ساخت بدنه های سرامیکی استفاده می شود.

شیشه ی بورانی ( شیشه ی بورو سیلیکاتی )

شیشه های بوروسیلیکاتی قلیاییشیشه ها (4) به خاطر ضریب انبساط حرارتیشیشه ها (4) کوچکشان ویژه هستند. این نوع شیشه دوام بالایی داشته و خواص الکتریکی مفیدی دارند. پیرکس (Pyrex) که یک نوع ماده در تولید وسایل پخت و پز است . از جنس بروسیلیکات است .شیشه ی بروسیلیکاتی به طور وسیع در فرآیندهای شیمیایی استفاده می شود. برخی از شیشه های براتی دارای دمای ذوب پایینیشیشه ها (4) هستند از این رو آنها را می توان به همراه سایر شیشه ها استفاده کرد. شیشه ی بروسیلیکاتی – زنیکی به شیشه های منفعل شهرت دارند. این شیشه ها مواد قلیایی ندارند و از این رو از آنها می توان در ساخت اجزای الکترونیکی سیلیسیمی استفاده کرد.

سیلیس فیوزد

این نوع شیشه از نوع سیلیس خالص است. این شیشه ها ، شیشه های سیلیکاتی برای کاربردهای دما بالا هستند. ضریب انبساط حرارتی این نوع شیشه ها نزدیک به صفر است. این نوع شیشه ها برای تولید آینه های تلسکوپ و زیر لایه ها (Substrates) استفاده می شود. به خاطر داشتن ضریب انبساط حرارتی نزدیک به صفر به این شیشه ها ، شیشه های با انبساط حرارتی بسیار پایین (VLE Silica) می گویند .
شیشه های VLE دارای 7 درصد وزنیشیشه ها (4) برای تولید لفافه های لیتوگرافی نوری (masks photolithography) استفاده می شود. البته به خاطر دمای بالای فرآیند شکل دهی این شیشه ها ؛ می توان به جای آنها از شیشه های وایکور استفاده کرد.

شیشه ی فسفاتی ( phosphate – glass )
 

شیشه های فسفاتی شیشه های مهمی هستند زیرا این نوع شیشه ها خاصیت نیمه رسانایی دارند. یکی از کاربرد این مواد در ساخت تقویت کننده های الکترون (electron multipliers) است . در این نوع وسایل با استفاده از دپ کردن Er (افزودنشیشه ها (4) ) ، این تقویت کننده ها ساخته می شود. کایتون های موجود در این نوع شیشه ها معمولا V و P هستند اما لابراتوار ملی او آ ک ریچ (Oak Ridge National labroatory) یک نوع شیشه ی فسفاتی اندیوم – سربی تولید کرده است که دارای ضریب شکست بالایی است. از ویژگی های دیگر این شیشه می توان به دمای ذوب پایین و خاصیت ترانسپارنتی در برابر گسترده ی وسیعی از طول موج ها را نام برد. به دلیل آنکه این نوع شیشه می تواند درصد بالایی از عناصر خاکهای کم یاب را در خود حل کنند، از آنها در تولید وسایل نوری اکتیو مانند آمپلی فایرهای فیبر اپتیک و لیزرها استفاده می شود. شیشه های فسفاتی دپ شده با Nd در لیزرهای حالت جامد استفاده می شوند. ترکیب شیمیایی نمونه وار از این نوع شیشه عبارتست ازشیشه ها (4) است. که در صد Nd بین O.2-2.O درصد مولی است.

شیشه ی چالکوژیندی ( Chalcogenide glass )

این نوع شیشه براساس Se,As و Te بوجود می آید. این شیشه ها نور فرو سرخ را از خود عبور می دهند و نیمه رسانا های غیر اکسیدی هستند. از این نوع شیشه در وسایل و لنزهای الکترونیکی ویژه استفاده می شود. در این وسایل هنگامی که ولتاژ اعمالی به آنها از میزان بحرانی فراتر رود، به طور ناگهانی تغییر رسانایی رخ می دهد. کاربرد این نوع شیشه ها بسیار خاص است زیرا این شیشه ها دوام پایینی داشته و دمای نرم شوندگی شان پایین است.

شیشه ی فلورایدی ( fluoride glass )

عموماً شیشه های هالیدی بر پایه یشیشه ها (4) را شیشه های فلورایدی می گویند. کاربرد این نوع شیشه ها در وسایل همسو کننده نوری (optical waveguides) است. و درجاهایی که قیمت توجیه پذیر باشد استفاده می شوند.

شیشه ی طبیعی

این مسئله که شیشه در طبیعت بوجود می آید حتی این پدیده یک امر نسبتاً معمولی است، باعث شگفتی بسیاری از مردم می شود. تکتیت ها (tektites) درهنگام برخورد شهاب سنگ ها به زمین و در دهانه ی حاصله از برخورد شهاب سنگ پدید می آیند. مولد اویت (Moldavite) نیز یک شیشه ی سبز رنگ است که در مولداوی (Moldavia) یافت می شود . فولگلاریت (fulgarite) نیز تیوپ های شکننده از شیشه هستند که در هنگام برخورد برق آسمان به خاکهای ماسه ای پدید می آید. ابسیدیان (obsidian) نیز یک نوع شیشه است که در جریان های آتش فشانی تشکیل می شود. رنگ سیاه رنگ این نوع شیشه به خاطر ناخالصی پدید می آید. در طی دوره ی پارینه سنگی از ابسیدیان در ساخت وسایل استفاده می شده است. سنگ پا (Pamice) یکی دیگر از شیشه هایی است که از فوران های آتش فشانی تشکیل می شود. این ماده می تواند تخلخل های فراوانی داشته باشد. (درصورتی که ماده ی اولیه ی تشکیل دهنده ی آن دارای مواد گازی فراوانی باشد). سنگ پا شکل متخلخل ابسیدیان است

شیشه ها

مقدمه:

دراین مقاله ها در مورد انواع مختلف شیشه و برخی از کاربردهای آنها صحبت می کنیم.
شیشه ها یکی از انواع مهم موادمهندسی محسوب می شوند. این مواد در پنجره ها، ساخت بطری، لیزرها، الیاف نوری، عایق ها، لعاب کاری (glazing) ومینا کاری (enamelihg)، چاقوی جراحی، وسایل هنری وتابلوهای راهنمایی - رانندگی استفاده می شوند.
شیشه ها معمولا بازیافت می شوند واز این رو دوستدار محیط زیست هستند.مصریان آثار شیشه ای متنوعی بر جای گذاشته اند ولی آنها اولین کسانی نبودند که از این ماده استفاده می کردند.در دوران های دیرینه سنگی (paleolithic Times) شیشه های اولیه و شیشه های طبیعی (Obsidian: نوعی شیشه ی مصنوعی بدست آمده از آتش فشان ها ) بسیاراهمیت داشتند به خاطر اهمیت زیاد این ماده می توان گفت که شیشه نقش مهمی در شکل دهی تمدن ما داشته است.
به هر حال تعریفات مختلفی برای شیشه ها بیان شده است. دراین مقاله سعی می کنیم بگوییم چرا واژه های شیشه ای (glassy)، زجاجی (Vitreous) و آمورف (amor phous) همگی برای توصیف شیشه استفاده می شوند. همچنین سعی داریم جواب این سوال را بدهیم که: «شیشه چیست؟»
هنگام مطالعه ی این مقاله باید دو ذهنیت را داشته باشید:
1) ادعای Sturkey:"شیشه در دماهای بالا یک محلول شیمیایی است."
2) اگر شیشه که مایع فوق سرد شده است، پس جامد نیست وبنابراین یک ماده ی سرامیکی نیست (اما شیشه یک ماده ی سرامیکی است)

تعریف

تعریف کلاسیک شیشه براساس روش تاریخی تشکیل آن انجام شده است. البته این روش تعریف یک روش بسیار غیر معقولی برای تعریف هر ماده است. این مسئله باعث شده است تا امروز شیشه به چندین روش مختلف تعریف شود:
تعریف کلاسیک: شیشه یک مایع فوق سرد شده است(Supercooled liquid) مشکل بوجود آمده دراین تعریف این است که در برخی موارد می توان یک شیشه ی ویژه را به روشی تولید کرد که هیچگاه درحالت مایع قرار نداشته باشد.
ASTM شیشه را به صورت زیر تعریف کرده است:
"شیشه یک محصول غیر آلی از ترکیبی مذاب است که بدون آنکه کریستالی شود، سرد وصلب می گردد."
این تعریف نیز همان چیزی است که در تعریف کلاسیک آمده است. اما دراین تعریف شیشه ی پلیمری استثناء شده است. به وضوح مشخص است که استناد کردن به روش تولید برای تعریف یک گروه از مواد ایده آل و مناسب نمی باشد.

تعاریف دیگر :

1)" شیشه یک ماده ی جامد است که نظم دوربعد از خود نشان نمی دهد."
نداشتن نظم دوربعد یعنی ساختار شیشه درفواصل یک، دو یا سه برابر فاصله ی اجزای سازنده، دارای نظم نیست. این تعریف براساس مشاهدات حاصله از تفرق اشعه X، میکروسکوپ الکترونی عبوری (TEM) و... استوار است اما این تعریف نیز کمی قراردادی است زیرا به اندازه ی اجزاء تشکیل دهنده بستگی دارد.
2)" شیشه یک مایع است که قابلیت جاری شدن خود را از دست داده است."
این تعریف استوار است اما از تعریفی که بوسیله ی ASTM ارائه شده است فراگیرتر است .همچنین این تعریف از خاصیت مکانیکی برای تعریف شیشه استفاده می کند. درحقیقت این تعریف عملاً با دیدگاه فیزیک مدرن درباره ی شیشه مطابقت دارد.
اکثر شیشه هایی که ما در مورد آنها توضیح می دهیم، شیشه های با شبکه ی اکسیدی است . (مخصوصاً سیلیکات ها) تعریف ما از چنین شیشه هایی عبارتست از:
تجمعی جامد از تتراگونال هایی است که می توانند رئوس خود را به اشتراک گذاشته و البته این مواد نظم دور بعد ندارند.
دراین مقاله ما تنها درمورد شیشه های سرامیکی بحث می کنیم اما باید بدانیم که علاوه بر شیشه های سرامیکی، شیشه های فلزی و پلیمری نیز وجود دارد. شیشه های فلزی ترکیبات پیچیده ای هستند که در آنها عمل کریستالیزاسیون انجام نشده است. این مسئله بوسیله ی سریع سرد کردن فلز مذاب بوجود می آید.(این فرآیند اسپلات کوئنچینگ نامیده می شود). درادامه به بیان ویژگی شیشه ها می پردازیم:

ساختار

شیشه ها در اصل جامد های غیر کریستالی (یا آمورفی) هستند که در اغلب موارد از فریز شدن یک مایع فوق سرد شده بدست می آیند. دراین موارد نظم دور برد در آرایش اتمی وجود ندارد. البته نظم کوتاه برد (زیر 1nm) وجود دارد. این مواد دارای آرایش منظمی از سلولهای واحد نیستند.همانگونه که گفتیم شواهدی وجود دارد که ثابت می کند در شیشه ها نظم کوتاه برد وجود دارد.این نظم کوتاه برد به دلیل آرایش اتمی درمجاورت هر اتم (البته در فاصله ی کوتاه) بدست می آید. تلاش های فراوانی برای توصیف شیشه ها انجام شده است. که به بیان علت تشکیل شدن یا نشدن شیشه ها بحث می کند. دراین زمینه ما ازدو دیدگاه به شیشه ها نگاه می کنیم:
1) توجه به ساختار
2) توجه به مباحث کنیتیکی کریستالیزاسیون
درمورد اول ما به بیان هندسه ی اجزای تشکیل دهنده ی شیشه ها می پردازیم. همچنین دراین زمینه به بیان پیوندهای بین اتمی واستحکام پیوندها می پردازیم . درمورد دوم ما به بیان چگونگی دگرگونی های مایع به جامد در طی فرآیند سرد شدن می پردازیم.
دمای تبدیل شدن شیشه ای ( Tg )
درشکل 1 نموداری نشان داده شده است که در آن حجم ویژه به عنوان تابعی از دما رسم شده است.

شیشه ها (1)

این دیاگرام فرمی از دیاگرام استعاله ی دما – زمان (T.T.T) برای شیشه است. درهنگام سرد شدن مایع از دمای بالا دو پدید ه ممکن است در نقطه ی انجماد (Tm) اتفاق می افتد که عبارتند از :
1) اگر مایع کریستالیزه شود تغییرات حجم و سرعت سرد کردن گسسته است.
2) اگر کریستالیزاسیون اتفاق نیفتد، مایع به حالت فوق سرد شده تبدیل می شود و حجم در نزدیک دمای ذوب کاهش می یابد.
دردمای تبدیل شدن شیشه ای (Tg)، شیب نمودار کاهش می یابد و به شیب جامد کریستالی نزدیک می شود. این شکستگی بوجود آمده در نمودار سرد کردن نشان دهنده ی گذرگاه مایع فوق سرد شده به شیشه است. زیر دمای Tgساختار شیشه درحالت آسایش نیست زیرا این مواد اکنون جامد هستند. دراین ناحیه از Tg ویسکوزیته تقریبا شیشه ها (1) است. ضریب انبساط حالت شیشه ای معمولا نزدیک به ضریب انبساط جامد کریستالی است. اگر از سرعت های سرد کردن پایین تر استفاده شود، میزان آسایش ساختار افزایش می یابد. ومایع فوق سرد شده در دمای پایین تر تشکیل می شود. و شیشه ی حاصله ممکن است دانسیته ی بالاتری بدست آورند. (همانگونه که در شکل 1 دیده می شود)
فیزیک شیشه جنبه ی تردی آن را مورد بررسی قرار می دهد. در واقع این ویژگی یک ویژگی مایعات شیشه ساز در بالای دمای Tgاست واندزه ای از استعکام پیوندهای بین اتمی است. در ادامه ما درمورد شیشه ی نامحلول در آب یا بطری های شیشه ای آب صحبت می کنیم. البته چیزی که آگاهی کمتری از آن است این است که ما می توانیم آب را با سریع سرد کردن در اتاق مایع به حالت شیشه ای در آوریم. ماده ی حاصله یک شیشه ترد است اما این مسئله فهمیده شده است که بیشتر آب موجود در جهان به همین شکل وجود دارد.
تاریخچه
شیشه ماده ای است که پیوندی عمیق با تاریخچه ی انسان دارد. یکی از شواهد این مسئله استفاده از ابسیدیان (obsidian) یک شیشه ی طبیعی توسط بشر است. هیچ کس نمی داند که اولین جسم شیشه ای در چه زمانی ساخته شده است. قدیمی ترین یافته ها به 7000 سال پیش از میلاد برمی گردد. (البته ممکن است یافته هایی پیش از این تاریخ نیز وجود داشته باشد). درکاوش های باستان شناسی در بین النهرین روش های تولید شیشه کشف شده است . این کارها 4500 سال پیش از میلاد مسیح بوده است ومربوط به روش های تولید وسایل شیشه ای بوده است نه لعاب های مورد استفاده در وسایل سفالی. استفاده از شیشه در لعاب کاری سفال حتی به دوران های پیشین می رسد.

شیشه ها (1)

تقریبا در 3000 سال پیش از میلاد مسیح شیشه گران مصری شروع به تولید جواهر آلات شیشه ای و ظروف شیشه ای کوچک کردند. شیشه هم به عنوان یک جسم دکوری وهم به عنوان یک وسیله ی مورد استفاده در زندگی روزمره به شمار می آمد. قطعاتی از جواهر آلات شیشه ای در کاوش های اطراف کوه های مصر پیدا شده است. مثالی از این جواهرآلات شیشه ی فیزوزه ای آبی است که در شکل 2 دیده می شود. تقر یبا 1500 سال پیش از میلاد مسیح شیشه گران مصری ( در دوره ی touthmosis سوم ) روشی برای تولید قطعات تو خالی قابل استفاده، توسعه دادند. یک مثال قابل توجه از این نوع ساختار یک شیشه ی توخالی است که شبیه به سرماهی است (شکل 3) این ظرف بین سال های 1352 و 1336 قبل از میلاد ساخته شده است واین نظریه وجود دارد که برای نگه داری روغن خوش بو استفاده می شده است.

شیشه ها (1)

الگوی موجی این ظرف بسیار خاص است. در واقع این ظرف بوسیله ی کشیده شدن یک جسم تیز به شیشه ی خمیری شده تولید شده است.
نویسنده ی رومیPliny Fhe Elder (23-79 میلادی) اختراع شیشه را به صورت زیر توصیف می کند:
روزی یک کشتی که متعلق به چند تاجر نیتروم (Nitrum) بود در کنار ساحل لبنان کنونی توقف می کند. هنگام پخت غذا به دلیل نبود سنگ در ساحل، خدمه کشتی از کلوخ های نیترومی که در کشتی وجود داشته است. استفاده می کنند تا بتوانند دیگ غذا را در مکان مناسب استقرار دهند. پس از آنکه آتش روش شد، کلوخه ها با ماسه های ساحلی واکنش داده و تشکیل شیشه ی مذاب می دهد. این اولین منشع پدید آمدن شیشه است.
نیتروم (Nitrum) یک نوع سدیم کربنات (Soda) طبیعی است .این ماده یکی از اجزای مهم در شیشه های قدیمی و مدرن است. خاکستر گیاهان نیز یک منبع فقیر از سدیم برای شیشه گران فراهم می کند. گیاهان علف شوره (Saltwort) و رازیانه ی آبی (glass wort) از جمله گیاهانی هستند که برای مهیا شدن سدیم از آنها استفاده می شده است.
یکی از معمولی ترین روش ها برای شکل دهی شیشه روش دمش هوا است. اگر چه این تکنیک بیش از دوهزار سال پیش توسعه یافت، لوله های تولیدی به روش دمش در طی زمان تغییری نکرده است. توسعه ی عمده که دراین زمینه انجام شده است، روش دمش اتوماتیک است که برای تولید شیشه های بطری و حباب های لامپ استفاده می شود. دراین روش به قطعه ای شیشه در داخل قالب هوا دمیده می شود. و بدین شکل شیشه به شکل قالب در می آید. مهمترین مرحله ی رشد در تاریخ شیشه سازی مخصوصا درطی قرن بیستم مربوط به توسعه های اتفاق افتاده در زمینه ی تکنولوژی های تولید می باشد. این توسعه ها منجر به کاهش هزینه ی تولید محصولات شیشه ای می شود

در ادامه به بیان خواص شیشه ها می پردازیم:

ویسکوزیته ( η )

ویسکوزیته یک ویژگی کلیدی شیشه هاست.ما نیاز داریم تا درمورد ویسکوزیته ی شیشه در دماهای مختلف اطلاع داشته باشیم. و بتوانیم دمای مورد نیاز برا ی شکل دهی وآنیلینگ آن را تشخیص دهیم. ویسکوزیته یک ویژگی مکانیکی است. فرمول ویسکوزیتد به صورت زیر است:

شیشه ها (2)

دراین فرمول:
η : ویسکوزیته، F: نیروی مورد نیاز برای کشیدن یکی از صفحات موازی که در میان آنها مایع مورد نظر قرار دارد: ،d: فاصله ی صفحات، A: مساحت صفحات، V: سرعت حرکت صفحه. ویسکوزیته در واقع پاسخ یک مایع دربرابر تنش برشی است. مایعات دارای ویسکوزیته ای هستند که با واحد سانتی پوآز (CP) اندازه گیری می شود. واحد اندازه گیری ویسکوزیته ی گازها میکروپوآز(mp) است.

شیشه ها (2)

جدول 1 لیستی از اعداد ویسکوزیته ای است که برای فرآیندهای شیشه سازی مهم هستند. اعداد داده شده در جدول 2 نیز برای تعریف ویژگی های برجسته ی شیشه (با تأکید بر روی فرآیند) آورده شده است. بسیاری از اعداد آورده شده درجدول ویسکوزیته ها استاندارد هستند مثلا (2003) ASTMC338-93 یک روش تست استاندارد است که نقطه نرم شدگی شیشه بوسیله ی آن تعیین می شود.
محاسبه ی نقطه ی نرم شدگی شیشه بوسیله ی اندازه گیری دمایی که در آن یک فیبر شیشه ای استوانه ای با قطر شیشه ها (2) طول بوسیله ی وزن خودش تغییر طول می دهد. نرخ تغییر طول یک میلی متر بردقیقه است . در این روش 100 میلی متر از بخش بالایی فیبر بوسیله ی کوره ی خاصی با سرعت گرم شدنشیشه ها (2) گرم می شود.

شیشه ها (2)

ویسکوزیته ی برخی ازمایعات عمومی در جدول 2 آورده شده است. توجه کنید که در دمای کارپذیری شیشه ویسکوزیته ای شبیه به عسل در دمای اتاق دارد. به طور نمونه برای یک شیشه ی سیلیکاتی سودالایم این ویسکوزیته در دمایشیشه ها (2) بدست می آید. این جدول همچنین نشان می دهد که یک جامد دارای ویسکوزیته ای بیش ازشیشه ها (2) دسی پو آز است. ویسکوزیته ی به طور نمایی با تغییر دما ، تغییر می کند ( همانگونه که در شکل 1 برای انواع شیشه ی سیلیکاتی دیده می شود.) دمای فیکتیو (fictive temperature) دمایی است که در آن ساختار مایع به حالت شیشه ای تبدیل می شود. این دما بوسیله ی تقاطع منحنی های برونیابی شده در حالت دما بالا و دما پایین در نمودار ویسکوزیته – دما بدست می آید. دمای فیکتیو (Tf) مانند Tg به تبدیلات ساختاری شیشه بستگی دارد. البته Tg اندکی کمتر از Tf است.

شیشه ها (2)

شکل 2 وابستگی ویسکوزیته به دما را برای اکسیدهای شیشه ساز نشان می دهد. شما باید توجه کنید که بوسیله ی شیب این خطوط می توان انرژی اکتیواسیون جریان ویسکوز (EV) را بدست آوریم.

شیشه ها (2)

جدول 3 اعداد ویسکوزیته وسرعت های کریستالیزاسیون (v) برخی شیشه ها را نشان می دهد. سرعت کریستالیزاسیون مربوط می شود به سرعت تبادل مایع/جامد. V بسیار کم بیان کننده ی قابلیت شیشه سازی استثنایی ماده است.البته کریستالیزاسیون مذاب جامد شده ی سیلیس بسیار مشکل است.

شیشه ها (2)

روش های متعددی برای اندازه گیری ویسکوزیته وجود دارد. این روش ها با توجه به میزان ویسکوزیته انتخاب می شود.

شیشه ها (2)

شماتیک دو روش اول اندازه گیری ویسکوزیته در شکل 3 نشان داده شده است:

شیشه ها (2)

شیشه ( خلاصه ای از خواص )
 

شیشه ماده ای خنثی است. این مسئله به محیط بستگی دارد. اگر شیشه یک ماده ی سیلیکاتی باشد، این مسئله درست است . البته همه ی شیشه ها خنثی نیستند. مثلا بیوگلاس (bioglass)
شیشه یک ماده ی هموژن است. این مسئله نیز به نحوه ی شکل دهی و ترکیب شیمیایی شیشه بستگی دارد. ما می توانیم با استفاده از فرآیندهای خاص شیشه را به صورت غیر هموژن در آوریم.
شیشه می تواند تغییر شکل دهد. این مسئله عموماً درست می باشد و دلیلی است برای قابلیت بازیافت شیشه ها. برخی از شیشه ها به نحوه ای ساخته می شوند که بوسیله ی نور، انتشار نور در داخل آن وتابش نور و...تغییر ماهیت می دهد.
شیشه دارای ضریب انبساط کوچک است. البته همه ی شیشه ها مناسب استفاده شدن در کاربردهای حرارتی مانند ظروف پیرکس نیستند.
شیشه ها شفاف اند (trans Parent) این خاصیت برای الیاف نوری ضروری است. البته ما می توانیم با انجام عملیات های خاص شیشه به صورت اپک یا مات در آوریم.
بسیاری از شیشه های اولیه شفافیت کامل نداشتند زیرا در ساختار آنها ناخالصی وحباب هوا وجود داشت.
شیشه ارزان است. البته این مسئله برای شیشه های پنجره صحیح است. اما درمورد فیلم های نازک شیشه ای این مسئله صحیح نمی باشد. برخی از شیشه های قرمز رنگ بوسیله ی دپینگ (doping) طلا در آنها تولید می شود. که قیمت برخی از ظروف تولیدی از آن به پیش از 50 دلار می رسد.
شیشه یک ماده ی بالک است مگر در حالتی که آن را به صورت یک فیلم نازک ، یک فیلم انیتر گرانولار (IGF) یا یک سرامیک کریستالی رشد دهیم.

برخی از خواص مکانیکی شیشه

استحکام تئوریک شیشه ی سیلیکاتی درحدود 10GPa است. البته با حضور عیوب سطحی (ترک ها وجوانه ها ) این استحکام کاهش می یابد. شیشه ها موادی الاستیک هستند اما تحت کشش می شکنند. می توان استحکام این مواد را بوسیله ی ایجاد لایه های سطحی فشرده و یا بوسیله ی از بین بردن ترک های سطحی (با اسید شوئی یا پدید آوردن پوشش محافظ) افزایش داد. مثالی از این روش ها پدید آوردن ترک های اضافی در ساختار قطعات شیشه ای تزئینی به منظور بهبود خواص مکانیکی آنهاست. در این روش از سرد کردن شیشه ی مذاب در آب جهت ایجاد تنش های اضافه بهره برده می شود . در این حالت سطح قطعه ی شیشه ای مذاب زودتر از مرکز آن سرد می شود و بنابراین تنش های اضافی پدید می آید. قطعات جامد شده به این شیوه را می توان با چکش و بدون اینکه بشکنند چکش کاری کرد.

برخی از ویژگی های الکتریکی شیشه

شیشه معمولا دارای مقاومت الکتریکی بالایی است. که علت آن تفاوت زیاد میان باندهای انرژی (گپ بزرگ) در این ماده است. در مواردی که شیشه رساناست . بار بوسیله ی یون ها منتقل می شود.(در این مورد یون های قلیایی مانندشیشه ها (2) دارای سرعت انتقال بار بالایی هستند). در واقع به همین دلیل است که با افزایش دما رسانایی به شدت افزایش می یابد. رسانایی درشیشه های مختلف، متفاوت است.علت آن متفاوت بودن نوع شبکه ی این شیشه هاست. در شیشه هایی که دارای بیش از یک یون قلیایی هستند. پدیده ی جالبی رخ می دهد. رسانایی تولیدی در این نوع شیشه ها به طور مشخصی از شیشه های دارای یک یون کمتر است. این نوع شیشه ها در کاربردهای مختلف مانند لامپ های با توان بالا استفاده می شوند. ثابت دی الکتریک شیشه واقعاً بالاست اما نه به حدی که بتوان از آن در کاربردهای حافظه ای پیشرفته مانند حافظه ی با دستیابی دینامیک و رندوم (DRAMS) استفاده کرد. ظرفیت الکتریکی یک ماده میزان بار ذخیره شده در داخل ماده است. این خاصیت به ضخامت دی الکتریک بستگی دارد. همانطور که ضخامت دی الکتریک کمتر می شود، ظرفیت الکتریکی افزایش می یابد. اما کم کردن ضخامت نیز مشکلاتی به همراه دارد. مثلا با کاهش ضخامت احتمال شکست دی الکتریک بیشتر می شود. شیشه ی سیلیسی دارای مقاومت دی الکتریک بالاتری نسبت به سایر شیشه هاست. اما مقاومت این دی الکتریک نیز در حد دی الکتریک های پلیمری مانند رزین فنولیک نیست.

برخی از خواص اپتیکی شیشه

شفافیت دربرابر نور فرا بنفش ، مرئی و فرو سرخ به چندین فاکتور بستگی دارد. یکی از این فاکتورها طول موج تفرق است که بوسیله ی ناخالصی ها تغییر می کند. لبه ی فرو سرخ (IRedge) و لبه ی فرا بنفش ((uv edge اعدادی هستند که نشان دهنده ی فرکانس قطع شدن عبور این موج ها هستند. یک مانع لبه UV edge blocker)UV) از عبور UV جلوگیری می کند و این در حالی است که یک عبور دهنده ی لبه یUV (UV edge tran Smitter) اجازه ی عبور نور UV را می دهد.

عیوب در شیشه ها

اگر چه شیشه یک ماده ی آمورف است ولی مانند مواد کریستالی دارای عیوب و رسوبات است. و همچنین دچار جدایش فاز می شود. شیشه را می توان برای حبس کردن عناصر رادیو اکتیو استفاده کرد .در این عناصر مانند عیوب نقطه ای یا فاز ثانویه تشکیل می شوند. همچنین سرعت نفوذ این عناصر از میان شیشه بر روی میزان آن ها در شیشه تأثیر دارند. این مسئله استفاده می شود تا بتوان مواد رادیو اکتیو یا سایر مواد را کنترل کرد.

شیشه ی غیر هموژن

به دلیل آنکه شیشه یک مایع فوق سرد شده است. نمی توان گفت که این ماده حتما باید هموژن باشد. شیشه های خاص می توانند بدون نیاز به فرآیند کریستالیزاسیون به دو فاز تبدیل شوند. هنگامی که این دو فاز شیشه ای باشند این مسأله باعث می شود که سدی در برابر جدایش فازی پدید نیاید. در مورد فرآیند جدایش فازی مایع – مایع ممکن است مرحله ای برای جوانه زنی وجود داشته باشد. البته در این نوع تبدیلات ممکن است استعاله ی اسپینودال (Spinodal) نیز رخ می دهد. که هر دوی این استعاله ها به نفوذ وابسته اند.
قوانین امتزاج ناپذیری در شیشه ها بسیار مهم است. این مسئله مخصوصاً در شیشه های تولید شده با تکنولوژی روز نمود دارد. برای مثال امتزاج ناپذیری در شکل دهی شیشه – سرامیک ها ، تولید شیشه ی وایکور (Vycor) و شیشه های اپتیکی و تشکیل رسوب در شیشه ها مهم می باشد. بسیاری از اکسیدهای دوتایی و سه تایی در کنار سیلیس از خود مشکلات امتزاج پذیری نشان می دهند.
در دیاگرام فازی ناحیه ای وجود دارد که یک مایع به دو مایع با ترکیب شیمیایی متفاوت تبدیل می شود. این ناحیه گپ امتزاج پذیری (imisciblity gap) نامیده می شود. در زیر برخی از سیستم هایی که مشکل امتزاج پذیری دارند را نام برده ایم:

شیشه ها (2)

شیشه ها (2)

شکل 4 دیاگرام فازیشیشه ها (2) را نشان می دهد. در دمای پایین و در گوشه ی غنی از سیلیس دیاگرام ، فاز مایع به دو بخش مایع با ترکیب شیمیایی متفاوت تبدیل می شود. این دو مایع به صورت دو شکل گنبد مانند در شکل نشان داده شده اند. خط تیره نشان دهنده ی خط تقریبی ناحیه ی امتزاج ناپذیری است. مشکلی که در اندازه گیری این خط وجود دارد. این است که این پدیده در دمای پایین رخ می دهد و از این رو سرعت آن پایین است . و از این رو اندازه گیری آن مشکل است. دراین وضعیت میل جدایش فازی بیشتر از میل به کریستالیزاسیون است . البته کریستالیزاسیون مساعد تر از جدایش فازی است اما به دلیل آنکه جدایش فازی نیازی به باز آرایی اتم ها ندارد، این پدیده رخ می دهد. به عنوان یک قانون کلی برای سیلیس باید گفت که امتزاج ناپذیری با افزودنشیشه ها (2) افزایش می یابد اما با افزودنشیشه ها (2) کم می شود. در شیشه های وایکور از قوانین جدایش فازی استفاده می شود. در فرآیند تولید شیشه وایکور، شیشه ای پدید می آید که دارایشیشه ها (2) و 4 درصد تخلخل است.این نوع شیشه به عنوان فیلتر وبیومواد مخصوصا در جاهایی که تخلخل مهم می باشد، استفاده می شود. در فرآیند تولید وایکور، شیشه ای تولید می شود که پس از فرآیند شکل دهی دنس می گردد و شیشه ای با سیلیس خالص پدید می آید که در دمای پایین تر نسبت به کوارتز خالص شکل دهی گشته است

شیشه ی آلومینیوم – ایتریمی

شیشه های آلومینیوم –ایتریایی (YA) دارای درصد آلومینایی در گسترده ی تقریبی 75.6- 59.8 هستند. با این درصد آلومینایک شیشه ی دو فازی تشکیل می شود که در آن یک فاز قطره مانند در فاز دیگر تشکیل شده است. این شیشه به طور خود بخودی به صورت شیشه ی آلومینیوم – ایتریمی یا مخلوطی ازشیشه ها (3) تبدیل می شود. درشیشه های YA پدیده ای به نام پلی مورفیزم (Polymorphism) رخ می دهد

شیشه ی رنگی

اگر چه در بیشتر کاربردهای شیشه نیاز است تا این ماده بی رنگ باشد اما در برخی از کاربردها نیاز است شیشه رنگی باشد. هنگامی که پنجره های یک کلیسا رنگی باشد، تأثیر پذیری ازمحیط بیشتر می شود . درشیشه ها معمولا بوسیله ی افزودن اکسیدهای انتقالی و یا اکسیدهای عناصر خاک های کمیاب (rave –eavth) به بچ ماده ی اولیه ی آنها، رنگی می شوند. جدول 1 لیستی از رنگ های تولیدی بوسیله ی مواد رنگی کننده ی شیشه هاست . زرد کم رنگ، نارنجی و رنگ های قرمز بوسیله ی فلزات گران بها درحالت کلوئیدی تولید می شود. طلا (Au) رنگ قرمز، یا قوتی تولید می کند. (البته این شیشه ها گران قیمت هستند). سولفید کادمیم (cds) محصولاتی با رنگ زرد تولید می کند. اما هنگامی که علاوه بر se ، cds نیز استفاده شود. محصولاتی با رنگ قرمز یا قوتی با شدت رنگ بالا تولید می شود.

شیشه ها (3)

شیشه بوسیله ی افزودن دوپانت ها (dopants) رنگرزی می شوند. در واقع با افزودن این دو پانت ها در شیشه عیوب نقطه ای پدید می آوریم. رنگ شیشه به نوع دو پانت و حالت اکسیداسیون آن بستگی دارد.
دو پانت ها می توانند اثر بی رنگ کننده (decdorizo) ، پوشش دهنده (mask) یا اصلاح کننده (modify) داشته باشند. ما می توانیم اثرات رنگی آهن را بوسیله ی افزایش cr خنثی کنیم؛ البته اگر درصدشیشه ها (3) زیاد باشد اضافی به صورتشیشه ها (3) خارج می شود. اگر این شیشه به روش دمیدن شکل دهی شود، این پلیت لت هایشیشه ها (3) منظم گشته و شیشه ای اپک به نام آونتورین کرومی (chromium aventurine) تولید می کنند. مس (cu) برای تولید شیشه ی آبی مصری (Egyptian Blue glass) استفاده می شود.
CO (کبالت ) دربرخی از شیشه های پالایش یافته ی تولید در قرن دوازدهم استفاده می شده است. البته Co در تولید لعاب های پرسلانی مورد استفاده در چین ( در دوره ی سلسله ی منیگ وتانگ) استفاده می شده است. کبالت مورد استفاده در این لعاب ها رنگ آبی کبالتی تولید می کند.
با افزودن Se به شیشه های دپ شده با Cds باعث پدید آمدن رنگ یاقوتی سلینومی (Selenium Ruby) می شود. جزئیات پدید آمده ازهر کدام از این رنگ ها به ترکیب شیمیایی و شرایط پخت شیشه بستگی دارد.
شرکت کورینگ (Cornig) میکرو بارکدهایی با شیشه دپ شده با خاکهای کم یاب تولید کرده است. خاکهای کم یاب دارای باندهای نشر کم پهنا هستند و از میان 13 عنصر خاکهای قلیایی که مورد آزمایش قرار گرفته ، تنها 4 عنصر (Tm,Ce,Tb و Dy) می توانند در برابر تابش UV برانگیخته شوند. و لذا می توان از آنها در شناسایی بوسیله ی UV استفاده کرد. این نوع بارکدها همچنین مشکلات تداخل با سایر بارکدها را نیز ندارد. از این بارکدها در کاربردهای بیولوژیکی استفاده می شود زیرا سمی نیستند.(البته بر چسب زنی با کوانتوم دات ها خطرات کمتری دارد) و می توان از آنها در کاربردهای ژنتیکی استفاده کرد. با استفاده از چند عنصر خاکی کمیاب می توان ترکیب رنگی بیشتر پدید آورد.
شیشه های رنگی خاص شامل موارد زیر می شود :

شیشه ی یاقوتی یا کرانبری ( Cranberry )
 

شیشه ی یاقوتی با افزودن Au به شیشه سربی با حضور Sn پدید می آید. شیشه ی کرانبری که اولین بار در سال 1685 گزارش شده است، یک نوع شیشه ی بی رنگ (معمولاً صورتی کم رنگ ) است. علت پدید آمدن این رنگ در صد کم طلای موجود در آن است . راز تولید شیشه قرمز رنگ برای قرن ها ی زیادی گم شده بود و در قرن هفدهم دوباره کشف شد.

شیشه ی اورانیومی یا وازلینی

محصولات اورانیومی هنگامی که در شیشه ی با سرب بالا استفاده شود، رنگ قرمز تیره تولید می کند. البته شیشه های اورانیومی دیگری نیز وجود دارد که با صطلاح به آنها شیشه های وازلینی (Vaseline glass) می گویند. این نوع شیشه ها دارای رنگ سبز هستند. مسأله ای که این نوع شیشه ها را خاص کرده است این است که این نوع شیشه ها هنگام تابش اشعه ی UV به آنها ، خاصیت فلئورسانس پیدا می کنند. از سال 1940 تنها اورانیوم تهی شده (uranium depleted) به عنوان دو پانت استفاده می شود. علت استفاده از این نوع دو پانت، فراوانی آن است. اما از 100 سال گذشته به بعد اورانیوم طبیعی (natural uranium) استفاده می شود.

شیشه ها (3)

شکل 1 مثالی از یک شیشه ی وازلینی است.

لیزر شیشه ای

عناصر خاکهای کم یاب (rave – earth elements) مانند Nd در تولید شیشه های لیزر و سایر وسایل اپتیکی کاربرد دارند. (شکل 2) . لیزر شیشه ای دپ شده با Nd (Nd-doped glass laser) مانند یک لیزر یاقوتی (ruby laser) کار می کند . اگر چه نوع شیشه ای دارای تفاوت هایی است . میله ی لیزر قطری بینشیشه ها (1) اینچ دارد و معمولا بوسیله ی یک لامپ حلزونی تخلیه می شود. علت استفاده از لامپ های حلزونی این است که طول غیر بار دار این نوع لامپ ها از لامپ های خطی طولانی تر است. لیزر شیشه ای دپ شده با Nd دارای بازدهی بیش از 2% است. این بازده 4 برابر بازده یک لیزر یاقوتی است. به دلیل آنکه رسانایی گرمایی شیشه پایین است بنابراین نیاز به زمان بیشتری برای خنک سازی است.

شیشه ها (3)

رسوبات در شیشه

وجود رسوبات در شیشه عموما اجتناب ناپذیر است. سوال این است که چه زمانی طول می کشد تا رسوبات تشکیل شود. (مخصوصا اگر جوانه زنی هموژن باشد). ما ممکن است عوامل هسته زا برای تسریع جوانه زنی به شیشه اضافه کنیم. جوانه زنی کریستال ها در شیشه از تئوری کلاسیک پیروی می کند. رسوبات تشکیل شده در شیشه می تواند موجب رنگی شدن شیشه شود.

شیشه به عنوان لعاب

لعاب ها مانند شیشه ها در همه جا دیده می شوند. لعاب کاری (glazing) استفاده از ویژگی های ویسکوز شیشه و تشکیل یک لایه ی یک پارچه و صاف بر روی یک زیر لایه ی سرامیکی است.
مینا کاری (enameling) تشکیل همان لایه بر روی یک زیر لایه ی فلزی است. چیزی که باید به آن توجه کرد این است که عموما لعاب ها قدمت زیادتری دارند. در ادامه به بیان برخی از اصطلاحات لعاب می پردازیم:

زیر لعاب ( underglaze )

هنگامی که یک بیسکوییت سرامیکی را می خواهیم مورد عملیات دکور قرار دهیم باید قبل از آن یک لعاب کاری بر روی آن انجام دهیم که این نوع لعاب را زیر لعاب گویند. این لایه به علت تشکیل بهتر دکور بر روی بدنه اعمال می شود. پس از آن که فرآیند دکوراسیون جسم سرامیکی انجام شود برروی آن یک لعاب دیگر اعمال می شود. البته این لعاب پیش از پخت دکور اعمال می شود.
عیب کراولینگ لعاب ( glaze craweling ) این عیب که در لعاب اتفاق می افتد بدین صورت است که لعاب از لایه ی سرامیکی زیرین جدا می گردد. این پدیده به دلیل عدم ترشوندگی بیسکوییت سرامیکی بالعاب در طی فرآیند پخت اتفاق می افتد.
لعاب ترک خورده ( crackle glaze )اگر انبساط گرماییشیشه ها (3) لعاب از سرامیک بستر بزرگ تر باشد، لعاب ممکن است در طی فرآیند سرد کردن (در طی پخت) بشکند. هنگامی که غلظت یون سدیم و پتاسیم در لعاب بیشتر باشد، ترک ها بیشتر پدید می آیند. هنگامی که سرعت سرد کردن بالا رود ترک های حاصل ریزتر می شوند.
لعابهای سلادون (celadon )، تنموکو (tenmoku)، راکو (raku) و کوپر ( copper) لعاب های ویژه ای هستند که در دنیای هنر سرامیک یافت می شوند.
لعاب های سلادوناین لعاب ها اولین بار در حدود 3500 سال پیش تولید شده اند. این لعاب ها دارای گستره ی رنگی از آبی کم رنگ تا سبز مایل به زرد هستند و می توانند رنگی کاملا تیره پدید آورند. رنگ تولیدی در این لعاب ها بوسیله ی آهن تولید می شود(3.o - o.5 در صدشیشه ها (3) به لعاب افزوده می شود). ظروف لعاب خورده توسط این نوع لعاب سپس در دمای تقریباًشیشه ها (3) پخت می گردند. ظروف تولید شده با این لعاب ها زیبایی خاصی داشته و در کاربردهای تزئینی استفاده می شوند. مثلا کوزه ی لعاب خورده با این لعاب که درکشور کره تولید شده است، درسال 1946 از سوی کشور کره به هاری ترومن رئیس جمهور آمریکا هدیه شد. امروزه این ظرف که 23cm ارتفاع دارد قیمتی برابر با 3 میلیون دلار دارد.
لعاب تنموکواین نوع لعاب در زمان سلسله ی سونگ (sung Dynasty) بوجود آمده است. و دارای رنگ قهوه ای تیره یا حتی سیاه است. برای ایجاد این رنگ میزان 8-5 درصد وزنیشیشه ها (3) به لعاب افزوده می شود. تشکیل مناسب این نوع لعاب به شرایط اکسایش – کاهش اتمسفر پخت بستگی دارد. و در شرایط مختلف اکسایش و کاهش رنگ های متنوعی پدید می آید. در لعاب های کوپرنیز از کربنات مس به عنوان منبع Cuاستفاده می شود. البته در طی فرآیند پختشیشه ها (3) تجزیه گشته و Cuoباقی می ماند. Cuo تولید نیز با مونواکسیدکربن (CO) موجود در کوره واکنش داده تا ذرات مس در لعاب تشکیل شوند. این ذرات رنگ قرمز به لعاب می دهند.
لعاب های راکولعاب های راکو اغلباً لعاب هایی فلزی به نظر می رسند. (اگر بوسیله ی یک لایه از فلز Ti پوشش داده شده باشند)
یک روش پیشرفته در تولید لعاب های راکو بدین صورت است که ظروف سرامیکی به شیوه ی معمولی پخت می شوند سپس آنها را در داخل یک محیط کاهنده مانند خاک اره وارد می کنند و سپس آنها را قبل از آنکه بتوانند اکسید شوند، به سرعت سرد می کنند. این نوع لعاب ها اغلبا حالت استثنا داشته و می توانند با زمان تغییر کنند. این مسئله ساده است. زیرا آنها در طی فرآیندهای بعدی تولید اکسید می شوند. این نوع لعاب بر خلاف سایر لعاب ها خنثی نبوده و تنها برای دکوراسیون استفاده می شوند.
لعاب های کریستالی ( crystalline glaze )این نوع لعاب ها ، لعاب هایی دکوراسیونی هستند اما به طور مستقیم با تکنولوژی تشکیل شیشه – سرامیک در ارتباطند. کریستال ها بوسیله ی سرد کردن آهسته لعاب ایجاد می شوند. این سرد کردن آهسته به کریستال های لعاب اجازه ی رشد کردن می دهند. رشد این کریستال ها مد نظر است؛ زیرا لعاب ضخامت کمی داشته و از این رو کریستال ها باید به صورت پلیت لت (platelets) در آیند. برای آنکه عمل رشد کریستال ها بهتر انجام شود از جوانه زاهای تیتانیایی استفاده می شود. این نوع جوانه زاها در لعاب های باویسکوزیته ی پایین استفاده می شوند و در آنهاشیشه ها (3) تشکیل می شود. ترکیب شیمیایی این نوع لعاب ها بسیار مهم است. در آن شیشه ها (3) وشیشه ها (3) به میزان کم و Pbo به میزان 10-8 درصد وزنی استفاده می شود. رشد کریستال با اضافه شدن fe به لعاب افزایش می یابد. اما این اضافه شدن می تواند همچنین موجب پدید آمدن اثراتی بر سایر دو پانت های اضافه شده به لعاب شود.
سفالگران امروزی ازشیشه ها (3) به عنوان اصلاح کننده و تولید کننده ی کریستال های ویلمایت (Crystals Willemite) استفاده می کنند. (ویلمایت یک مینرال کمیاب از روی است). این تکنیک نیازمند مهارت ویژه است. زیرا افزودن مقادیر زیادشیشه ها (3) به لعاب باعث می شود ویسکوزیته ی آن حتی در دماهای پایین نیز کم باشد، بنابراین این مسئله باعث می شود که لعاب از روی سطح سفالی جریان پیدا کند. رشد اسفرولیتی (Spherulite growth) از جوانه زا در لعاب در شکل 3 نشان داده شده است. هر اسفرولیت در واقع توده ای از کریستال های شعاعی است که با توجه به مرکز اسفرولیت دورهم گرد آمده اند.

شیشه ها (1)

لعاب های اپک ( opaque glazes ) اگر به لعاب مذاب کریستال هایی افزوده شود، لعاب می تواند اپک شود. برای این کار می توان ازO_2 S_n یا زیر کن استفاده کرد. که زیر کن ارزان تر است .شیشه ها (3) برای تولید رنگ سفید در لعاب های زیرکنی (Zircon glaze) استفاده می شود. برای اپک کردن کمتر ازشیشه ها (3) استفاده می شود زیرا کریستال های روتایل طلایی رنگ هستند. و بنابراین لعاب را به رنگ زرد در می آورند. ما همچنین می توانیم با تشکیل کریستال لعاب را اپک کنیم (مثلا ولاستونیت:شیشه ها (3). این کار بوسیله ی عملیات حرارتی مناسب، حبس کردن گاز (هوا یاشیشه ها (3) ) ) و یا بوسیله ی جدایش فازی مایع – مایع انجام می شود. لعاب های مات (Matt glazes) بوسیله ی تشکیل کریستال های بسیار کوچک در لعاب بوجود می آیند (مثلا کریستال های ولاستونیت برای لعاب های مات – آهکی و وبلیمایت (شیشه ها (3):Willemite ) برای لعاب های مات – زینک). کریستال های ریز ولاستونیت بوسیله ی افزودن کلسیت به لعاب پایه سیلیس تشکیل می شود. یک روش دیگر برای این کار افزودن مقادیر زیادی از ماده ی کریستالی به لعاب است تا در طی فرآیند پخت درصدی از آن به صورت کریستالی باقی بماند

رنگ در لعاب و لعاب موضوعاتی هستند که امروزه تحقیقات فراوانی بر روی آنها به عمل آورده شده است. امروزه رنگ های جدیدی بوسیله ی افزودن نانو ذرات در لعاب پدید می آید. عموما نانو ذرات نقره و طلا رنگ طلایی بوجود می آورند. و نانو ذرات مس رنگ قرمز بوجود می آورند. توضیح در مورد نحوه ی پدید آمدن رنگ در لعاب واقعاً پیچیده تر از نحوه ی پدید آمدن رنگ در شیشه هاست. زیرا لعاب بر روی یک لایه اعمال می شود و از این سو نباید ترانسپارنت باشد. همچنین لعاب یک لایه ی نازک است و در اتمسفر مختلف (کاهنده – اکسید کننده) بوجود می آید از این دو بررسی عوامل موثر بر تشکیل یک لعاب مشکل است.

لعاب های رنگی ( Colored glazes )

در لعاب های رنگی باید از پیگمنت های سرامیکی با پایداری مناسب بهره برد. از اکسیدهای رنگ زای ارزان قیمت می توان برای ایجاد رنگ در محصولات متنوع سفالی بهره برد. البته بسیاری از مواد رنگ زا برای لعاب همانهایی هستند که ما برای رنگرزی شیشه از آنها استفاده می کنیم
اکسید کبالت شیشه ها (4) یک اکسید سیاه رنگ است اما کمتر از یک درصد وزنی از آن در لعاب ایجاد رنگ آبی تیره می کند (اگر چه در بیشتر موارد از کربنات کبالت استفاده می شود).
به دلیل آنکه شیشه ها (4) در این گونه لعاب ها بوجود می آید، ویسکوزیته ی لعاب تغییر می کند.
اکسید کروم که تا 3-2% وزنی نیز می تواند به لعاب افزوده شود به جای رنگ سبز، رنگهای زرد، صورتی یا قهوه ای بوجود می آورد (رنگ قرمز در حضور سرب در ترکیب لعاب اولیه پدید می آید. اگر Zn در لعاب اولیه وجود داشته باشد، رنگ لعاب قهوه ای می شود مگر آنکه سرب ها هم وجود داشته باشد. که در صورت وجود سرب و روی در لعاب اولیه رنگ زرد پدید می آید).
شیشه ها (4)که به صورت کربنات به لعاب افزوده می شود، رنگ لعاب را به صورت قهوه ای در آورده البته این ماده می تواند رنگ قرمز، بنفش و حتی سیاه نیز تولید کند. که این تغییر رنگ به درصد سدیم موجود در لعاب اولیه بستگی دارد. افزودن Cuo به اندازه ی %2-1 وزنی به یک لعاب با سدیم بسیار کم سبب پدید آمدن رنگ فیروزه ای می شود. این درحالی است که افزودن بیش از 3% از این رنگ زا باعث پدید آمدن رنگ سبز یا آبی می شود. اگر درصد Cuo در لعاب افزایش یابد، لعاب ظاهری فلزی مانند مفرغ به خود می گیرد. اگر لعاب دارای 0.3– 2 درصد وزنی Cuo در اتمسفر کاهنده پخت شود، رنگ قرمز مسی پدید می آید. این رنگ به دلیل حضور ذرات کلوئیدی CU درلعاب بوجود می آید.
اگر یک لعاب رنگ زرد داشته باشد، این رنگ ممکن است بوسیله ی افزودن Cds یا Cdse بوجود آمده باشد. البته این نوع افزودنی های رنگ زا ممکن است رنگ های قرمز یا نارنجی را نیز پدید آورند. درصورت حضور سرب در این نوع لعاب ها ، Pds تشکیل می شود که باعث سیاه شدن لعاب می شود. زیرکن در صنعت برای کمک کردن به پایدار شدن این نوع رنگ ها (برپایه ی cd) استفاده می شود. درحقیقت شیشه ها (4) (زیر کن وانادیومی آبی رنگ) و شیشه ها (4)(pr,zr) (زیر کن پراسئودیومی زرد رنگ) مهم ترین تثبیت کننده های مورد استفاده در این رنگ هاست. هنگامی که اورانیوم به لعاب اضافه شود، به جای پدید آوردن رنگ زرد کم رنگ، رنگ قهوه ای تیره پدید می آید. (اورانیوم در شیشه های وازلینی تولید رنگ زرد کم رنگ می کند). البته بسته به ترکیب لعاب ، اورانیوم می تواند رنگ های قرمز یا نارنجی روشن نیز بدهد.

لعاب نمکی ( saltglaze )

دراین نوع فرآیند لعاب کاری سفال در کوره های با دمای بالا با نمک واکنش می دهد. در واقع سفالگر نمک را بر روی سفال اعمال می کند. این فرآیند هنگامی اتفاق می افتد که سفال در داخل کوره است. این فن بوسیله ی سفالگران ایرانی وانگلیسی در دهه ی 1700 ابداع گشته است. همچنین شما می توانید مثال های فراوانی از فرآیند رنگ آمیزی بوسیله ی اکسیدهای فلزی را در آلمان ببنید. در این نوع لعاب ها نمک با رس واکنش داده و تشکیل لایه ای شیشه ای بر روی سطح می دهد. این تکنیک دقیقاً فرآیند خوردگی خاک نسوز در دمای بالاست (بوسیله ی سود سوز آور).
واژه ی مینا (enamel) معمولا در هنگامی استفاده می شود که یک لایه ی لعابی بر روی فلز اعمال می شود. البته این واژه در هنگامی که یک لایه لعابی بر روی لعاب اولیه اعمال می شود نیز استفاده می شود. بازار مصرف مینا بسیار بزرگ است. این بازار از لوازم بهداشتی تا جواهر آلات گسترده است.

خوردگی شیشه و لعاب

این تصور وجود دارد که شیشه خنثی است اما باید بدانید که اسید سیتریک و اسید استیک موجود در غذاها و میوه ها می توانند بایون های موجود در شیشه واکنش دهند و ترکیبات کمپلکس پدید آورند. با خروج یون های قلیایی از داخل شیشه یون های هیدروژن مثبت جایگزین آنها می شود. هنگامی که بخواهیم استحکام سطح شیشه را افزایش دهیم باید یون های پتاسیم و سدیم مثبت را با لیتیم مثبت ( شیشه ها (4) ) جایگزین کنیم. در شیشه ی آلایش یافته (Stain glass) می توان یون نقره ی مثبت و مس را جایگزین شیشه ها (4) کرد.
همانند مواد کریستالی ، شیشه ها نیز دارای عیوب کریستالی اند. یکی از چالش هایی که ما با آنها روبرو هستیم محاسبه ی خواص بوجود آمده ازعیوب (مانند نفوذ) در شیشه هاست. زیرا در شیشه ها شبکه ی مرجع وجود ندارد.

انواع شیشه های سرامیکی

همه ی شیشه ها براساس تتراهدرال های سیلیسی ایجاد نمی شوند؛ واحدهای ساختاری این شیشه ها در جدول 1 آورده شده است. برخی از ترکیبات این شیشه ها نیز در جدول 2 آورده شده است.

شیشه ها (4)

شیشه ها (4)

شیشه ی سیلیکاتی ( سودالایم )

این شیشه ها بر پایه ی شیشه ها (4) هستند. (معمولا این نوع شیشه ها علاوه بر این مواد دارای شیشه ها (4) نیز هستند.) این نوع شیشه نستبا ارزان هستند و دارای دوام خوبی نیز هستند همچنین از این نوع شیشه به طور فراوان در صنعت بسته بندی و ساختمان استفاده می شود. ضریب انبساط حرارتی شیشه ها (4) این نوع شیشه ها ناچیز نیست. همچنین این نوع از شیشه ها عایق های خوبی نیستند. استفاده های عمده از این نوع شیشه در صفحات شیشه ای ،بطری ها ، وسایل غذا خوری و صنعت الکترونیک (حباب لامپ) است. شیشه های آلومینو سیلیکاتی قلیایی (شیشه ها (4)= عنصر قلیایی) دارای ضریب انبساط حرارتی پایینی است. این نوع شیشه دارای دوام و خواص عایق کاری بهتری است. وهمچنین نسبت به سایر شیشه های هم گروه استحکام بالاتری دارد. استفاده های این نوع شیشه عبارتست از تیوپ های اختراق، حباب های لامپ هالوژن و به عنوان بسترهای صنعت الکترونیک کاربرد دارد.

شیشه ی سربی

ترکیب عمومی این شیشه ها سیلیکات های قلیایی سربی استشیشه ها (4). در این نوع شیشه ها Pbo به جای CaO در شیشه ی سودالایمی قرار گرفته است. این نوع شیشه دارای مقاومت بالایی است. همچنین ضریب انبساط حرارتی آن بالاست. و دمای نرم شوندگی پایینی دارد. دلیل آنکه از این نوع شیشه ها در تولید ظروف کریستال استفاده می شود این است که ضریب شکست این نوع شیشه بالاست و علاوه بر این که از این شیشه ها در ظروف تزئینی استفاده می شود، از آنها در ساخت تیوپ های لامپ، لامپ تصویر تلویزیون و تیوپ های ترمومترها استفاده می شود. در ظروف کریستال انگلیسی که به صورت سنتی تولید می شوند، میزان Pbo حداقل 30% است. برطبق رهنمود اتحادیه ی اروپا میزان Pbo باید بیش از 24 درصد باشد. همچنین بر طبق استاندارد اروپا شیشه های کریستال سربی باز یافت نمی شوند. شیشه های سربی که برای ساخت حفاظ های تابشی استفاده می شوند ممکن است دارای بیش از 65% Pbo باشند. کاربرد این گونه شیشه ها در لامپ تصویر تلویزیون است اگر چه شیشه های باریمی برای ساخت صفحه و تابلوهای تلویزیون استفاده می شود. (تفنگ الکترونی تلویزیون اشعه ی x ساتع می کند که این نوع شیشه باید این تابش ها را جذب کند.)شیشه های سرب – بوراتی می توانند به عنوان لحیم های شیشه ای استفاده شوند. این نوع شیشه ها دارای در صد کمیشیشه ها (4) است و کاملا خنثی است.
شیشه های فیلنیتی (flint glass) دارای تفرق بالایی است. در واقع این نوع شیشه ها از نوع شیشه های سیلیکاتی قلیایی ـ سربی است که از ذوب سنگ های فیلنیتی ساخته شده اند(فیلنیت فرم خالص سیلیس است) .لازم به توضیح است که این نوع سنگ کلسینه شده و به طور فراوان در ساخت بدنه های سرامیکی استفاده می شود.

شیشه ی بورانی ( شیشه ی بورو سیلیکاتی )

شیشه های بوروسیلیکاتی قلیاییشیشه ها (4) به خاطر ضریب انبساط حرارتیشیشه ها (4) کوچکشان ویژه هستند. این نوع شیشه دوام بالایی داشته و خواص الکتریکی مفیدی دارند. پیرکس (Pyrex) که یک نوع ماده در تولید وسایل پخت و پز است . از جنس بروسیلیکات است .شیشه ی بروسیلیکاتی به طور وسیع در فرآیندهای شیمیایی استفاده می شود. برخی از شیشه های براتی دارای دمای ذوب پایینیشیشه ها (4) هستند از این رو آنها را می توان به همراه سایر شیشه ها استفاده کرد. شیشه ی بروسیلیکاتی – زنیکی به شیشه های منفعل شهرت دارند. این شیشه ها مواد قلیایی ندارند و از این رو از آنها می توان در ساخت اجزای الکترونیکی سیلیسیمی استفاده کرد.

سیلیس فیوزد

این نوع شیشه از نوع سیلیس خالص است. این شیشه ها ، شیشه های سیلیکاتی برای کاربردهای دما بالا هستند. ضریب انبساط حرارتی این نوع شیشه ها نزدیک به صفر است. این نوع شیشه ها برای تولید آینه های تلسکوپ و زیر لایه ها (Substrates) استفاده می شود. به خاطر داشتن ضریب انبساط حرارتی نزدیک به صفر به این شیشه ها ، شیشه های با انبساط حرارتی بسیار پایین (VLE Silica) می گویند .
شیشه های VLE دارای 7 درصد وزنیشیشه ها (4) برای تولید لفافه های لیتوگرافی نوری (masks photolithography) استفاده می شود. البته به خاطر دمای بالای فرآیند شکل دهی این شیشه ها ؛ می توان به جای آنها از شیشه های وایکور استفاده کرد.

شیشه ی فسفاتی ( phosphate – glass )
 

شیشه های فسفاتی شیشه های مهمی هستند زیرا این نوع شیشه ها خاصیت نیمه رسانایی دارند. یکی از کاربرد این مواد در ساخت تقویت کننده های الکترون (electron multipliers) است . در این نوع وسایل با استفاده از دپ کردن Er (افزودنشیشه ها (4) ) ، این تقویت کننده ها ساخته می شود. کایتون های موجود در این نوع شیشه ها معمولا V و P هستند اما لابراتوار ملی او آ ک ریچ (Oak Ridge National labroatory) یک نوع شیشه ی فسفاتی اندیوم – سربی تولید کرده است که دارای ضریب شکست بالایی است. از ویژگی های دیگر این شیشه می توان به دمای ذوب پایین و خاصیت ترانسپارنتی در برابر گسترده ی وسیعی از طول موج ها را نام برد. به دلیل آنکه این نوع شیشه می تواند درصد بالایی از عناصر خاکهای کم یاب را در خود حل کنند، از آنها در تولید وسایل نوری اکتیو مانند آمپلی فایرهای فیبر اپتیک و لیزرها استفاده می شود. شیشه های فسفاتی دپ شده با Nd در لیزرهای حالت جامد استفاده می شوند. ترکیب شیمیایی نمونه وار از این نوع شیشه عبارتست ازشیشه ها (4) است. که در صد Nd بین O.2-2.O درصد مولی است.

شیشه ی چالکوژیندی ( Chalcogenide glass )

این نوع شیشه براساس Se,As و Te بوجود می آید. این شیشه ها نور فرو سرخ را از خود عبور می دهند و نیمه رسانا های غیر اکسیدی هستند. از این نوع شیشه در وسایل و لنزهای الکترونیکی ویژه استفاده می شود. در این وسایل هنگامی که ولتاژ اعمالی به آنها از میزان بحرانی فراتر رود، به طور ناگهانی تغییر رسانایی رخ می دهد. کاربرد این نوع شیشه ها بسیار خاص است زیرا این شیشه ها دوام پایینی داشته و دمای نرم شوندگی شان پایین است.

شیشه ی فلورایدی ( fluoride glass )

عموماً شیشه های هالیدی بر پایه یشیشه ها (4) را شیشه های فلورایدی می گویند. کاربرد این نوع شیشه ها در وسایل همسو کننده نوری (optical waveguides) است. و درجاهایی که قیمت توجیه پذیر باشد استفاده می شوند.

شیشه ی طبیعی

این مسئله که شیشه در طبیعت بوجود می آید حتی این پدیده یک امر نسبتاً معمولی است، باعث شگفتی بسیاری از مردم می شود. تکتیت ها (tektites) درهنگام برخورد شهاب سنگ ها به زمین و در دهانه ی حاصله از برخورد شهاب سنگ پدید می آیند. مولد اویت (Moldavite) نیز یک شیشه ی سبز رنگ است که در مولداوی (Moldavia) یافت می شود . فولگلاریت (fulgarite) نیز تیوپ های شکننده از شیشه هستند که در هنگام برخورد برق آسمان به خاکهای ماسه ای پدید می آید. ابسیدیان (obsidian) نیز یک نوع شیشه است که در جریان های آتش فشانی تشکیل می شود. رنگ سیاه رنگ این نوع شیشه به خاطر ناخالصی پدید می آید. در طی دوره ی پارینه سنگی از ابسیدیان در ساخت وسایل استفاده می شده است. سنگ پا (Pamice) یکی دیگر از شیشه هایی است که از فوران های آتش فشانی تشکیل می شود. این ماده می تواند تخلخل های فراوانی داشته باشد. (درصورتی که ماده ی اولیه ی تشکیل دهنده ی آن دارای مواد گازی فراوانی باشد). سنگ پا شکل متخلخل ابسیدیان است

شیشه ها

مقدمه:

دراین مقاله ها در مورد انواع مختلف شیشه و برخی از کاربردهای آنها صحبت می کنیم.
شیشه ها یکی از انواع مهم موادمهندسی محسوب می شوند. این مواد در پنجره ها، ساخت بطری، لیزرها، الیاف نوری، عایق ها، لعاب کاری (glazing) ومینا کاری (enamelihg)، چاقوی جراحی، وسایل هنری وتابلوهای راهنمایی - رانندگی استفاده می شوند.
شیشه ها معمولا بازیافت می شوند واز این رو دوستدار محیط زیست هستند.مصریان آثار شیشه ای متنوعی بر جای گذاشته اند ولی آنها اولین کسانی نبودند که از این ماده استفاده می کردند.در دوران های دیرینه سنگی (paleolithic Times) شیشه های اولیه و شیشه های طبیعی (Obsidian: نوعی شیشه ی مصنوعی بدست آمده از آتش فشان ها ) بسیاراهمیت داشتند به خاطر اهمیت زیاد این ماده می توان گفت که شیشه نقش مهمی در شکل دهی تمدن ما داشته است.
به هر حال تعریفات مختلفی برای شیشه ها بیان شده است. دراین مقاله سعی می کنیم بگوییم چرا واژه های شیشه ای (glassy)، زجاجی (Vitreous) و آمورف (amor phous) همگی برای توصیف شیشه استفاده می شوند. همچنین سعی داریم جواب این سوال را بدهیم که: «شیشه چیست؟»
هنگام مطالعه ی این مقاله باید دو ذهنیت را داشته باشید:
1) ادعای Sturkey:"شیشه در دماهای بالا یک محلول شیمیایی است."
2) اگر شیشه که مایع فوق سرد شده است، پس جامد نیست وبنابراین یک ماده ی سرامیکی نیست (اما شیشه یک ماده ی سرامیکی است)

تعریف

تعریف کلاسیک شیشه براساس روش تاریخی تشکیل آن انجام شده است. البته این روش تعریف یک روش بسیار غیر معقولی برای تعریف هر ماده است. این مسئله باعث شده است تا امروز شیشه به چندین روش مختلف تعریف شود:
تعریف کلاسیک: شیشه یک مایع فوق سرد شده است(Supercooled liquid) مشکل بوجود آمده دراین تعریف این است که در برخی موارد می توان یک شیشه ی ویژه را به روشی تولید کرد که هیچگاه درحالت مایع قرار نداشته باشد.
ASTM شیشه را به صورت زیر تعریف کرده است:
"شیشه یک محصول غیر آلی از ترکیبی مذاب است که بدون آنکه کریستالی شود، سرد وصلب می گردد."
این تعریف نیز همان چیزی است که در تعریف کلاسیک آمده است. اما دراین تعریف شیشه ی پلیمری استثناء شده است. به وضوح مشخص است که استناد کردن به روش تولید برای تعریف یک گروه از مواد ایده آل و مناسب نمی باشد.

تعاریف دیگر :

1)" شیشه یک ماده ی جامد است که نظم دوربعد از خود نشان نمی دهد."
نداشتن نظم دوربعد یعنی ساختار شیشه درفواصل یک، دو یا سه برابر فاصله ی اجزای سازنده، دارای نظم نیست. این تعریف براساس مشاهدات حاصله از تفرق اشعه X، میکروسکوپ الکترونی عبوری (TEM) و... استوار است اما این تعریف نیز کمی قراردادی است زیرا به اندازه ی اجزاء تشکیل دهنده بستگی دارد.
2)" شیشه یک مایع است که قابلیت جاری شدن خود را از دست داده است."
این تعریف استوار است اما از تعریفی که بوسیله ی ASTM ارائه شده است فراگیرتر است .همچنین این تعریف از خاصیت مکانیکی برای تعریف شیشه استفاده می کند. درحقیقت این تعریف عملاً با دیدگاه فیزیک مدرن درباره ی شیشه مطابقت دارد.
اکثر شیشه هایی که ما در مورد آنها توضیح می دهیم، شیشه های با شبکه ی اکسیدی است . (مخصوصاً سیلیکات ها) تعریف ما از چنین شیشه هایی عبارتست از:
تجمعی جامد از تتراگونال هایی است که می توانند رئوس خود را به اشتراک گذاشته و البته این مواد نظم دور بعد ندارند.
دراین مقاله ما تنها درمورد شیشه های سرامیکی بحث می کنیم اما باید بدانیم که علاوه بر شیشه های سرامیکی، شیشه های فلزی و پلیمری نیز وجود دارد. شیشه های فلزی ترکیبات پیچیده ای هستند که در آنها عمل کریستالیزاسیون انجام نشده است. این مسئله بوسیله ی سریع سرد کردن فلز مذاب بوجود می آید.(این فرآیند اسپلات کوئنچینگ نامیده می شود). درادامه به بیان ویژگی شیشه ها می پردازیم:

ساختار

شیشه ها در اصل جامد های غیر کریستالی (یا آمورفی) هستند که در اغلب موارد از فریز شدن یک مایع فوق سرد شده بدست می آیند. دراین موارد نظم دور برد در آرایش اتمی وجود ندارد. البته نظم کوتاه برد (زیر 1nm) وجود دارد. این مواد دارای آرایش منظمی از سلولهای واحد نیستند.همانگونه که گفتیم شواهدی وجود دارد که ثابت می کند در شیشه ها نظم کوتاه برد وجود دارد.این نظم کوتاه برد به دلیل آرایش اتمی درمجاورت هر اتم (البته در فاصله ی کوتاه) بدست می آید. تلاش های فراوانی برای توصیف شیشه ها انجام شده است. که به بیان علت تشکیل شدن یا نشدن شیشه ها بحث می کند. دراین زمینه ما ازدو دیدگاه به شیشه ها نگاه می کنیم:
1) توجه به ساختار
2) توجه به مباحث کنیتیکی کریستالیزاسیون
درمورد اول ما به بیان هندسه ی اجزای تشکیل دهنده ی شیشه ها می پردازیم. همچنین دراین زمینه به بیان پیوندهای بین اتمی واستحکام پیوندها می پردازیم . درمورد دوم ما به بیان چگونگی دگرگونی های مایع به جامد در طی فرآیند سرد شدن می پردازیم.
دمای تبدیل شدن شیشه ای ( Tg )
درشکل 1 نموداری نشان داده شده است که در آن حجم ویژه به عنوان تابعی از دما رسم شده است.

شیشه ها (1)

این دیاگرام فرمی از دیاگرام استعاله ی دما – زمان (T.T.T) برای شیشه است. درهنگام سرد شدن مایع از دمای بالا دو پدید ه ممکن است در نقطه ی انجماد (Tm) اتفاق می افتد که عبارتند از :
1) اگر مایع کریستالیزه شود تغییرات حجم و سرعت سرد کردن گسسته است.
2) اگر کریستالیزاسیون اتفاق نیفتد، مایع به حالت فوق سرد شده تبدیل می شود و حجم در نزدیک دمای ذوب کاهش می یابد.
دردمای تبدیل شدن شیشه ای (Tg)، شیب نمودار کاهش می یابد و به شیب جامد کریستالی نزدیک می شود. این شکستگی بوجود آمده در نمودار سرد کردن نشان دهنده ی گذرگاه مایع فوق سرد شده به شیشه است. زیر دمای Tgساختار شیشه درحالت آسایش نیست زیرا این مواد اکنون جامد هستند. دراین ناحیه از Tg ویسکوزیته تقریبا شیشه ها (1) است. ضریب انبساط حالت شیشه ای معمولا نزدیک به ضریب انبساط جامد کریستالی است. اگر از سرعت های سرد کردن پایین تر استفاده شود، میزان آسایش ساختار افزایش می یابد. ومایع فوق سرد شده در دمای پایین تر تشکیل می شود. و شیشه ی حاصله ممکن است دانسیته ی بالاتری بدست آورند. (همانگونه که در شکل 1 دیده می شود)
فیزیک شیشه جنبه ی تردی آن را مورد بررسی قرار می دهد. در واقع این ویژگی یک ویژگی مایعات شیشه ساز در بالای دمای Tgاست واندزه ای از استعکام پیوندهای بین اتمی است. در ادامه ما درمورد شیشه ی نامحلول در آب یا بطری های شیشه ای آب صحبت می کنیم. البته چیزی که آگاهی کمتری از آن است این است که ما می توانیم آب را با سریع سرد کردن در اتاق مایع به حالت شیشه ای در آوریم. ماده ی حاصله یک شیشه ترد است اما این مسئله فهمیده شده است که بیشتر آب موجود در جهان به همین شکل وجود دارد.
تاریخچه
شیشه ماده ای است که پیوندی عمیق با تاریخچه ی انسان دارد. یکی از شواهد این مسئله استفاده از ابسیدیان (obsidian) یک شیشه ی طبیعی توسط بشر است. هیچ کس نمی داند که اولین جسم شیشه ای در چه زمانی ساخته شده است. قدیمی ترین یافته ها به 7000 سال پیش از میلاد برمی گردد. (البته ممکن است یافته هایی پیش از این تاریخ نیز وجود داشته باشد). درکاوش های باستان شناسی در بین النهرین روش های تولید شیشه کشف شده است . این کارها 4500 سال پیش از میلاد مسیح بوده است ومربوط به روش های تولید وسایل شیشه ای بوده است نه لعاب های مورد استفاده در وسایل سفالی. استفاده از شیشه در لعاب کاری سفال حتی به دوران های پیشین می رسد.

شیشه ها (1)

تقریبا در 3000 سال پیش از میلاد مسیح شیشه گران مصری شروع به تولید جواهر آلات شیشه ای و ظروف شیشه ای کوچک کردند. شیشه هم به عنوان یک جسم دکوری وهم به عنوان یک وسیله ی مورد استفاده در زندگی روزمره به شمار می آمد. قطعاتی از جواهر آلات شیشه ای در کاوش های اطراف کوه های مصر پیدا شده است. مثالی از این جواهرآلات شیشه ی فیزوزه ای آبی است که در شکل 2 دیده می شود. تقر یبا 1500 سال پیش از میلاد مسیح شیشه گران مصری ( در دوره ی touthmosis سوم ) روشی برای تولید قطعات تو خالی قابل استفاده، توسعه دادند. یک مثال قابل توجه از این نوع ساختار یک شیشه ی توخالی است که شبیه به سرماهی است (شکل 3) این ظرف بین سال های 1352 و 1336 قبل از میلاد ساخته شده است واین نظریه وجود دارد که برای نگه داری روغن خوش بو استفاده می شده است.

شیشه ها (1)

الگوی موجی این ظرف بسیار خاص است. در واقع این ظرف بوسیله ی کشیده شدن یک جسم تیز به شیشه ی خمیری شده تولید شده است.
نویسنده ی رومیPliny Fhe Elder (23-79 میلادی) اختراع شیشه را به صورت زیر توصیف می کند:
روزی یک کشتی که متعلق به چند تاجر نیتروم (Nitrum) بود در کنار ساحل لبنان کنونی توقف می کند. هنگام پخت غذا به دلیل نبود سنگ در ساحل، خدمه کشتی از کلوخ های نیترومی که در کشتی وجود داشته است. استفاده می کنند تا بتوانند دیگ غذا را در مکان مناسب استقرار دهند. پس از آنکه آتش روش شد، کلوخه ها با ماسه های ساحلی واکنش داده و تشکیل شیشه ی مذاب می دهد. این اولین منشع پدید آمدن شیشه است.
نیتروم (Nitrum) یک نوع سدیم کربنات (Soda) طبیعی است .این ماده یکی از اجزای مهم در شیشه های قدیمی و مدرن است. خاکستر گیاهان نیز یک منبع فقیر از سدیم برای شیشه گران فراهم می کند. گیاهان علف شوره (Saltwort) و رازیانه ی آبی (glass wort) از جمله گیاهانی هستند که برای مهیا شدن سدیم از آنها استفاده می شده است.
یکی از معمولی ترین روش ها برای شکل دهی شیشه روش دمش هوا است. اگر چه این تکنیک بیش از دوهزار سال پیش توسعه یافت، لوله های تولیدی به روش دمش در طی زمان تغییری نکرده است. توسعه ی عمده که دراین زمینه انجام شده است، روش دمش اتوماتیک است که برای تولید شیشه های بطری و حباب های لامپ استفاده می شود. دراین روش به قطعه ای شیشه در داخل قالب هوا دمیده می شود. و بدین شکل شیشه به شکل قالب در می آید. مهمترین مرحله ی رشد در تاریخ شیشه سازی مخصوصا درطی قرن بیستم مربوط به توسعه های اتفاق افتاده در زمینه ی تکنولوژی های تولید می باشد. این توسعه ها منجر به کاهش هزینه ی تولید محصولات شیشه ای می شود

در ادامه به بیان خواص شیشه ها می پردازیم:

ویسکوزیته ( η )

ویسکوزیته یک ویژگی کلیدی شیشه هاست.ما نیاز داریم تا درمورد ویسکوزیته ی شیشه در دماهای مختلف اطلاع داشته باشیم. و بتوانیم دمای مورد نیاز برا ی شکل دهی وآنیلینگ آن را تشخیص دهیم. ویسکوزیته یک ویژگی مکانیکی است. فرمول ویسکوزیتد به صورت زیر است:

شیشه ها (2)

دراین فرمول:
η : ویسکوزیته، F: نیروی مورد نیاز برای کشیدن یکی از صفحات موازی که در میان آنها مایع مورد نظر قرار دارد: ،d: فاصله ی صفحات، A: مساحت صفحات، V: سرعت حرکت صفحه. ویسکوزیته در واقع پاسخ یک مایع دربرابر تنش برشی است. مایعات دارای ویسکوزیته ای هستند که با واحد سانتی پوآز (CP) اندازه گیری می شود. واحد اندازه گیری ویسکوزیته ی گازها میکروپوآز(mp) است.

شیشه ها (2)

جدول 1 لیستی از اعداد ویسکوزیته ای است که برای فرآیندهای شیشه سازی مهم هستند. اعداد داده شده در جدول 2 نیز برای تعریف ویژگی های برجسته ی شیشه (با تأکید بر روی فرآیند) آورده شده است. بسیاری از اعداد آورده شده درجدول ویسکوزیته ها استاندارد هستند مثلا (2003) ASTMC338-93 یک روش تست استاندارد است که نقطه نرم شدگی شیشه بوسیله ی آن تعیین می شود.
محاسبه ی نقطه ی نرم شدگی شیشه بوسیله ی اندازه گیری دمایی که در آن یک فیبر شیشه ای استوانه ای با قطر شیشه ها (2) طول بوسیله ی وزن خودش تغییر طول می دهد. نرخ تغییر طول یک میلی متر بردقیقه است . در این روش 100 میلی متر از بخش بالایی فیبر بوسیله ی کوره ی خاصی با سرعت گرم شدنشیشه ها (2) گرم می شود.

شیشه ها (2)

ویسکوزیته ی برخی ازمایعات عمومی در جدول 2 آورده شده است. توجه کنید که در دمای کارپذیری شیشه ویسکوزیته ای شبیه به عسل در دمای اتاق دارد. به طور نمونه برای یک شیشه ی سیلیکاتی سودالایم این ویسکوزیته در دمایشیشه ها (2) بدست می آید. این جدول همچنین نشان می دهد که یک جامد دارای ویسکوزیته ای بیش ازشیشه ها (2) دسی پو آز است. ویسکوزیته ی به طور نمایی با تغییر دما ، تغییر می کند ( همانگونه که در شکل 1 برای انواع شیشه ی سیلیکاتی دیده می شود.) دمای فیکتیو (fictive temperature) دمایی است که در آن ساختار مایع به حالت شیشه ای تبدیل می شود. این دما بوسیله ی تقاطع منحنی های برونیابی شده در حالت دما بالا و دما پایین در نمودار ویسکوزیته – دما بدست می آید. دمای فیکتیو (Tf) مانند Tg به تبدیلات ساختاری شیشه بستگی دارد. البته Tg اندکی کمتر از Tf است.

شیشه ها (2)

شکل 2 وابستگی ویسکوزیته به دما را برای اکسیدهای شیشه ساز نشان می دهد. شما باید توجه کنید که بوسیله ی شیب این خطوط می توان انرژی اکتیواسیون جریان ویسکوز (EV) را بدست آوریم.

شیشه ها (2)

جدول 3 اعداد ویسکوزیته وسرعت های کریستالیزاسیون (v) برخی شیشه ها را نشان می دهد. سرعت کریستالیزاسیون مربوط می شود به سرعت تبادل مایع/جامد. V بسیار کم بیان کننده ی قابلیت شیشه سازی استثنایی ماده است.البته کریستالیزاسیون مذاب جامد شده ی سیلیس بسیار مشکل است.

شیشه ها (2)

روش های متعددی برای اندازه گیری ویسکوزیته وجود دارد. این روش ها با توجه به میزان ویسکوزیته انتخاب می شود.

شیشه ها (2)

شماتیک دو روش اول اندازه گیری ویسکوزیته در شکل 3 نشان داده شده است:

شیشه ها (2)

شیشه ( خلاصه ای از خواص )
 

شیشه ماده ای خنثی است. این مسئله به محیط بستگی دارد. اگر شیشه یک ماده ی سیلیکاتی باشد، این مسئله درست است . البته همه ی شیشه ها خنثی نیستند. مثلا بیوگلاس (bioglass)
شیشه یک ماده ی هموژن است. این مسئله نیز به نحوه ی شکل دهی و ترکیب شیمیایی شیشه بستگی دارد. ما می توانیم با استفاده از فرآیندهای خاص شیشه را به صورت غیر هموژن در آوریم.
شیشه می تواند تغییر شکل دهد. این مسئله عموماً درست می باشد و دلیلی است برای قابلیت بازیافت شیشه ها. برخی از شیشه ها به نحوه ای ساخته می شوند که بوسیله ی نور، انتشار نور در داخل آن وتابش نور و...تغییر ماهیت می دهد.
شیشه دارای ضریب انبساط کوچک است. البته همه ی شیشه ها مناسب استفاده شدن در کاربردهای حرارتی مانند ظروف پیرکس نیستند.
شیشه ها شفاف اند (trans Parent) این خاصیت برای الیاف نوری ضروری است. البته ما می توانیم با انجام عملیات های خاص شیشه به صورت اپک یا مات در آوریم.
بسیاری از شیشه های اولیه شفافیت کامل نداشتند زیرا در ساختار آنها ناخالصی وحباب هوا وجود داشت.
شیشه ارزان است. البته این مسئله برای شیشه های پنجره صحیح است. اما درمورد فیلم های نازک شیشه ای این مسئله صحیح نمی باشد. برخی از شیشه های قرمز رنگ بوسیله ی دپینگ (doping) طلا در آنها تولید می شود. که قیمت برخی از ظروف تولیدی از آن به پیش از 50 دلار می رسد.
شیشه یک ماده ی بالک است مگر در حالتی که آن را به صورت یک فیلم نازک ، یک فیلم انیتر گرانولار (IGF) یا یک سرامیک کریستالی رشد دهیم.

برخی از خواص مکانیکی شیشه

استحکام تئوریک شیشه ی سیلیکاتی درحدود 10GPa است. البته با حضور عیوب سطحی (ترک ها وجوانه ها ) این استحکام کاهش می یابد. شیشه ها موادی الاستیک هستند اما تحت کشش می شکنند. می توان استحکام این مواد را بوسیله ی ایجاد لایه های سطحی فشرده و یا بوسیله ی از بین بردن ترک های سطحی (با اسید شوئی یا پدید آوردن پوشش محافظ) افزایش داد. مثالی از این روش ها پدید آوردن ترک های اضافی در ساختار قطعات شیشه ای تزئینی به منظور بهبود خواص مکانیکی آنهاست. در این روش از سرد کردن شیشه ی مذاب در آب جهت ایجاد تنش های اضافه بهره برده می شود . در این حالت سطح قطعه ی شیشه ای مذاب زودتر از مرکز آن سرد می شود و بنابراین تنش های اضافی پدید می آید. قطعات جامد شده به این شیوه را می توان با چکش و بدون اینکه بشکنند چکش کاری کرد.

برخی از ویژگی های الکتریکی شیشه

شیشه معمولا دارای مقاومت الکتریکی بالایی است. که علت آن تفاوت زیاد میان باندهای انرژی (گپ بزرگ) در این ماده است. در مواردی که شیشه رساناست . بار بوسیله ی یون ها منتقل می شود.(در این مورد یون های قلیایی مانندشیشه ها (2) دارای سرعت انتقال بار بالایی هستند). در واقع به همین دلیل است که با افزایش دما رسانایی به شدت افزایش می یابد. رسانایی درشیشه های مختلف، متفاوت است.علت آن متفاوت بودن نوع شبکه ی این شیشه هاست. در شیشه هایی که دارای بیش از یک یون قلیایی هستند. پدیده ی جالبی رخ می دهد. رسانایی تولیدی در این نوع شیشه ها به طور مشخصی از شیشه های دارای یک یون کمتر است. این نوع شیشه ها در کاربردهای مختلف مانند لامپ های با توان بالا استفاده می شوند. ثابت دی الکتریک شیشه واقعاً بالاست اما نه به حدی که بتوان از آن در کاربردهای حافظه ای پیشرفته مانند حافظه ی با دستیابی دینامیک و رندوم (DRAMS) استفاده کرد. ظرفیت الکتریکی یک ماده میزان بار ذخیره شده در داخل ماده است. این خاصیت به ضخامت دی الکتریک بستگی دارد. همانطور که ضخامت دی الکتریک کمتر می شود، ظرفیت الکتریکی افزایش می یابد. اما کم کردن ضخامت نیز مشکلاتی به همراه دارد. مثلا با کاهش ضخامت احتمال شکست دی الکتریک بیشتر می شود. شیشه ی سیلیسی دارای مقاومت دی الکتریک بالاتری نسبت به سایر شیشه هاست. اما مقاومت این دی الکتریک نیز در حد دی الکتریک های پلیمری مانند رزین فنولیک نیست.

برخی از خواص اپتیکی شیشه

شفافیت دربرابر نور فرا بنفش ، مرئی و فرو سرخ به چندین فاکتور بستگی دارد. یکی از این فاکتورها طول موج تفرق است که بوسیله ی ناخالصی ها تغییر می کند. لبه ی فرو سرخ (IRedge) و لبه ی فرا بنفش ((uv edge اعدادی هستند که نشان دهنده ی فرکانس قطع شدن عبور این موج ها هستند. یک مانع لبه UV edge blocker)UV) از عبور UV جلوگیری می کند و این در حالی است که یک عبور دهنده ی لبه یUV (UV edge tran Smitter) اجازه ی عبور نور UV را می دهد.

عیوب در شیشه ها

اگر چه شیشه یک ماده ی آمورف است ولی مانند مواد کریستالی دارای عیوب و رسوبات است. و همچنین دچار جدایش فاز می شود. شیشه را می توان برای حبس کردن عناصر رادیو اکتیو استفاده کرد .در این عناصر مانند عیوب نقطه ای یا فاز ثانویه تشکیل می شوند. همچنین سرعت نفوذ این عناصر از میان شیشه بر روی میزان آن ها در شیشه تأثیر دارند. این مسئله استفاده می شود تا بتوان مواد رادیو اکتیو یا سایر مواد را کنترل کرد.

شیشه ی غیر هموژن

به دلیل آنکه شیشه یک مایع فوق سرد شده است. نمی توان گفت که این ماده حتما باید هموژن باشد. شیشه های خاص می توانند بدون نیاز به فرآیند کریستالیزاسیون به دو فاز تبدیل شوند. هنگامی که این دو فاز شیشه ای باشند این مسأله باعث می شود که سدی در برابر جدایش فازی پدید نیاید. در مورد فرآیند جدایش فازی مایع – مایع ممکن است مرحله ای برای جوانه زنی وجود داشته باشد. البته در این نوع تبدیلات ممکن است استعاله ی اسپینودال (Spinodal) نیز رخ می دهد. که هر دوی این استعاله ها به نفوذ وابسته اند.
قوانین امتزاج ناپذیری در شیشه ها بسیار مهم است. این مسئله مخصوصاً در شیشه های تولید شده با تکنولوژی روز نمود دارد. برای مثال امتزاج ناپذیری در شکل دهی شیشه – سرامیک ها ، تولید شیشه ی وایکور (Vycor) و شیشه های اپتیکی و تشکیل رسوب در شیشه ها مهم می باشد. بسیاری از اکسیدهای دوتایی و سه تایی در کنار سیلیس از خود مشکلات امتزاج پذیری نشان می دهند.
در دیاگرام فازی ناحیه ای وجود دارد که یک مایع به دو مایع با ترکیب شیمیایی متفاوت تبدیل می شود. این ناحیه گپ امتزاج پذیری (imisciblity gap) نامیده می شود. در زیر برخی از سیستم هایی که مشکل امتزاج پذیری دارند را نام برده ایم:

شیشه ها (2)

شیشه ها (2)

شکل 4 دیاگرام فازیشیشه ها (2) را نشان می دهد. در دمای پایین و در گوشه ی غنی از سیلیس دیاگرام ، فاز مایع به دو بخش مایع با ترکیب شیمیایی متفاوت تبدیل می شود. این دو مایع به صورت دو شکل گنبد مانند در شکل نشان داده شده اند. خط تیره نشان دهنده ی خط تقریبی ناحیه ی امتزاج ناپذیری است. مشکلی که در اندازه گیری این خط وجود دارد. این است که این پدیده در دمای پایین رخ می دهد و از این رو سرعت آن پایین است . و از این رو اندازه گیری آن مشکل است. دراین وضعیت میل جدایش فازی بیشتر از میل به کریستالیزاسیون است . البته کریستالیزاسیون مساعد تر از جدایش فازی است اما به دلیل آنکه جدایش فازی نیازی به باز آرایی اتم ها ندارد، این پدیده رخ می دهد. به عنوان یک قانون کلی برای سیلیس باید گفت که امتزاج ناپذیری با افزودنشیشه ها (2) افزایش می یابد اما با افزودنشیشه ها (2) کم می شود. در شیشه های وایکور از قوانین جدایش فازی استفاده می شود. در فرآیند تولید شیشه وایکور، شیشه ای پدید می آید که دارایشیشه ها (2) و 4 درصد تخلخل است.این نوع شیشه به عنوان فیلتر وبیومواد مخصوصا در جاهایی که تخلخل مهم می باشد، استفاده می شود. در فرآیند تولید وایکور، شیشه ای تولید می شود که پس از فرآیند شکل دهی دنس می گردد و شیشه ای با سیلیس خالص پدید می آید که در دمای پایین تر نسبت به کوارتز خالص شکل دهی گشته است

شیشه ی آلومینیوم – ایتریمی

شیشه های آلومینیوم –ایتریایی (YA) دارای درصد آلومینایی در گسترده ی تقریبی 75.6- 59.8 هستند. با این درصد آلومینایک شیشه ی دو فازی تشکیل می شود که در آن یک فاز قطره مانند در فاز دیگر تشکیل شده است. این شیشه به طور خود بخودی به صورت شیشه ی آلومینیوم – ایتریمی یا مخلوطی ازشیشه ها (3) تبدیل می شود. درشیشه های YA پدیده ای به نام پلی مورفیزم (Polymorphism) رخ می دهد

شیشه ی رنگی

اگر چه در بیشتر کاربردهای شیشه نیاز است تا این ماده بی رنگ باشد اما در برخی از کاربردها نیاز است شیشه رنگی باشد. هنگامی که پنجره های یک کلیسا رنگی باشد، تأثیر پذیری ازمحیط بیشتر می شود . درشیشه ها معمولا بوسیله ی افزودن اکسیدهای انتقالی و یا اکسیدهای عناصر خاک های کمیاب (rave –eavth) به بچ ماده ی اولیه ی آنها، رنگی می شوند. جدول 1 لیستی از رنگ های تولیدی بوسیله ی مواد رنگی کننده ی شیشه هاست . زرد کم رنگ، نارنجی و رنگ های قرمز بوسیله ی فلزات گران بها درحالت کلوئیدی تولید می شود. طلا (Au) رنگ قرمز، یا قوتی تولید می کند. (البته این شیشه ها گران قیمت هستند). سولفید کادمیم (cds) محصولاتی با رنگ زرد تولید می کند. اما هنگامی که علاوه بر se ، cds نیز استفاده شود. محصولاتی با رنگ قرمز یا قوتی با شدت رنگ بالا تولید می شود.

شیشه ها (3)

شیشه بوسیله ی افزودن دوپانت ها (dopants) رنگرزی می شوند. در واقع با افزودن این دو پانت ها در شیشه عیوب نقطه ای پدید می آوریم. رنگ شیشه به نوع دو پانت و حالت اکسیداسیون آن بستگی دارد.
دو پانت ها می توانند اثر بی رنگ کننده (decdorizo) ، پوشش دهنده (mask) یا اصلاح کننده (modify) داشته باشند. ما می توانیم اثرات رنگی آهن را بوسیله ی افزایش cr خنثی کنیم؛ البته اگر درصدشیشه ها (3) زیاد باشد اضافی به صورتشیشه ها (3) خارج می شود. اگر این شیشه به روش دمیدن شکل دهی شود، این پلیت لت هایشیشه ها (3) منظم گشته و شیشه ای اپک به نام آونتورین کرومی (chromium aventurine) تولید می کنند. مس (cu) برای تولید شیشه ی آبی مصری (Egyptian Blue glass) استفاده می شود.
CO (کبالت ) دربرخی از شیشه های پالایش یافته ی تولید در قرن دوازدهم استفاده می شده است. البته Co در تولید لعاب های پرسلانی مورد استفاده در چین ( در دوره ی سلسله ی منیگ وتانگ) استفاده می شده است. کبالت مورد استفاده در این لعاب ها رنگ آبی کبالتی تولید می کند.
با افزودن Se به شیشه های دپ شده با Cds باعث پدید آمدن رنگ یاقوتی سلینومی (Selenium Ruby) می شود. جزئیات پدید آمده ازهر کدام از این رنگ ها به ترکیب شیمیایی و شرایط پخت شیشه بستگی دارد.
شرکت کورینگ (Cornig) میکرو بارکدهایی با شیشه دپ شده با خاکهای کم یاب تولید کرده است. خاکهای کم یاب دارای باندهای نشر کم پهنا هستند و از میان 13 عنصر خاکهای قلیایی که مورد آزمایش قرار گرفته ، تنها 4 عنصر (Tm,Ce,Tb و Dy) می توانند در برابر تابش UV برانگیخته شوند. و لذا می توان از آنها در شناسایی بوسیله ی UV استفاده کرد. این نوع بارکدها همچنین مشکلات تداخل با سایر بارکدها را نیز ندارد. از این بارکدها در کاربردهای بیولوژیکی استفاده می شود زیرا سمی نیستند.(البته بر چسب زنی با کوانتوم دات ها خطرات کمتری دارد) و می توان از آنها در کاربردهای ژنتیکی استفاده کرد. با استفاده از چند عنصر خاکی کمیاب می توان ترکیب رنگی بیشتر پدید آورد.
شیشه های رنگی خاص شامل موارد زیر می شود :

شیشه ی یاقوتی یا کرانبری ( Cranberry )
 

شیشه ی یاقوتی با افزودن Au به شیشه سربی با حضور Sn پدید می آید. شیشه ی کرانبری که اولین بار در سال 1685 گزارش شده است، یک نوع شیشه ی بی رنگ (معمولاً صورتی کم رنگ ) است. علت پدید آمدن این رنگ در صد کم طلای موجود در آن است . راز تولید شیشه قرمز رنگ برای قرن ها ی زیادی گم شده بود و در قرن هفدهم دوباره کشف شد.

شیشه ی اورانیومی یا وازلینی

محصولات اورانیومی هنگامی که در شیشه ی با سرب بالا استفاده شود، رنگ قرمز تیره تولید می کند. البته شیشه های اورانیومی دیگری نیز وجود دارد که با صطلاح به آنها شیشه های وازلینی (Vaseline glass) می گویند. این نوع شیشه ها دارای رنگ سبز هستند. مسأله ای که این نوع شیشه ها را خاص کرده است این است که این نوع شیشه ها هنگام تابش اشعه ی UV به آنها ، خاصیت فلئورسانس پیدا می کنند. از سال 1940 تنها اورانیوم تهی شده (uranium depleted) به عنوان دو پانت استفاده می شود. علت استفاده از این نوع دو پانت، فراوانی آن است. اما از 100 سال گذشته به بعد اورانیوم طبیعی (natural uranium) استفاده می شود.

شیشه ها (3)

شکل 1 مثالی از یک شیشه ی وازلینی است.

لیزر شیشه ای

عناصر خاکهای کم یاب (rave – earth elements) مانند Nd در تولید شیشه های لیزر و سایر وسایل اپتیکی کاربرد دارند. (شکل 2) . لیزر شیشه ای دپ شده با Nd (Nd-doped glass laser) مانند یک لیزر یاقوتی (ruby laser) کار می کند . اگر چه نوع شیشه ای دارای تفاوت هایی است . میله ی لیزر قطری بینشیشه ها (1) اینچ دارد و معمولا بوسیله ی یک لامپ حلزونی تخلیه می شود. علت استفاده از لامپ های حلزونی این است که طول غیر بار دار این نوع لامپ ها از لامپ های خطی طولانی تر است. لیزر شیشه ای دپ شده با Nd دارای بازدهی بیش از 2% است. این بازده 4 برابر بازده یک لیزر یاقوتی است. به دلیل آنکه رسانایی گرمایی شیشه پایین است بنابراین نیاز به زمان بیشتری برای خنک سازی است.

شیشه ها (3)

رسوبات در شیشه

وجود رسوبات در شیشه عموما اجتناب ناپذیر است. سوال این است که چه زمانی طول می کشد تا رسوبات تشکیل شود. (مخصوصا اگر جوانه زنی هموژن باشد). ما ممکن است عوامل هسته زا برای تسریع جوانه زنی به شیشه اضافه کنیم. جوانه زنی کریستال ها در شیشه از تئوری کلاسیک پیروی می کند. رسوبات تشکیل شده در شیشه می تواند موجب رنگی شدن شیشه شود.

شیشه به عنوان لعاب

لعاب ها مانند شیشه ها در همه جا دیده می شوند. لعاب کاری (glazing) استفاده از ویژگی های ویسکوز شیشه و تشکیل یک لایه ی یک پارچه و صاف بر روی یک زیر لایه ی سرامیکی است.
مینا کاری (enameling) تشکیل همان لایه بر روی یک زیر لایه ی فلزی است. چیزی که باید به آن توجه کرد این است که عموما لعاب ها قدمت زیادتری دارند. در ادامه به بیان برخی از اصطلاحات لعاب می پردازیم:

زیر لعاب ( underglaze )

هنگامی که یک بیسکوییت سرامیکی را می خواهیم مورد عملیات دکور قرار دهیم باید قبل از آن یک لعاب کاری بر روی آن انجام دهیم که این نوع لعاب را زیر لعاب گویند. این لایه به علت تشکیل بهتر دکور بر روی بدنه اعمال می شود. پس از آن که فرآیند دکوراسیون جسم سرامیکی انجام شود برروی آن یک لعاب دیگر اعمال می شود. البته این لعاب پیش از پخت دکور اعمال می شود.
عیب کراولینگ لعاب ( glaze craweling ) این عیب که در لعاب اتفاق می افتد بدین صورت است که لعاب از لایه ی سرامیکی زیرین جدا می گردد. این پدیده به دلیل عدم ترشوندگی بیسکوییت سرامیکی بالعاب در طی فرآیند پخت اتفاق می افتد.
لعاب ترک خورده ( crackle glaze )اگر انبساط گرماییشیشه ها (3) لعاب از سرامیک بستر بزرگ تر باشد، لعاب ممکن است در طی فرآیند سرد کردن (در طی پخت) بشکند. هنگامی که غلظت یون سدیم و پتاسیم در لعاب بیشتر باشد، ترک ها بیشتر پدید می آیند. هنگامی که سرعت سرد کردن بالا رود ترک های حاصل ریزتر می شوند.
لعابهای سلادون (celadon )، تنموکو (tenmoku)، راکو (raku) و کوپر ( copper) لعاب های ویژه ای هستند که در دنیای هنر سرامیک یافت می شوند.
لعاب های سلادوناین لعاب ها اولین بار در حدود 3500 سال پیش تولید شده اند. این لعاب ها دارای گستره ی رنگی از آبی کم رنگ تا سبز مایل به زرد هستند و می توانند رنگی کاملا تیره پدید آورند. رنگ تولیدی در این لعاب ها بوسیله ی آهن تولید می شود(3.o - o.5 در صدشیشه ها (3) به لعاب افزوده می شود). ظروف لعاب خورده توسط این نوع لعاب سپس در دمای تقریباًشیشه ها (3) پخت می گردند. ظروف تولید شده با این لعاب ها زیبایی خاصی داشته و در کاربردهای تزئینی استفاده می شوند. مثلا کوزه ی لعاب خورده با این لعاب که درکشور کره تولید شده است، درسال 1946 از سوی کشور کره به هاری ترومن رئیس جمهور آمریکا هدیه شد. امروزه این ظرف که 23cm ارتفاع دارد قیمتی برابر با 3 میلیون دلار دارد.
لعاب تنموکواین نوع لعاب در زمان سلسله ی سونگ (sung Dynasty) بوجود آمده است. و دارای رنگ قهوه ای تیره یا حتی سیاه است. برای ایجاد این رنگ میزان 8-5 درصد وزنیشیشه ها (3) به لعاب افزوده می شود. تشکیل مناسب این نوع لعاب به شرایط اکسایش – کاهش اتمسفر پخت بستگی دارد. و در شرایط مختلف اکسایش و کاهش رنگ های متنوعی پدید می آید. در لعاب های کوپرنیز از کربنات مس به عنوان منبع Cuاستفاده می شود. البته در طی فرآیند پختشیشه ها (3) تجزیه گشته و Cuoباقی می ماند. Cuo تولید نیز با مونواکسیدکربن (CO) موجود در کوره واکنش داده تا ذرات مس در لعاب تشکیل شوند. این ذرات رنگ قرمز به لعاب می دهند.
لعاب های راکولعاب های راکو اغلباً لعاب هایی فلزی به نظر می رسند. (اگر بوسیله ی یک لایه از فلز Ti پوشش داده شده باشند)
یک روش پیشرفته در تولید لعاب های راکو بدین صورت است که ظروف سرامیکی به شیوه ی معمولی پخت می شوند سپس آنها را در داخل یک محیط کاهنده مانند خاک اره وارد می کنند و سپس آنها را قبل از آنکه بتوانند اکسید شوند، به سرعت سرد می کنند. این نوع لعاب ها اغلبا حالت استثنا داشته و می توانند با زمان تغییر کنند. این مسئله ساده است. زیرا آنها در طی فرآیندهای بعدی تولید اکسید می شوند. این نوع لعاب بر خلاف سایر لعاب ها خنثی نبوده و تنها برای دکوراسیون استفاده می شوند.
لعاب های کریستالی ( crystalline glaze )این نوع لعاب ها ، لعاب هایی دکوراسیونی هستند اما به طور مستقیم با تکنولوژی تشکیل شیشه – سرامیک در ارتباطند. کریستال ها بوسیله ی سرد کردن آهسته لعاب ایجاد می شوند. این سرد کردن آهسته به کریستال های لعاب اجازه ی رشد کردن می دهند. رشد این کریستال ها مد نظر است؛ زیرا لعاب ضخامت کمی داشته و از این رو کریستال ها باید به صورت پلیت لت (platelets) در آیند. برای آنکه عمل رشد کریستال ها بهتر انجام شود از جوانه زاهای تیتانیایی استفاده می شود. این نوع جوانه زاها در لعاب های باویسکوزیته ی پایین استفاده می شوند و در آنهاشیشه ها (3) تشکیل می شود. ترکیب شیمیایی این نوع لعاب ها بسیار مهم است. در آن شیشه ها (3) وشیشه ها (3) به میزان کم و Pbo به میزان 10-8 درصد وزنی استفاده می شود. رشد کریستال با اضافه شدن fe به لعاب افزایش می یابد. اما این اضافه شدن می تواند همچنین موجب پدید آمدن اثراتی بر سایر دو پانت های اضافه شده به لعاب شود.
سفالگران امروزی ازشیشه ها (3) به عنوان اصلاح کننده و تولید کننده ی کریستال های ویلمایت (Crystals Willemite) استفاده می کنند. (ویلمایت یک مینرال کمیاب از روی است). این تکنیک نیازمند مهارت ویژه است. زیرا افزودن مقادیر زیادشیشه ها (3) به لعاب باعث می شود ویسکوزیته ی آن حتی در دماهای پایین نیز کم باشد، بنابراین این مسئله باعث می شود که لعاب از روی سطح سفالی جریان پیدا کند. رشد اسفرولیتی (Spherulite growth) از جوانه زا در لعاب در شکل 3 نشان داده شده است. هر اسفرولیت در واقع توده ای از کریستال های شعاعی است که با توجه به مرکز اسفرولیت دورهم گرد آمده اند.

شیشه ها (1)

لعاب های اپک ( opaque glazes ) اگر به لعاب مذاب کریستال هایی افزوده شود، لعاب می تواند اپک شود. برای این کار می توان ازO_2 S_n یا زیر کن استفاده کرد. که زیر کن ارزان تر است .شیشه ها (3) برای تولید رنگ سفید در لعاب های زیرکنی (Zircon glaze) استفاده می شود. برای اپک کردن کمتر ازشیشه ها (3) استفاده می شود زیرا کریستال های روتایل طلایی رنگ هستند. و بنابراین لعاب را به رنگ زرد در می آورند. ما همچنین می توانیم با تشکیل کریستال لعاب را اپک کنیم (مثلا ولاستونیت:شیشه ها (3). این کار بوسیله ی عملیات حرارتی مناسب، حبس کردن گاز (هوا یاشیشه ها (3) ) ) و یا بوسیله ی جدایش فازی مایع – مایع انجام می شود. لعاب های مات (Matt glazes) بوسیله ی تشکیل کریستال های بسیار کوچک در لعاب بوجود می آیند (مثلا کریستال های ولاستونیت برای لعاب های مات – آهکی و وبلیمایت (شیشه ها (3):Willemite ) برای لعاب های مات – زینک). کریستال های ریز ولاستونیت بوسیله ی افزودن کلسیت به لعاب پایه سیلیس تشکیل می شود. یک روش دیگر برای این کار افزودن مقادیر زیادی از ماده ی کریستالی به لعاب است تا در طی فرآیند پخت درصدی از آن به صورت کریستالی باقی بماند

رنگ در لعاب و لعاب موضوعاتی هستند که امروزه تحقیقات فراوانی بر روی آنها به عمل آورده شده است. امروزه رنگ های جدیدی بوسیله ی افزودن نانو ذرات در لعاب پدید می آید. عموما نانو ذرات نقره و طلا رنگ طلایی بوجود می آورند. و نانو ذرات مس رنگ قرمز بوجود می آورند. توضیح در مورد نحوه ی پدید آمدن رنگ در لعاب واقعاً پیچیده تر از نحوه ی پدید آمدن رنگ در شیشه هاست. زیرا لعاب بر روی یک لایه اعمال می شود و از این سو نباید ترانسپارنت باشد. همچنین لعاب یک لایه ی نازک است و در اتمسفر مختلف (کاهنده – اکسید کننده) بوجود می آید از این دو بررسی عوامل موثر بر تشکیل یک لعاب مشکل است.

لعاب های رنگی ( Colored glazes )

در لعاب های رنگی باید از پیگمنت های سرامیکی با پایداری مناسب بهره برد. از اکسیدهای رنگ زای ارزان قیمت می توان برای ایجاد رنگ در محصولات متنوع سفالی بهره برد. البته بسیاری از مواد رنگ زا برای لعاب همانهایی هستند که ما برای رنگرزی شیشه از آنها استفاده می کنیم
اکسید کبالت شیشه ها (4) یک اکسید سیاه رنگ است اما کمتر از یک درصد وزنی از آن در لعاب ایجاد رنگ آبی تیره می کند (اگر چه در بیشتر موارد از کربنات کبالت استفاده می شود).
به دلیل آنکه شیشه ها (4) در این گونه لعاب ها بوجود می آید، ویسکوزیته ی لعاب تغییر می کند.
اکسید کروم که تا 3-2% وزنی نیز می تواند به لعاب افزوده شود به جای رنگ سبز، رنگهای زرد، صورتی یا قهوه ای بوجود می آورد (رنگ قرمز در حضور سرب در ترکیب لعاب اولیه پدید می آید. اگر Zn در لعاب اولیه وجود داشته باشد، رنگ لعاب قهوه ای می شود مگر آنکه سرب ها هم وجود داشته باشد. که در صورت وجود سرب و روی در لعاب اولیه رنگ زرد پدید می آید).
شیشه ها (4)که به صورت کربنات به لعاب افزوده می شود، رنگ لعاب را به صورت قهوه ای در آورده البته این ماده می تواند رنگ قرمز، بنفش و حتی سیاه نیز تولید کند. که این تغییر رنگ به درصد سدیم موجود در لعاب اولیه بستگی دارد. افزودن Cuo به اندازه ی %2-1 وزنی به یک لعاب با سدیم بسیار کم سبب پدید آمدن رنگ فیروزه ای می شود. این درحالی است که افزودن بیش از 3% از این رنگ زا باعث پدید آمدن رنگ سبز یا آبی می شود. اگر درصد Cuo در لعاب افزایش یابد، لعاب ظاهری فلزی مانند مفرغ به خود می گیرد. اگر لعاب دارای 0.3– 2 درصد وزنی Cuo در اتمسفر کاهنده پخت شود، رنگ قرمز مسی پدید می آید. این رنگ به دلیل حضور ذرات کلوئیدی CU درلعاب بوجود می آید.
اگر یک لعاب رنگ زرد داشته باشد، این رنگ ممکن است بوسیله ی افزودن Cds یا Cdse بوجود آمده باشد. البته این نوع افزودنی های رنگ زا ممکن است رنگ های قرمز یا نارنجی را نیز پدید آورند. درصورت حضور سرب در این نوع لعاب ها ، Pds تشکیل می شود که باعث سیاه شدن لعاب می شود. زیرکن در صنعت برای کمک کردن به پایدار شدن این نوع رنگ ها (برپایه ی cd) استفاده می شود. درحقیقت شیشه ها (4) (زیر کن وانادیومی آبی رنگ) و شیشه ها (4)(pr,zr) (زیر کن پراسئودیومی زرد رنگ) مهم ترین تثبیت کننده های مورد استفاده در این رنگ هاست. هنگامی که اورانیوم به لعاب اضافه شود، به جای پدید آوردن رنگ زرد کم رنگ، رنگ قهوه ای تیره پدید می آید. (اورانیوم در شیشه های وازلینی تولید رنگ زرد کم رنگ می کند). البته بسته به ترکیب لعاب ، اورانیوم می تواند رنگ های قرمز یا نارنجی روشن نیز بدهد.

لعاب نمکی ( saltglaze )

دراین نوع فرآیند لعاب کاری سفال در کوره های با دمای بالا با نمک واکنش می دهد. در واقع سفالگر نمک را بر روی سفال اعمال می کند. این فرآیند هنگامی اتفاق می افتد که سفال در داخل کوره است. این فن بوسیله ی سفالگران ایرانی وانگلیسی در دهه ی 1700 ابداع گشته است. همچنین شما می توانید مثال های فراوانی از فرآیند رنگ آمیزی بوسیله ی اکسیدهای فلزی را در آلمان ببنید. در این نوع لعاب ها نمک با رس واکنش داده و تشکیل لایه ای شیشه ای بر روی سطح می دهد. این تکنیک دقیقاً فرآیند خوردگی خاک نسوز در دمای بالاست (بوسیله ی سود سوز آور).
واژه ی مینا (enamel) معمولا در هنگامی استفاده می شود که یک لایه ی لعابی بر روی فلز اعمال می شود. البته این واژه در هنگامی که یک لایه لعابی بر روی لعاب اولیه اعمال می شود نیز استفاده می شود. بازار مصرف مینا بسیار بزرگ است. این بازار از لوازم بهداشتی تا جواهر آلات گسترده است.

خوردگی شیشه و لعاب

این تصور وجود دارد که شیشه خنثی است اما باید بدانید که اسید سیتریک و اسید استیک موجود در غذاها و میوه ها می توانند بایون های موجود در شیشه واکنش دهند و ترکیبات کمپلکس پدید آورند. با خروج یون های قلیایی از داخل شیشه یون های هیدروژن مثبت جایگزین آنها می شود. هنگامی که بخواهیم استحکام سطح شیشه را افزایش دهیم باید یون های پتاسیم و سدیم مثبت را با لیتیم مثبت ( شیشه ها (4) ) جایگزین کنیم. در شیشه ی آلایش یافته (Stain glass) می توان یون نقره ی مثبت و مس را جایگزین شیشه ها (4) کرد.
همانند مواد کریستالی ، شیشه ها نیز دارای عیوب کریستالی اند. یکی از چالش هایی که ما با آنها روبرو هستیم محاسبه ی خواص بوجود آمده ازعیوب (مانند نفوذ) در شیشه هاست. زیرا در شیشه ها شبکه ی مرجع وجود ندارد.

انواع شیشه های سرامیکی

همه ی شیشه ها براساس تتراهدرال های سیلیسی ایجاد نمی شوند؛ واحدهای ساختاری این شیشه ها در جدول 1 آورده شده است. برخی از ترکیبات این شیشه ها نیز در جدول 2 آورده شده است.

شیشه ها (4)

شیشه ها (4)

شیشه ی سیلیکاتی ( سودالایم )

این شیشه ها بر پایه ی شیشه ها (4) هستند. (معمولا این نوع شیشه ها علاوه بر این مواد دارای شیشه ها (4) نیز هستند.) این نوع شیشه نستبا ارزان هستند و دارای دوام خوبی نیز هستند همچنین از این نوع شیشه به طور فراوان در صنعت بسته بندی و ساختمان استفاده می شود. ضریب انبساط حرارتی شیشه ها (4) این نوع شیشه ها ناچیز نیست. همچنین این نوع از شیشه ها عایق های خوبی نیستند. استفاده های عمده از این نوع شیشه در صفحات شیشه ای ،بطری ها ، وسایل غذا خوری و صنعت الکترونیک (حباب لامپ) است. شیشه های آلومینو سیلیکاتی قلیایی (شیشه ها (4)= عنصر قلیایی) دارای ضریب انبساط حرارتی پایینی است. این نوع شیشه دارای دوام و خواص عایق کاری بهتری است. وهمچنین نسبت به سایر شیشه های هم گروه استحکام بالاتری دارد. استفاده های این نوع شیشه عبارتست از تیوپ های اختراق، حباب های لامپ هالوژن و به عنوان بسترهای صنعت الکترونیک کاربرد دارد.

شیشه ی سربی

ترکیب عمومی این شیشه ها سیلیکات های قلیایی سربی استشیشه ها (4). در این نوع شیشه ها Pbo به جای CaO در شیشه ی سودالایمی قرار گرفته است. این نوع شیشه دارای مقاومت بالایی است. همچنین ضریب انبساط حرارتی آن بالاست. و دمای نرم شوندگی پایینی دارد. دلیل آنکه از این نوع شیشه ها در تولید ظروف کریستال استفاده می شود این است که ضریب شکست این نوع شیشه بالاست و علاوه بر این که از این شیشه ها در ظروف تزئینی استفاده می شود، از آنها در ساخت تیوپ های لامپ، لامپ تصویر تلویزیون و تیوپ های ترمومترها استفاده می شود. در ظروف کریستال انگلیسی که به صورت سنتی تولید می شوند، میزان Pbo حداقل 30% است. برطبق رهنمود اتحادیه ی اروپا میزان Pbo باید بیش از 24 درصد باشد. همچنین بر طبق استاندارد اروپا شیشه های کریستال سربی باز یافت نمی شوند. شیشه های سربی که برای ساخت حفاظ های تابشی استفاده می شوند ممکن است دارای بیش از 65% Pbo باشند. کاربرد این گونه شیشه ها در لامپ تصویر تلویزیون است اگر چه شیشه های باریمی برای ساخت صفحه و تابلوهای تلویزیون استفاده می شود. (تفنگ الکترونی تلویزیون اشعه ی x ساتع می کند که این نوع شیشه باید این تابش ها را جذب کند.)شیشه های سرب – بوراتی می توانند به عنوان لحیم های شیشه ای استفاده شوند. این نوع شیشه ها دارای در صد کمیشیشه ها (4) است و کاملا خنثی است.
شیشه های فیلنیتی (flint glass) دارای تفرق بالایی است. در واقع این نوع شیشه ها از نوع شیشه های سیلیکاتی قلیایی ـ سربی است که از ذوب سنگ های فیلنیتی ساخته شده اند(فیلنیت فرم خالص سیلیس است) .لازم به توضیح است که این نوع سنگ کلسینه شده و به طور فراوان در ساخت بدنه های سرامیکی استفاده می شود.

شیشه ی بورانی ( شیشه ی بورو سیلیکاتی )

شیشه های بوروسیلیکاتی قلیاییشیشه ها (4) به خاطر ضریب انبساط حرارتیشیشه ها (4) کوچکشان ویژه هستند. این نوع شیشه دوام بالایی داشته و خواص الکتریکی مفیدی دارند. پیرکس (Pyrex) که یک نوع ماده در تولید وسایل پخت و پز است . از جنس بروسیلیکات است .شیشه ی بروسیلیکاتی به طور وسیع در فرآیندهای شیمیایی استفاده می شود. برخی از شیشه های براتی دارای دمای ذوب پایینیشیشه ها (4) هستند از این رو آنها را می توان به همراه سایر شیشه ها استفاده کرد. شیشه ی بروسیلیکاتی – زنیکی به شیشه های منفعل شهرت دارند. این شیشه ها مواد قلیایی ندارند و از این رو از آنها می توان در ساخت اجزای الکترونیکی سیلیسیمی استفاده کرد.

سیلیس فیوزد

این نوع شیشه از نوع سیلیس خالص است. این شیشه ها ، شیشه های سیلیکاتی برای کاربردهای دما بالا هستند. ضریب انبساط حرارتی این نوع شیشه ها نزدیک به صفر است. این نوع شیشه ها برای تولید آینه های تلسکوپ و زیر لایه ها (Substrates) استفاده می شود. به خاطر داشتن ضریب انبساط حرارتی نزدیک به صفر به این شیشه ها ، شیشه های با انبساط حرارتی بسیار پایین (VLE Silica) می گویند .
شیشه های VLE دارای 7 درصد وزنیشیشه ها (4) برای تولید لفافه های لیتوگرافی نوری (masks photolithography) استفاده می شود. البته به خاطر دمای بالای فرآیند شکل دهی این شیشه ها ؛ می توان به جای آنها از شیشه های وایکور استفاده کرد.

شیشه ی فسفاتی ( phosphate – glass )
 

شیشه های فسفاتی شیشه های مهمی هستند زیرا این نوع شیشه ها خاصیت نیمه رسانایی دارند. یکی از کاربرد این مواد در ساخت تقویت کننده های الکترون (electron multipliers) است . در این نوع وسایل با استفاده از دپ کردن Er (افزودنشیشه ها (4) ) ، این تقویت کننده ها ساخته می شود. کایتون های موجود در این نوع شیشه ها معمولا V و P هستند اما لابراتوار ملی او آ ک ریچ (Oak Ridge National labroatory) یک نوع شیشه ی فسفاتی اندیوم – سربی تولید کرده است که دارای ضریب شکست بالایی است. از ویژگی های دیگر این شیشه می توان به دمای ذوب پایین و خاصیت ترانسپارنتی در برابر گسترده ی وسیعی از طول موج ها را نام برد. به دلیل آنکه این نوع شیشه می تواند درصد بالایی از عناصر خاکهای کم یاب را در خود حل کنند، از آنها در تولید وسایل نوری اکتیو مانند آمپلی فایرهای فیبر اپتیک و لیزرها استفاده می شود. شیشه های فسفاتی دپ شده با Nd در لیزرهای حالت جامد استفاده می شوند. ترکیب شیمیایی نمونه وار از این نوع شیشه عبارتست ازشیشه ها (4) است. که در صد Nd بین O.2-2.O درصد مولی است.

شیشه ی چالکوژیندی ( Chalcogenide glass )

این نوع شیشه براساس Se,As و Te بوجود می آید. این شیشه ها نور فرو سرخ را از خود عبور می دهند و نیمه رسانا های غیر اکسیدی هستند. از این نوع شیشه در وسایل و لنزهای الکترونیکی ویژه استفاده می شود. در این وسایل هنگامی که ولتاژ اعمالی به آنها از میزان بحرانی فراتر رود، به طور ناگهانی تغییر رسانایی رخ می دهد. کاربرد این نوع شیشه ها بسیار خاص است زیرا این شیشه ها دوام پایینی داشته و دمای نرم شوندگی شان پایین است.

شیشه ی فلورایدی ( fluoride glass )

عموماً شیشه های هالیدی بر پایه یشیشه ها (4) را شیشه های فلورایدی می گویند. کاربرد این نوع شیشه ها در وسایل همسو کننده نوری (optical waveguides) است. و درجاهایی که قیمت توجیه پذیر باشد استفاده می شوند.

شیشه ی طبیعی

این مسئله که شیشه در طبیعت بوجود می آید حتی این پدیده یک امر نسبتاً معمولی است، باعث شگفتی بسیاری از مردم می شود. تکتیت ها (tektites) درهنگام برخورد شهاب سنگ ها به زمین و در دهانه ی حاصله از برخورد شهاب سنگ پدید می آیند. مولد اویت (Moldavite) نیز یک شیشه ی سبز رنگ است که در مولداوی (Moldavia) یافت می شود . فولگلاریت (fulgarite) نیز تیوپ های شکننده از شیشه هستند که در هنگام برخورد برق آسمان به خاکهای ماسه ای پدید می آید. ابسیدیان (obsidian) نیز یک نوع شیشه است که در جریان های آتش فشانی تشکیل می شود. رنگ سیاه رنگ این نوع شیشه به خاطر ناخالصی پدید می آید. در طی دوره ی پارینه سنگی از ابسیدیان در ساخت وسایل استفاده می شده است. سنگ پا (Pamice) یکی دیگر از شیشه هایی است که از فوران های آتش فشانی تشکیل می شود. این ماده می تواند تخلخل های فراوانی داشته باشد. (درصورتی که ماده ی اولیه ی تشکیل دهنده ی آن دارای مواد گازی فراوانی باشد). سنگ پا شکل متخلخل ابسیدیان است

شیشه ها

مقدمه:

دراین مقاله ها در مورد انواع مختلف شیشه و برخی از کاربردهای آنها صحبت می کنیم.
شیشه ها یکی از انواع مهم موادمهندسی محسوب می شوند. این مواد در پنجره ها، ساخت بطری، لیزرها، الیاف نوری، عایق ها، لعاب کاری (glazing) ومینا کاری (enamelihg)، چاقوی جراحی، وسایل هنری وتابلوهای راهنمایی - رانندگی استفاده می شوند.
شیشه ها معمولا بازیافت می شوند واز این رو دوستدار محیط زیست هستند.مصریان آثار شیشه ای متنوعی بر جای گذاشته اند ولی آنها اولین کسانی نبودند که از این ماده استفاده می کردند.در دوران های دیرینه سنگی (paleolithic Times) شیشه های اولیه و شیشه های طبیعی (Obsidian: نوعی شیشه ی مصنوعی بدست آمده از آتش فشان ها ) بسیاراهمیت داشتند به خاطر اهمیت زیاد این ماده می توان گفت که شیشه نقش مهمی در شکل دهی تمدن ما داشته است.
به هر حال تعریفات مختلفی برای شیشه ها بیان شده است. دراین مقاله سعی می کنیم بگوییم چرا واژه های شیشه ای (glassy)، زجاجی (Vitreous) و آمورف (amor phous) همگی برای توصیف شیشه استفاده می شوند. همچنین سعی داریم جواب این سوال را بدهیم که: «شیشه چیست؟»
هنگام مطالعه ی این مقاله باید دو ذهنیت را داشته باشید:
1) ادعای Sturkey:"شیشه در دماهای بالا یک محلول شیمیایی است."
2) اگر شیشه که مایع فوق سرد شده است، پس جامد نیست وبنابراین یک ماده ی سرامیکی نیست (اما شیشه یک ماده ی سرامیکی است)

تعریف

تعریف کلاسیک شیشه براساس روش تاریخی تشکیل آن انجام شده است. البته این روش تعریف یک روش بسیار غیر معقولی برای تعریف هر ماده است. این مسئله باعث شده است تا امروز شیشه به چندین روش مختلف تعریف شود:
تعریف کلاسیک: شیشه یک مایع فوق سرد شده است(Supercooled liquid) مشکل بوجود آمده دراین تعریف این است که در برخی موارد می توان یک شیشه ی ویژه را به روشی تولید کرد که هیچگاه درحالت مایع قرار نداشته باشد.
ASTM شیشه را به صورت زیر تعریف کرده است:
"شیشه یک محصول غیر آلی از ترکیبی مذاب است که بدون آنکه کریستالی شود، سرد وصلب می گردد."
این تعریف نیز همان چیزی است که در تعریف کلاسیک آمده است. اما دراین تعریف شیشه ی پلیمری استثناء شده است. به وضوح مشخص است که استناد کردن به روش تولید برای تعریف یک گروه از مواد ایده آل و مناسب نمی باشد.

تعاریف دیگر :

1)" شیشه یک ماده ی جامد است که نظم دوربعد از خود نشان نمی دهد."
نداشتن نظم دوربعد یعنی ساختار شیشه درفواصل یک، دو یا سه برابر فاصله ی اجزای سازنده، دارای نظم نیست. این تعریف براساس مشاهدات حاصله از تفرق اشعه X، میکروسکوپ الکترونی عبوری (TEM) و... استوار است اما این تعریف نیز کمی قراردادی است زیرا به اندازه ی اجزاء تشکیل دهنده بستگی دارد.
2)" شیشه یک مایع است که قابلیت جاری شدن خود را از دست داده است."
این تعریف استوار است اما از تعریفی که بوسیله ی ASTM ارائه شده است فراگیرتر است .همچنین این تعریف از خاصیت مکانیکی برای تعریف شیشه استفاده می کند. درحقیقت این تعریف عملاً با دیدگاه فیزیک مدرن درباره ی شیشه مطابقت دارد.
اکثر شیشه هایی که ما در مورد آنها توضیح می دهیم، شیشه های با شبکه ی اکسیدی است . (مخصوصاً سیلیکات ها) تعریف ما از چنین شیشه هایی عبارتست از:
تجمعی جامد از تتراگونال هایی است که می توانند رئوس خود را به اشتراک گذاشته و البته این مواد نظم دور بعد ندارند.
دراین مقاله ما تنها درمورد شیشه های سرامیکی بحث می کنیم اما باید بدانیم که علاوه بر شیشه های سرامیکی، شیشه های فلزی و پلیمری نیز وجود دارد. شیشه های فلزی ترکیبات پیچیده ای هستند که در آنها عمل کریستالیزاسیون انجام نشده است. این مسئله بوسیله ی سریع سرد کردن فلز مذاب بوجود می آید.(این فرآیند اسپلات کوئنچینگ نامیده می شود). درادامه به بیان ویژگی شیشه ها می پردازیم:

ساختار

شیشه ها در اصل جامد های غیر کریستالی (یا آمورفی) هستند که در اغلب موارد از فریز شدن یک مایع فوق سرد شده بدست می آیند. دراین موارد نظم دور برد در آرایش اتمی وجود ندارد. البته نظم کوتاه برد (زیر 1nm) وجود دارد. این مواد دارای آرایش منظمی از سلولهای واحد نیستند.همانگونه که گفتیم شواهدی وجود دارد که ثابت می کند در شیشه ها نظم کوتاه برد وجود دارد.این نظم کوتاه برد به دلیل آرایش اتمی درمجاورت هر اتم (البته در فاصله ی کوتاه) بدست می آید. تلاش های فراوانی برای توصیف شیشه ها انجام شده است. که به بیان علت تشکیل شدن یا نشدن شیشه ها بحث می کند. دراین زمینه ما ازدو دیدگاه به شیشه ها نگاه می کنیم:
1) توجه به ساختار
2) توجه به مباحث کنیتیکی کریستالیزاسیون
درمورد اول ما به بیان هندسه ی اجزای تشکیل دهنده ی شیشه ها می پردازیم. همچنین دراین زمینه به بیان پیوندهای بین اتمی واستحکام پیوندها می پردازیم . درمورد دوم ما به بیان چگونگی دگرگونی های مایع به جامد در طی فرآیند سرد شدن می پردازیم.
دمای تبدیل شدن شیشه ای ( Tg )
درشکل 1 نموداری نشان داده شده است که در آن حجم ویژه به عنوان تابعی از دما رسم شده است.

شیشه ها (1)

این دیاگرام فرمی از دیاگرام استعاله ی دما – زمان (T.T.T) برای شیشه است. درهنگام سرد شدن مایع از دمای بالا دو پدید ه ممکن است در نقطه ی انجماد (Tm) اتفاق می افتد که عبارتند از :
1) اگر مایع کریستالیزه شود تغییرات حجم و سرعت سرد کردن گسسته است.
2) اگر کریستالیزاسیون اتفاق نیفتد، مایع به حالت فوق سرد شده تبدیل می شود و حجم در نزدیک دمای ذوب کاهش می یابد.
دردمای تبدیل شدن شیشه ای (Tg)، شیب نمودار کاهش می یابد و به شیب جامد کریستالی نزدیک می شود. این شکستگی بوجود آمده در نمودار سرد کردن نشان دهنده ی گذرگاه مایع فوق سرد شده به شیشه است. زیر دمای Tgساختار شیشه درحالت آسایش نیست زیرا این مواد اکنون جامد هستند. دراین ناحیه از Tg ویسکوزیته تقریبا شیشه ها (1) است. ضریب انبساط حالت شیشه ای معمولا نزدیک به ضریب انبساط جامد کریستالی است. اگر از سرعت های سرد کردن پایین تر استفاده شود، میزان آسایش ساختار افزایش می یابد. ومایع فوق سرد شده در دمای پایین تر تشکیل می شود. و شیشه ی حاصله ممکن است دانسیته ی بالاتری بدست آورند. (همانگونه که در شکل 1 دیده می شود)
فیزیک شیشه جنبه ی تردی آن را مورد بررسی قرار می دهد. در واقع این ویژگی یک ویژگی مایعات شیشه ساز در بالای دمای Tgاست واندزه ای از استعکام پیوندهای بین اتمی است. در ادامه ما درمورد شیشه ی نامحلول در آب یا بطری های شیشه ای آب صحبت می کنیم. البته چیزی که آگاهی کمتری از آن است این است که ما می توانیم آب را با سریع سرد کردن در اتاق مایع به حالت شیشه ای در آوریم. ماده ی حاصله یک شیشه ترد است اما این مسئله فهمیده شده است که بیشتر آب موجود در جهان به همین شکل وجود دارد.
تاریخچه
شیشه ماده ای است که پیوندی عمیق با تاریخچه ی انسان دارد. یکی از شواهد این مسئله استفاده از ابسیدیان (obsidian) یک شیشه ی طبیعی توسط بشر است. هیچ کس نمی داند که اولین جسم شیشه ای در چه زمانی ساخته شده است. قدیمی ترین یافته ها به 7000 سال پیش از میلاد برمی گردد. (البته ممکن است یافته هایی پیش از این تاریخ نیز وجود داشته باشد). درکاوش های باستان شناسی در بین النهرین روش های تولید شیشه کشف شده است . این کارها 4500 سال پیش از میلاد مسیح بوده است ومربوط به روش های تولید وسایل شیشه ای بوده است نه لعاب های مورد استفاده در وسایل سفالی. استفاده از شیشه در لعاب کاری سفال حتی به دوران های پیشین می رسد.

شیشه ها (1)

تقریبا در 3000 سال پیش از میلاد مسیح شیشه گران مصری شروع به تولید جواهر آلات شیشه ای و ظروف شیشه ای کوچک کردند. شیشه هم به عنوان یک جسم دکوری وهم به عنوان یک وسیله ی مورد استفاده در زندگی روزمره به شمار می آمد. قطعاتی از جواهر آلات شیشه ای در کاوش های اطراف کوه های مصر پیدا شده است. مثالی از این جواهرآلات شیشه ی فیزوزه ای آبی است که در شکل 2 دیده می شود. تقر یبا 1500 سال پیش از میلاد مسیح شیشه گران مصری ( در دوره ی touthmosis سوم ) روشی برای تولید قطعات تو خالی قابل استفاده، توسعه دادند. یک مثال قابل توجه از این نوع ساختار یک شیشه ی توخالی است که شبیه به سرماهی است (شکل 3) این ظرف بین سال های 1352 و 1336 قبل از میلاد ساخته شده است واین نظریه وجود دارد که برای نگه داری روغن خوش بو استفاده می شده است.

شیشه ها (1)

الگوی موجی این ظرف بسیار خاص است. در واقع این ظرف بوسیله ی کشیده شدن یک جسم تیز به شیشه ی خمیری شده تولید شده است.
نویسنده ی رومیPliny Fhe Elder (23-79 میلادی) اختراع شیشه را به صورت زیر توصیف می کند:
روزی یک کشتی که متعلق به چند تاجر نیتروم (Nitrum) بود در کنار ساحل لبنان کنونی توقف می کند. هنگام پخت غذا به دلیل نبود سنگ در ساحل، خدمه کشتی از کلوخ های نیترومی که در کشتی وجود داشته است. استفاده می کنند تا بتوانند دیگ غذا را در مکان مناسب استقرار دهند. پس از آنکه آتش روش شد، کلوخه ها با ماسه های ساحلی واکنش داده و تشکیل شیشه ی مذاب می دهد. این اولین منشع پدید آمدن شیشه است.
نیتروم (Nitrum) یک نوع سدیم کربنات (Soda) طبیعی است .این ماده یکی از اجزای مهم در شیشه های قدیمی و مدرن است. خاکستر گیاهان نیز یک منبع فقیر از سدیم برای شیشه گران فراهم می کند. گیاهان علف شوره (Saltwort) و رازیانه ی آبی (glass wort) از جمله گیاهانی هستند که برای مهیا شدن سدیم از آنها استفاده می شده است.
یکی از معمولی ترین روش ها برای شکل دهی شیشه روش دمش هوا است. اگر چه این تکنیک بیش از دوهزار سال پیش توسعه یافت، لوله های تولیدی به روش دمش در طی زمان تغییری نکرده است. توسعه ی عمده که دراین زمینه انجام شده است، روش دمش اتوماتیک است که برای تولید شیشه های بطری و حباب های لامپ استفاده می شود. دراین روش به قطعه ای شیشه در داخل قالب هوا دمیده می شود. و بدین شکل شیشه به شکل قالب در می آید. مهمترین مرحله ی رشد در تاریخ شیشه سازی مخصوصا درطی قرن بیستم مربوط به توسعه های اتفاق افتاده در زمینه ی تکنولوژی های تولید می باشد. این توسعه ها منجر به کاهش هزینه ی تولید محصولات شیشه ای می شود

در ادامه به بیان خواص شیشه ها می پردازیم:

ویسکوزیته ( η )

ویسکوزیته یک ویژگی کلیدی شیشه هاست.ما نیاز داریم تا درمورد ویسکوزیته ی شیشه در دماهای مختلف اطلاع داشته باشیم. و بتوانیم دمای مورد نیاز برا ی شکل دهی وآنیلینگ آن را تشخیص دهیم. ویسکوزیته یک ویژگی مکانیکی است. فرمول ویسکوزیتد به صورت زیر است:

شیشه ها (2)

دراین فرمول:
η : ویسکوزیته، F: نیروی مورد نیاز برای کشیدن یکی از صفحات موازی که در میان آنها مایع مورد نظر قرار دارد: ،d: فاصله ی صفحات، A: مساحت صفحات، V: سرعت حرکت صفحه. ویسکوزیته در واقع پاسخ یک مایع دربرابر تنش برشی است. مایعات دارای ویسکوزیته ای هستند که با واحد سانتی پوآز (CP) اندازه گیری می شود. واحد اندازه گیری ویسکوزیته ی گازها میکروپوآز(mp) است.

شیشه ها (2)

جدول 1 لیستی از اعداد ویسکوزیته ای است که برای فرآیندهای شیشه سازی مهم هستند. اعداد داده شده در جدول 2 نیز برای تعریف ویژگی های برجسته ی شیشه (با تأکید بر روی فرآیند) آورده شده است. بسیاری از اعداد آورده شده درجدول ویسکوزیته ها استاندارد هستند مثلا (2003) ASTMC338-93 یک روش تست استاندارد است که نقطه نرم شدگی شیشه بوسیله ی آن تعیین می شود.
محاسبه ی نقطه ی نرم شدگی شیشه بوسیله ی اندازه گیری دمایی که در آن یک فیبر شیشه ای استوانه ای با قطر شیشه ها (2) طول بوسیله ی وزن خودش تغییر طول می دهد. نرخ تغییر طول یک میلی متر بردقیقه است . در این روش 100 میلی متر از بخش بالایی فیبر بوسیله ی کوره ی خاصی با سرعت گرم شدنشیشه ها (2) گرم می شود.

شیشه ها (2)

ویسکوزیته ی برخی ازمایعات عمومی در جدول 2 آورده شده است. توجه کنید که در دمای کارپذیری شیشه ویسکوزیته ای شبیه به عسل در دمای اتاق دارد. به طور نمونه برای یک شیشه ی سیلیکاتی سودالایم این ویسکوزیته در دمایشیشه ها (2) بدست می آید. این جدول همچنین نشان می دهد که یک جامد دارای ویسکوزیته ای بیش ازشیشه ها (2) دسی پو آز است. ویسکوزیته ی به طور نمایی با تغییر دما ، تغییر می کند ( همانگونه که در شکل 1 برای انواع شیشه ی سیلیکاتی دیده می شود.) دمای فیکتیو (fictive temperature) دمایی است که در آن ساختار مایع به حالت شیشه ای تبدیل می شود. این دما بوسیله ی تقاطع منحنی های برونیابی شده در حالت دما بالا و دما پایین در نمودار ویسکوزیته – دما بدست می آید. دمای فیکتیو (Tf) مانند Tg به تبدیلات ساختاری شیشه بستگی دارد. البته Tg اندکی کمتر از Tf است.

شیشه ها (2)

شکل 2 وابستگی ویسکوزیته به دما را برای اکسیدهای شیشه ساز نشان می دهد. شما باید توجه کنید که بوسیله ی شیب این خطوط می توان انرژی اکتیواسیون جریان ویسکوز (EV) را بدست آوریم.

شیشه ها (2)

جدول 3 اعداد ویسکوزیته وسرعت های کریستالیزاسیون (v) برخی شیشه ها را نشان می دهد. سرعت کریستالیزاسیون مربوط می شود به سرعت تبادل مایع/جامد. V بسیار کم بیان کننده ی قابلیت شیشه سازی استثنایی ماده است.البته کریستالیزاسیون مذاب جامد شده ی سیلیس بسیار مشکل است.

شیشه ها (2)

روش های متعددی برای اندازه گیری ویسکوزیته وجود دارد. این روش ها با توجه به میزان ویسکوزیته انتخاب می شود.

شیشه ها (2)

شماتیک دو روش اول اندازه گیری ویسکوزیته در شکل 3 نشان داده شده است:

شیشه ها (2)

شیشه ( خلاصه ای از خواص )
 

شیشه ماده ای خنثی است. این مسئله به محیط بستگی دارد. اگر شیشه یک ماده ی سیلیکاتی باشد، این مسئله درست است . البته همه ی شیشه ها خنثی نیستند. مثلا بیوگلاس (bioglass)
شیشه یک ماده ی هموژن است. این مسئله نیز به نحوه ی شکل دهی و ترکیب شیمیایی شیشه بستگی دارد. ما می توانیم با استفاده از فرآیندهای خاص شیشه را به صورت غیر هموژن در آوریم.
شیشه می تواند تغییر شکل دهد. این مسئله عموماً درست می باشد و دلیلی است برای قابلیت بازیافت شیشه ها. برخی از شیشه ها به نحوه ای ساخته می شوند که بوسیله ی نور، انتشار نور در داخل آن وتابش نور و...تغییر ماهیت می دهد.
شیشه دارای ضریب انبساط کوچک است. البته همه ی شیشه ها مناسب استفاده شدن در کاربردهای حرارتی مانند ظروف پیرکس نیستند.
شیشه ها شفاف اند (trans Parent) این خاصیت برای الیاف نوری ضروری است. البته ما می توانیم با انجام عملیات های خاص شیشه به صورت اپک یا مات در آوریم.
بسیاری از شیشه های اولیه شفافیت کامل نداشتند زیرا در ساختار آنها ناخالصی وحباب هوا وجود داشت.
شیشه ارزان است. البته این مسئله برای شیشه های پنجره صحیح است. اما درمورد فیلم های نازک شیشه ای این مسئله صحیح نمی باشد. برخی از شیشه های قرمز رنگ بوسیله ی دپینگ (doping) طلا در آنها تولید می شود. که قیمت برخی از ظروف تولیدی از آن به پیش از 50 دلار می رسد.
شیشه یک ماده ی بالک است مگر در حالتی که آن را به صورت یک فیلم نازک ، یک فیلم انیتر گرانولار (IGF) یا یک سرامیک کریستالی رشد دهیم.

برخی از خواص مکانیکی شیشه

استحکام تئوریک شیشه ی سیلیکاتی درحدود 10GPa است. البته با حضور عیوب سطحی (ترک ها وجوانه ها ) این استحکام کاهش می یابد. شیشه ها موادی الاستیک هستند اما تحت کشش می شکنند. می توان استحکام این مواد را بوسیله ی ایجاد لایه های سطحی فشرده و یا بوسیله ی از بین بردن ترک های سطحی (با اسید شوئی یا پدید آوردن پوشش محافظ) افزایش داد. مثالی از این روش ها پدید آوردن ترک های اضافی در ساختار قطعات شیشه ای تزئینی به منظور بهبود خواص مکانیکی آنهاست. در این روش از سرد کردن شیشه ی مذاب در آب جهت ایجاد تنش های اضافه بهره برده می شود . در این حالت سطح قطعه ی شیشه ای مذاب زودتر از مرکز آن سرد می شود و بنابراین تنش های اضافی پدید می آید. قطعات جامد شده به این شیوه را می توان با چکش و بدون اینکه بشکنند چکش کاری کرد.

برخی از ویژگی های الکتریکی شیشه

شیشه معمولا دارای مقاومت الکتریکی بالایی است. که علت آن تفاوت زیاد میان باندهای انرژی (گپ بزرگ) در این ماده است. در مواردی که شیشه رساناست . بار بوسیله ی یون ها منتقل می شود.(در این مورد یون های قلیایی مانندشیشه ها (2) دارای سرعت انتقال بار بالایی هستند). در واقع به همین دلیل است که با افزایش دما رسانایی به شدت افزایش می یابد. رسانایی درشیشه های مختلف، متفاوت است.علت آن متفاوت بودن نوع شبکه ی این شیشه هاست. در شیشه هایی که دارای بیش از یک یون قلیایی هستند. پدیده ی جالبی رخ می دهد. رسانایی تولیدی در این نوع شیشه ها به طور مشخصی از شیشه های دارای یک یون کمتر است. این نوع شیشه ها در کاربردهای مختلف مانند لامپ های با توان بالا استفاده می شوند. ثابت دی الکتریک شیشه واقعاً بالاست اما نه به حدی که بتوان از آن در کاربردهای حافظه ای پیشرفته مانند حافظه ی با دستیابی دینامیک و رندوم (DRAMS) استفاده کرد. ظرفیت الکتریکی یک ماده میزان بار ذخیره شده در داخل ماده است. این خاصیت به ضخامت دی الکتریک بستگی دارد. همانطور که ضخامت دی الکتریک کمتر می شود، ظرفیت الکتریکی افزایش می یابد. اما کم کردن ضخامت نیز مشکلاتی به همراه دارد. مثلا با کاهش ضخامت احتمال شکست دی الکتریک بیشتر می شود. شیشه ی سیلیسی دارای مقاومت دی الکتریک بالاتری نسبت به سایر شیشه هاست. اما مقاومت این دی الکتریک نیز در حد دی الکتریک های پلیمری مانند رزین فنولیک نیست.

برخی از خواص اپتیکی شیشه

شفافیت دربرابر نور فرا بنفش ، مرئی و فرو سرخ به چندین فاکتور بستگی دارد. یکی از این فاکتورها طول موج تفرق است که بوسیله ی ناخالصی ها تغییر می کند. لبه ی فرو سرخ (IRedge) و لبه ی فرا بنفش ((uv edge اعدادی هستند که نشان دهنده ی فرکانس قطع شدن عبور این موج ها هستند. یک مانع لبه UV edge blocker)UV) از عبور UV جلوگیری می کند و این در حالی است که یک عبور دهنده ی لبه یUV (UV edge tran Smitter) اجازه ی عبور نور UV را می دهد.

عیوب در شیشه ها

اگر چه شیشه یک ماده ی آمورف است ولی مانند مواد کریستالی دارای عیوب و رسوبات است. و همچنین دچار جدایش فاز می شود. شیشه را می توان برای حبس کردن عناصر رادیو اکتیو استفاده کرد .در این عناصر مانند عیوب نقطه ای یا فاز ثانویه تشکیل می شوند. همچنین سرعت نفوذ این عناصر از میان شیشه بر روی میزان آن ها در شیشه تأثیر دارند. این مسئله استفاده می شود تا بتوان مواد رادیو اکتیو یا سایر مواد را کنترل کرد.

شیشه ی غیر هموژن

به دلیل آنکه شیشه یک مایع فوق سرد شده است. نمی توان گفت که این ماده حتما باید هموژن باشد. شیشه های خاص می توانند بدون نیاز به فرآیند کریستالیزاسیون به دو فاز تبدیل شوند. هنگامی که این دو فاز شیشه ای باشند این مسأله باعث می شود که سدی در برابر جدایش فازی پدید نیاید. در مورد فرآیند جدایش فازی مایع – مایع ممکن است مرحله ای برای جوانه زنی وجود داشته باشد. البته در این نوع تبدیلات ممکن است استعاله ی اسپینودال (Spinodal) نیز رخ می دهد. که هر دوی این استعاله ها به نفوذ وابسته اند.
قوانین امتزاج ناپذیری در شیشه ها بسیار مهم است. این مسئله مخصوصاً در شیشه های تولید شده با تکنولوژی روز نمود دارد. برای مثال امتزاج ناپذیری در شکل دهی شیشه – سرامیک ها ، تولید شیشه ی وایکور (Vycor) و شیشه های اپتیکی و تشکیل رسوب در شیشه ها مهم می باشد. بسیاری از اکسیدهای دوتایی و سه تایی در کنار سیلیس از خود مشکلات امتزاج پذیری نشان می دهند.
در دیاگرام فازی ناحیه ای وجود دارد که یک مایع به دو مایع با ترکیب شیمیایی متفاوت تبدیل می شود. این ناحیه گپ امتزاج پذیری (imisciblity gap) نامیده می شود. در زیر برخی از سیستم هایی که مشکل امتزاج پذیری دارند را نام برده ایم:

شیشه ها (2)

شیشه ها (2)

شکل 4 دیاگرام فازیشیشه ها (2) را نشان می دهد. در دمای پایین و در گوشه ی غنی از سیلیس دیاگرام ، فاز مایع به دو بخش مایع با ترکیب شیمیایی متفاوت تبدیل می شود. این دو مایع به صورت دو شکل گنبد مانند در شکل نشان داده شده اند. خط تیره نشان دهنده ی خط تقریبی ناحیه ی امتزاج ناپذیری است. مشکلی که در اندازه گیری این خط وجود دارد. این است که این پدیده در دمای پایین رخ می دهد و از این رو سرعت آن پایین است . و از این رو اندازه گیری آن مشکل است. دراین وضعیت میل جدایش فازی بیشتر از میل به کریستالیزاسیون است . البته کریستالیزاسیون مساعد تر از جدایش فازی است اما به دلیل آنکه جدایش فازی نیازی به باز آرایی اتم ها ندارد، این پدیده رخ می دهد. به عنوان یک قانون کلی برای سیلیس باید گفت که امتزاج ناپذیری با افزودنشیشه ها (2) افزایش می یابد اما با افزودنشیشه ها (2) کم می شود. در شیشه های وایکور از قوانین جدایش فازی استفاده می شود. در فرآیند تولید شیشه وایکور، شیشه ای پدید می آید که دارایشیشه ها (2) و 4 درصد تخلخل است.این نوع شیشه به عنوان فیلتر وبیومواد مخصوصا در جاهایی که تخلخل مهم می باشد، استفاده می شود. در فرآیند تولید وایکور، شیشه ای تولید می شود که پس از فرآیند شکل دهی دنس می گردد و شیشه ای با سیلیس خالص پدید می آید که در دمای پایین تر نسبت به کوارتز خالص شکل دهی گشته است

شیشه ی آلومینیوم – ایتریمی

شیشه های آلومینیوم –ایتریایی (YA) دارای درصد آلومینایی در گسترده ی تقریبی 75.6- 59.8 هستند. با این درصد آلومینایک شیشه ی دو فازی تشکیل می شود که در آن یک فاز قطره مانند در فاز دیگر تشکیل شده است. این شیشه به طور خود بخودی به صورت شیشه ی آلومینیوم – ایتریمی یا مخلوطی ازشیشه ها (3) تبدیل می شود. درشیشه های YA پدیده ای به نام پلی مورفیزم (Polymorphism) رخ می دهد

شیشه ی رنگی

اگر چه در بیشتر کاربردهای شیشه نیاز است تا این ماده بی رنگ باشد اما در برخی از کاربردها نیاز است شیشه رنگی باشد. هنگامی که پنجره های یک کلیسا رنگی باشد، تأثیر پذیری ازمحیط بیشتر می شود . درشیشه ها معمولا بوسیله ی افزودن اکسیدهای انتقالی و یا اکسیدهای عناصر خاک های کمیاب (rave –eavth) به بچ ماده ی اولیه ی آنها، رنگی می شوند. جدول 1 لیستی از رنگ های تولیدی بوسیله ی مواد رنگی کننده ی شیشه هاست . زرد کم رنگ، نارنجی و رنگ های قرمز بوسیله ی فلزات گران بها درحالت کلوئیدی تولید می شود. طلا (Au) رنگ قرمز، یا قوتی تولید می کند. (البته این شیشه ها گران قیمت هستند). سولفید کادمیم (cds) محصولاتی با رنگ زرد تولید می کند. اما هنگامی که علاوه بر se ، cds نیز استفاده شود. محصولاتی با رنگ قرمز یا قوتی با شدت رنگ بالا تولید می شود.

شیشه ها (3)

شیشه بوسیله ی افزودن دوپانت ها (dopants) رنگرزی می شوند. در واقع با افزودن این دو پانت ها در شیشه عیوب نقطه ای پدید می آوریم. رنگ شیشه به نوع دو پانت و حالت اکسیداسیون آن بستگی دارد.
دو پانت ها می توانند اثر بی رنگ کننده (decdorizo) ، پوشش دهنده (mask) یا اصلاح کننده (modify) داشته باشند. ما می توانیم اثرات رنگی آهن را بوسیله ی افزایش cr خنثی کنیم؛ البته اگر درصدشیشه ها (3) زیاد باشد اضافی به صورتشیشه ها (3) خارج می شود. اگر این شیشه به روش دمیدن شکل دهی شود، این پلیت لت هایشیشه ها (3) منظم گشته و شیشه ای اپک به نام آونتورین کرومی (chromium aventurine) تولید می کنند. مس (cu) برای تولید شیشه ی آبی مصری (Egyptian Blue glass) استفاده می شود.
CO (کبالت ) دربرخی از شیشه های پالایش یافته ی تولید در قرن دوازدهم استفاده می شده است. البته Co در تولید لعاب های پرسلانی مورد استفاده در چین ( در دوره ی سلسله ی منیگ وتانگ) استفاده می شده است. کبالت مورد استفاده در این لعاب ها رنگ آبی کبالتی تولید می کند.
با افزودن Se به شیشه های دپ شده با Cds باعث پدید آمدن رنگ یاقوتی سلینومی (Selenium Ruby) می شود. جزئیات پدید آمده ازهر کدام از این رنگ ها به ترکیب شیمیایی و شرایط پخت شیشه بستگی دارد.
شرکت کورینگ (Cornig) میکرو بارکدهایی با شیشه دپ شده با خاکهای کم یاب تولید کرده است. خاکهای کم یاب دارای باندهای نشر کم پهنا هستند و از میان 13 عنصر خاکهای قلیایی که مورد آزمایش قرار گرفته ، تنها 4 عنصر (Tm,Ce,Tb و Dy) می توانند در برابر تابش UV برانگیخته شوند. و لذا می توان از آنها در شناسایی بوسیله ی UV استفاده کرد. این نوع بارکدها همچنین مشکلات تداخل با سایر بارکدها را نیز ندارد. از این بارکدها در کاربردهای بیولوژیکی استفاده می شود زیرا سمی نیستند.(البته بر چسب زنی با کوانتوم دات ها خطرات کمتری دارد) و می توان از آنها در کاربردهای ژنتیکی استفاده کرد. با استفاده از چند عنصر خاکی کمیاب می توان ترکیب رنگی بیشتر پدید آورد.
شیشه های رنگی خاص شامل موارد زیر می شود :

شیشه ی یاقوتی یا کرانبری ( Cranberry )
 

شیشه ی یاقوتی با افزودن Au به شیشه سربی با حضور Sn پدید می آید. شیشه ی کرانبری که اولین بار در سال 1685 گزارش شده است، یک نوع شیشه ی بی رنگ (معمولاً صورتی کم رنگ ) است. علت پدید آمدن این رنگ در صد کم طلای موجود در آن است . راز تولید شیشه قرمز رنگ برای قرن ها ی زیادی گم شده بود و در قرن هفدهم دوباره کشف شد.

شیشه ی اورانیومی یا وازلینی

محصولات اورانیومی هنگامی که در شیشه ی با سرب بالا استفاده شود، رنگ قرمز تیره تولید می کند. البته شیشه های اورانیومی دیگری نیز وجود دارد که با صطلاح به آنها شیشه های وازلینی (Vaseline glass) می گویند. این نوع شیشه ها دارای رنگ سبز هستند. مسأله ای که این نوع شیشه ها را خاص کرده است این است که این نوع شیشه ها هنگام تابش اشعه ی UV به آنها ، خاصیت فلئورسانس پیدا می کنند. از سال 1940 تنها اورانیوم تهی شده (uranium depleted) به عنوان دو پانت استفاده می شود. علت استفاده از این نوع دو پانت، فراوانی آن است. اما از 100 سال گذشته به بعد اورانیوم طبیعی (natural uranium) استفاده می شود.

شیشه ها (3)

شکل 1 مثالی از یک شیشه ی وازلینی است.

لیزر شیشه ای

عناصر خاکهای کم یاب (rave – earth elements) مانند Nd در تولید شیشه های لیزر و سایر وسایل اپتیکی کاربرد دارند. (شکل 2) . لیزر شیشه ای دپ شده با Nd (Nd-doped glass laser) مانند یک لیزر یاقوتی (ruby laser) کار می کند . اگر چه نوع شیشه ای دارای تفاوت هایی است . میله ی لیزر قطری بینشیشه ها (1) اینچ دارد و معمولا بوسیله ی یک لامپ حلزونی تخلیه می شود. علت استفاده از لامپ های حلزونی این است که طول غیر بار دار این نوع لامپ ها از لامپ های خطی طولانی تر است. لیزر شیشه ای دپ شده با Nd دارای بازدهی بیش از 2% است. این بازده 4 برابر بازده یک لیزر یاقوتی است. به دلیل آنکه رسانایی گرمایی شیشه پایین است بنابراین نیاز به زمان بیشتری برای خنک سازی است.

شیشه ها (3)

رسوبات در شیشه

وجود رسوبات در شیشه عموما اجتناب ناپذیر است. سوال این است که چه زمانی طول می کشد تا رسوبات تشکیل شود. (مخصوصا اگر جوانه زنی هموژن باشد). ما ممکن است عوامل هسته زا برای تسریع جوانه زنی به شیشه اضافه کنیم. جوانه زنی کریستال ها در شیشه از تئوری کلاسیک پیروی می کند. رسوبات تشکیل شده در شیشه می تواند موجب رنگی شدن شیشه شود.

شیشه به عنوان لعاب

لعاب ها مانند شیشه ها در همه جا دیده می شوند. لعاب کاری (glazing) استفاده از ویژگی های ویسکوز شیشه و تشکیل یک لایه ی یک پارچه و صاف بر روی یک زیر لایه ی سرامیکی است.
مینا کاری (enameling) تشکیل همان لایه بر روی یک زیر لایه ی فلزی است. چیزی که باید به آن توجه کرد این است که عموما لعاب ها قدمت زیادتری دارند. در ادامه به بیان برخی از اصطلاحات لعاب می پردازیم:

زیر لعاب ( underglaze )

هنگامی که یک بیسکوییت سرامیکی را می خواهیم مورد عملیات دکور قرار دهیم باید قبل از آن یک لعاب کاری بر روی آن انجام دهیم که این نوع لعاب را زیر لعاب گویند. این لایه به علت تشکیل بهتر دکور بر روی بدنه اعمال می شود. پس از آن که فرآیند دکوراسیون جسم سرامیکی انجام شود برروی آن یک لعاب دیگر اعمال می شود. البته این لعاب پیش از پخت دکور اعمال می شود.
عیب کراولینگ لعاب ( glaze craweling ) این عیب که در لعاب اتفاق می افتد بدین صورت است که لعاب از لایه ی سرامیکی زیرین جدا می گردد. این پدیده به دلیل عدم ترشوندگی بیسکوییت سرامیکی بالعاب در طی فرآیند پخت اتفاق می افتد.
لعاب ترک خورده ( crackle glaze )اگر انبساط گرماییشیشه ها (3) لعاب از سرامیک بستر بزرگ تر باشد، لعاب ممکن است در طی فرآیند سرد کردن (در طی پخت) بشکند. هنگامی که غلظت یون سدیم و پتاسیم در لعاب بیشتر باشد، ترک ها بیشتر پدید می آیند. هنگامی که سرعت سرد کردن بالا رود ترک های حاصل ریزتر می شوند.
لعابهای سلادون (celadon )، تنموکو (tenmoku)، راکو (raku) و کوپر ( copper) لعاب های ویژه ای هستند که در دنیای هنر سرامیک یافت می شوند.
لعاب های سلادوناین لعاب ها اولین بار در حدود 3500 سال پیش تولید شده اند. این لعاب ها دارای گستره ی رنگی از آبی کم رنگ تا سبز مایل به زرد هستند و می توانند رنگی کاملا تیره پدید آورند. رنگ تولیدی در این لعاب ها بوسیله ی آهن تولید می شود(3.o - o.5 در صدشیشه ها (3) به لعاب افزوده می شود). ظروف لعاب خورده توسط این نوع لعاب سپس در دمای تقریباًشیشه ها (3) پخت می گردند. ظروف تولید شده با این لعاب ها زیبایی خاصی داشته و در کاربردهای تزئینی استفاده می شوند. مثلا کوزه ی لعاب خورده با این لعاب که درکشور کره تولید شده است، درسال 1946 از سوی کشور کره به هاری ترومن رئیس جمهور آمریکا هدیه شد. امروزه این ظرف که 23cm ارتفاع دارد قیمتی برابر با 3 میلیون دلار دارد.
لعاب تنموکواین نوع لعاب در زمان سلسله ی سونگ (sung Dynasty) بوجود آمده است. و دارای رنگ قهوه ای تیره یا حتی سیاه است. برای ایجاد این رنگ میزان 8-5 درصد وزنیشیشه ها (3) به لعاب افزوده می شود. تشکیل مناسب این نوع لعاب به شرایط اکسایش – کاهش اتمسفر پخت بستگی دارد. و در شرایط مختلف اکسایش و کاهش رنگ های متنوعی پدید می آید. در لعاب های کوپرنیز از کربنات مس به عنوان منبع Cuاستفاده می شود. البته در طی فرآیند پختشیشه ها (3) تجزیه گشته و Cuoباقی می ماند. Cuo تولید نیز با مونواکسیدکربن (CO) موجود در کوره واکنش داده تا ذرات مس در لعاب تشکیل شوند. این ذرات رنگ قرمز به لعاب می دهند.
لعاب های راکولعاب های راکو اغلباً لعاب هایی فلزی به نظر می رسند. (اگر بوسیله ی یک لایه از فلز Ti پوشش داده شده باشند)
یک روش پیشرفته در تولید لعاب های راکو بدین صورت است که ظروف سرامیکی به شیوه ی معمولی پخت می شوند سپس آنها را در داخل یک محیط کاهنده مانند خاک اره وارد می کنند و سپس آنها را قبل از آنکه بتوانند اکسید شوند، به سرعت سرد می کنند. این نوع لعاب ها اغلبا حالت استثنا داشته و می توانند با زمان تغییر کنند. این مسئله ساده است. زیرا آنها در طی فرآیندهای بعدی تولید اکسید می شوند. این نوع لعاب بر خلاف سایر لعاب ها خنثی نبوده و تنها برای دکوراسیون استفاده می شوند.
لعاب های کریستالی ( crystalline glaze )این نوع لعاب ها ، لعاب هایی دکوراسیونی هستند اما به طور مستقیم با تکنولوژی تشکیل شیشه – سرامیک در ارتباطند. کریستال ها بوسیله ی سرد کردن آهسته لعاب ایجاد می شوند. این سرد کردن آهسته به کریستال های لعاب اجازه ی رشد کردن می دهند. رشد این کریستال ها مد نظر است؛ زیرا لعاب ضخامت کمی داشته و از این رو کریستال ها باید به صورت پلیت لت (platelets) در آیند. برای آنکه عمل رشد کریستال ها بهتر انجام شود از جوانه زاهای تیتانیایی استفاده می شود. این نوع جوانه زاها در لعاب های باویسکوزیته ی پایین استفاده می شوند و در آنهاشیشه ها (3) تشکیل می شود. ترکیب شیمیایی این نوع لعاب ها بسیار مهم است. در آن شیشه ها (3) وشیشه ها (3) به میزان کم و Pbo به میزان 10-8 درصد وزنی استفاده می شود. رشد کریستال با اضافه شدن fe به لعاب افزایش می یابد. اما این اضافه شدن می تواند همچنین موجب پدید آمدن اثراتی بر سایر دو پانت های اضافه شده به لعاب شود.
سفالگران امروزی ازشیشه ها (3) به عنوان اصلاح کننده و تولید کننده ی کریستال های ویلمایت (Crystals Willemite) استفاده می کنند. (ویلمایت یک مینرال کمیاب از روی است). این تکنیک نیازمند مهارت ویژه است. زیرا افزودن مقادیر زیادشیشه ها (3) به لعاب باعث می شود ویسکوزیته ی آن حتی در دماهای پایین نیز کم باشد، بنابراین این مسئله باعث می شود که لعاب از روی سطح سفالی جریان پیدا کند. رشد اسفرولیتی (Spherulite growth) از جوانه زا در لعاب در شکل 3 نشان داده شده است. هر اسفرولیت در واقع توده ای از کریستال های شعاعی است که با توجه به مرکز اسفرولیت دورهم گرد آمده اند.

شیشه ها (1)

لعاب های اپک ( opaque glazes ) اگر به لعاب مذاب کریستال هایی افزوده شود، لعاب می تواند اپک شود. برای این کار می توان ازO_2 S_n یا زیر کن استفاده کرد. که زیر کن ارزان تر است .شیشه ها (3) برای تولید رنگ سفید در لعاب های زیرکنی (Zircon glaze) استفاده می شود. برای اپک کردن کمتر ازشیشه ها (3) استفاده می شود زیرا کریستال های روتایل طلایی رنگ هستند. و بنابراین لعاب را به رنگ زرد در می آورند. ما همچنین می توانیم با تشکیل کریستال لعاب را اپک کنیم (مثلا ولاستونیت:شیشه ها (3). این کار بوسیله ی عملیات حرارتی مناسب، حبس کردن گاز (هوا یاشیشه ها (3) ) ) و یا بوسیله ی جدایش فازی مایع – مایع انجام می شود. لعاب های مات (Matt glazes) بوسیله ی تشکیل کریستال های بسیار کوچک در لعاب بوجود می آیند (مثلا کریستال های ولاستونیت برای لعاب های مات – آهکی و وبلیمایت (شیشه ها (3):Willemite ) برای لعاب های مات – زینک). کریستال های ریز ولاستونیت بوسیله ی افزودن کلسیت به لعاب پایه سیلیس تشکیل می شود. یک روش دیگر برای این کار افزودن مقادیر زیادی از ماده ی کریستالی به لعاب است تا در طی فرآیند پخت درصدی از آن به صورت کریستالی باقی بماند

رنگ در لعاب و لعاب موضوعاتی هستند که امروزه تحقیقات فراوانی بر روی آنها به عمل آورده شده است. امروزه رنگ های جدیدی بوسیله ی افزودن نانو ذرات در لعاب پدید می آید. عموما نانو ذرات نقره و طلا رنگ طلایی بوجود می آورند. و نانو ذرات مس رنگ قرمز بوجود می آورند. توضیح در مورد نحوه ی پدید آمدن رنگ در لعاب واقعاً پیچیده تر از نحوه ی پدید آمدن رنگ در شیشه هاست. زیرا لعاب بر روی یک لایه اعمال می شود و از این سو نباید ترانسپارنت باشد. همچنین لعاب یک لایه ی نازک است و در اتمسفر مختلف (کاهنده – اکسید کننده) بوجود می آید از این دو بررسی عوامل موثر بر تشکیل یک لعاب مشکل است.

لعاب های رنگی ( Colored glazes )

در لعاب های رنگی باید از پیگمنت های سرامیکی با پایداری مناسب بهره برد. از اکسیدهای رنگ زای ارزان قیمت می توان برای ایجاد رنگ در محصولات متنوع سفالی بهره برد. البته بسیاری از مواد رنگ زا برای لعاب همانهایی هستند که ما برای رنگرزی شیشه از آنها استفاده می کنیم
اکسید کبالت شیشه ها (4) یک اکسید سیاه رنگ است اما کمتر از یک درصد وزنی از آن در لعاب ایجاد رنگ آبی تیره می کند (اگر چه در بیشتر موارد از کربنات کبالت استفاده می شود).
به دلیل آنکه شیشه ها (4) در این گونه لعاب ها بوجود می آید، ویسکوزیته ی لعاب تغییر می کند.
اکسید کروم که تا 3-2% وزنی نیز می تواند به لعاب افزوده شود به جای رنگ سبز، رنگهای زرد، صورتی یا قهوه ای بوجود می آورد (رنگ قرمز در حضور سرب در ترکیب لعاب اولیه پدید می آید. اگر Zn در لعاب اولیه وجود داشته باشد، رنگ لعاب قهوه ای می شود مگر آنکه سرب ها هم وجود داشته باشد. که در صورت وجود سرب و روی در لعاب اولیه رنگ زرد پدید می آید).
شیشه ها (4)که به صورت کربنات به لعاب افزوده می شود، رنگ لعاب را به صورت قهوه ای در آورده البته این ماده می تواند رنگ قرمز، بنفش و حتی سیاه نیز تولید کند. که این تغییر رنگ به درصد سدیم موجود در لعاب اولیه بستگی دارد. افزودن Cuo به اندازه ی %2-1 وزنی به یک لعاب با سدیم بسیار کم سبب پدید آمدن رنگ فیروزه ای می شود. این درحالی است که افزودن بیش از 3% از این رنگ زا باعث پدید آمدن رنگ سبز یا آبی می شود. اگر درصد Cuo در لعاب افزایش یابد، لعاب ظاهری فلزی مانند مفرغ به خود می گیرد. اگر لعاب دارای 0.3– 2 درصد وزنی Cuo در اتمسفر کاهنده پخت شود، رنگ قرمز مسی پدید می آید. این رنگ به دلیل حضور ذرات کلوئیدی CU درلعاب بوجود می آید.
اگر یک لعاب رنگ زرد داشته باشد، این رنگ ممکن است بوسیله ی افزودن Cds یا Cdse بوجود آمده باشد. البته این نوع افزودنی های رنگ زا ممکن است رنگ های قرمز یا نارنجی را نیز پدید آورند. درصورت حضور سرب در این نوع لعاب ها ، Pds تشکیل می شود که باعث سیاه شدن لعاب می شود. زیرکن در صنعت برای کمک کردن به پایدار شدن این نوع رنگ ها (برپایه ی cd) استفاده می شود. درحقیقت شیشه ها (4) (زیر کن وانادیومی آبی رنگ) و شیشه ها (4)(pr,zr) (زیر کن پراسئودیومی زرد رنگ) مهم ترین تثبیت کننده های مورد استفاده در این رنگ هاست. هنگامی که اورانیوم به لعاب اضافه شود، به جای پدید آوردن رنگ زرد کم رنگ، رنگ قهوه ای تیره پدید می آید. (اورانیوم در شیشه های وازلینی تولید رنگ زرد کم رنگ می کند). البته بسته به ترکیب لعاب ، اورانیوم می تواند رنگ های قرمز یا نارنجی روشن نیز بدهد.

لعاب نمکی ( saltglaze )

دراین نوع فرآیند لعاب کاری سفال در کوره های با دمای بالا با نمک واکنش می دهد. در واقع سفالگر نمک را بر روی سفال اعمال می کند. این فرآیند هنگامی اتفاق می افتد که سفال در داخل کوره است. این فن بوسیله ی سفالگران ایرانی وانگلیسی در دهه ی 1700 ابداع گشته است. همچنین شما می توانید مثال های فراوانی از فرآیند رنگ آمیزی بوسیله ی اکسیدهای فلزی را در آلمان ببنید. در این نوع لعاب ها نمک با رس واکنش داده و تشکیل لایه ای شیشه ای بر روی سطح می دهد. این تکنیک دقیقاً فرآیند خوردگی خاک نسوز در دمای بالاست (بوسیله ی سود سوز آور).
واژه ی مینا (enamel) معمولا در هنگامی استفاده می شود که یک لایه ی لعابی بر روی فلز اعمال می شود. البته این واژه در هنگامی که یک لایه لعابی بر روی لعاب اولیه اعمال می شود نیز استفاده می شود. بازار مصرف مینا بسیار بزرگ است. این بازار از لوازم بهداشتی تا جواهر آلات گسترده است.

خوردگی شیشه و لعاب

این تصور وجود دارد که شیشه خنثی است اما باید بدانید که اسید سیتریک و اسید استیک موجود در غذاها و میوه ها می توانند بایون های موجود در شیشه واکنش دهند و ترکیبات کمپلکس پدید آورند. با خروج یون های قلیایی از داخل شیشه یون های هیدروژن مثبت جایگزین آنها می شود. هنگامی که بخواهیم استحکام سطح شیشه را افزایش دهیم باید یون های پتاسیم و سدیم مثبت را با لیتیم مثبت ( شیشه ها (4) ) جایگزین کنیم. در شیشه ی آلایش یافته (Stain glass) می توان یون نقره ی مثبت و مس را جایگزین شیشه ها (4) کرد.
همانند مواد کریستالی ، شیشه ها نیز دارای عیوب کریستالی اند. یکی از چالش هایی که ما با آنها روبرو هستیم محاسبه ی خواص بوجود آمده ازعیوب (مانند نفوذ) در شیشه هاست. زیرا در شیشه ها شبکه ی مرجع وجود ندارد.

انواع شیشه های سرامیکی

همه ی شیشه ها براساس تتراهدرال های سیلیسی ایجاد نمی شوند؛ واحدهای ساختاری این شیشه ها در جدول 1 آورده شده است. برخی از ترکیبات این شیشه ها نیز در جدول 2 آورده شده است.

شیشه ها (4)

شیشه ها (4)

شیشه ی سیلیکاتی ( سودالایم )

این شیشه ها بر پایه ی شیشه ها (4) هستند. (معمولا این نوع شیشه ها علاوه بر این مواد دارای شیشه ها (4) نیز هستند.) این نوع شیشه نستبا ارزان هستند و دارای دوام خوبی نیز هستند همچنین از این نوع شیشه به طور فراوان در صنعت بسته بندی و ساختمان استفاده می شود. ضریب انبساط حرارتی شیشه ها (4) این نوع شیشه ها ناچیز نیست. همچنین این نوع از شیشه ها عایق های خوبی نیستند. استفاده های عمده از این نوع شیشه در صفحات شیشه ای ،بطری ها ، وسایل غذا خوری و صنعت الکترونیک (حباب لامپ) است. شیشه های آلومینو سیلیکاتی قلیایی (شیشه ها (4)= عنصر قلیایی) دارای ضریب انبساط حرارتی پایینی است. این نوع شیشه دارای دوام و خواص عایق کاری بهتری است. وهمچنین نسبت به سایر شیشه های هم گروه استحکام بالاتری دارد. استفاده های این نوع شیشه عبارتست از تیوپ های اختراق، حباب های لامپ هالوژن و به عنوان بسترهای صنعت الکترونیک کاربرد دارد.

شیشه ی سربی

ترکیب عمومی این شیشه ها سیلیکات های قلیایی سربی استشیشه ها (4). در این نوع شیشه ها Pbo به جای CaO در شیشه ی سودالایمی قرار گرفته است. این نوع شیشه دارای مقاومت بالایی است. همچنین ضریب انبساط حرارتی آن بالاست. و دمای نرم شوندگی پایینی دارد. دلیل آنکه از این نوع شیشه ها در تولید ظروف کریستال استفاده می شود این است که ضریب شکست این نوع شیشه بالاست و علاوه بر این که از این شیشه ها در ظروف تزئینی استفاده می شود، از آنها در ساخت تیوپ های لامپ، لامپ تصویر تلویزیون و تیوپ های ترمومترها استفاده می شود. در ظروف کریستال انگلیسی که به صورت سنتی تولید می شوند، میزان Pbo حداقل 30% است. برطبق رهنمود اتحادیه ی اروپا میزان Pbo باید بیش از 24 درصد باشد. همچنین بر طبق استاندارد اروپا شیشه های کریستال سربی باز یافت نمی شوند. شیشه های سربی که برای ساخت حفاظ های تابشی استفاده می شوند ممکن است دارای بیش از 65% Pbo باشند. کاربرد این گونه شیشه ها در لامپ تصویر تلویزیون است اگر چه شیشه های باریمی برای ساخت صفحه و تابلوهای تلویزیون استفاده می شود. (تفنگ الکترونی تلویزیون اشعه ی x ساتع می کند که این نوع شیشه باید این تابش ها را جذب کند.)شیشه های سرب – بوراتی می توانند به عنوان لحیم های شیشه ای استفاده شوند. این نوع شیشه ها دارای در صد کمیشیشه ها (4) است و کاملا خنثی است.
شیشه های فیلنیتی (flint glass) دارای تفرق بالایی است. در واقع این نوع شیشه ها از نوع شیشه های سیلیکاتی قلیایی ـ سربی است که از ذوب سنگ های فیلنیتی ساخته شده اند(فیلنیت فرم خالص سیلیس است) .لازم به توضیح است که این نوع سنگ کلسینه شده و به طور فراوان در ساخت بدنه های سرامیکی استفاده می شود.

شیشه ی بورانی ( شیشه ی بورو سیلیکاتی )

شیشه های بوروسیلیکاتی قلیاییشیشه ها (4) به خاطر ضریب انبساط حرارتیشیشه ها (4) کوچکشان ویژه هستند. این نوع شیشه دوام بالایی داشته و خواص الکتریکی مفیدی دارند. پیرکس (Pyrex) که یک نوع ماده در تولید وسایل پخت و پز است . از جنس بروسیلیکات است .شیشه ی بروسیلیکاتی به طور وسیع در فرآیندهای شیمیایی استفاده می شود. برخی از شیشه های براتی دارای دمای ذوب پایینیشیشه ها (4) هستند از این رو آنها را می توان به همراه سایر شیشه ها استفاده کرد. شیشه ی بروسیلیکاتی – زنیکی به شیشه های منفعل شهرت دارند. این شیشه ها مواد قلیایی ندارند و از این رو از آنها می توان در ساخت اجزای الکترونیکی سیلیسیمی استفاده کرد.

سیلیس فیوزد

این نوع شیشه از نوع سیلیس خالص است. این شیشه ها ، شیشه های سیلیکاتی برای کاربردهای دما بالا هستند. ضریب انبساط حرارتی این نوع شیشه ها نزدیک به صفر است. این نوع شیشه ها برای تولید آینه های تلسکوپ و زیر لایه ها (Substrates) استفاده می شود. به خاطر داشتن ضریب انبساط حرارتی نزدیک به صفر به این شیشه ها ، شیشه های با انبساط حرارتی بسیار پایین (VLE Silica) می گویند .
شیشه های VLE دارای 7 درصد وزنیشیشه ها (4) برای تولید لفافه های لیتوگرافی نوری (masks photolithography) استفاده می شود. البته به خاطر دمای بالای فرآیند شکل دهی این شیشه ها ؛ می توان به جای آنها از شیشه های وایکور استفاده کرد.

شیشه ی فسفاتی ( phosphate – glass )
 

شیشه های فسفاتی شیشه های مهمی هستند زیرا این نوع شیشه ها خاصیت نیمه رسانایی دارند. یکی از کاربرد این مواد در ساخت تقویت کننده های الکترون (electron multipliers) است . در این نوع وسایل با استفاده از دپ کردن Er (افزودنشیشه ها (4) ) ، این تقویت کننده ها ساخته می شود. کایتون های موجود در این نوع شیشه ها معمولا V و P هستند اما لابراتوار ملی او آ ک ریچ (Oak Ridge National labroatory) یک نوع شیشه ی فسفاتی اندیوم – سربی تولید کرده است که دارای ضریب شکست بالایی است. از ویژگی های دیگر این شیشه می توان به دمای ذوب پایین و خاصیت ترانسپارنتی در برابر گسترده ی وسیعی از طول موج ها را نام برد. به دلیل آنکه این نوع شیشه می تواند درصد بالایی از عناصر خاکهای کم یاب را در خود حل کنند، از آنها در تولید وسایل نوری اکتیو مانند آمپلی فایرهای فیبر اپتیک و لیزرها استفاده می شود. شیشه های فسفاتی دپ شده با Nd در لیزرهای حالت جامد استفاده می شوند. ترکیب شیمیایی نمونه وار از این نوع شیشه عبارتست ازشیشه ها (4) است. که در صد Nd بین O.2-2.O درصد مولی است.

شیشه ی چالکوژیندی ( Chalcogenide glass )

این نوع شیشه براساس Se,As و Te بوجود می آید. این شیشه ها نور فرو سرخ را از خود عبور می دهند و نیمه رسانا های غیر اکسیدی هستند. از این نوع شیشه در وسایل و لنزهای الکترونیکی ویژه استفاده می شود. در این وسایل هنگامی که ولتاژ اعمالی به آنها از میزان بحرانی فراتر رود، به طور ناگهانی تغییر رسانایی رخ می دهد. کاربرد این نوع شیشه ها بسیار خاص است زیرا این شیشه ها دوام پایینی داشته و دمای نرم شوندگی شان پایین است.

شیشه ی فلورایدی ( fluoride glass )

عموماً شیشه های هالیدی بر پایه یشیشه ها (4) را شیشه های فلورایدی می گویند. کاربرد این نوع شیشه ها در وسایل همسو کننده نوری (optical waveguides) است. و درجاهایی که قیمت توجیه پذیر باشد استفاده می شوند.

شیشه ی طبیعی

این مسئله که شیشه در طبیعت بوجود می آید حتی این پدیده یک امر نسبتاً معمولی است، باعث شگفتی بسیاری از مردم می شود. تکتیت ها (tektites) درهنگام برخورد شهاب سنگ ها به زمین و در دهانه ی حاصله از برخورد شهاب سنگ پدید می آیند. مولد اویت (Moldavite) نیز یک شیشه ی سبز رنگ است که در مولداوی (Moldavia) یافت می شود . فولگلاریت (fulgarite) نیز تیوپ های شکننده از شیشه هستند که در هنگام برخورد برق آسمان به خاکهای ماسه ای پدید می آید. ابسیدیان (obsidian) نیز یک نوع شیشه است که در جریان های آتش فشانی تشکیل می شود. رنگ سیاه رنگ این نوع شیشه به خاطر ناخالصی پدید می آید. در طی دوره ی پارینه سنگی از ابسیدیان در ساخت وسایل استفاده می شده است. سنگ پا (Pamice) یکی دیگر از شیشه هایی است که از فوران های آتش فشانی تشکیل می شود. این ماده می تواند تخلخل های فراوانی داشته باشد. (درصورتی که ماده ی اولیه ی تشکیل دهنده ی آن دارای مواد گازی فراوانی باشد). سنگ پا شکل متخلخل ابسیدیان است

شیشه ها

مقدمه:

دراین مقاله ها در مورد انواع مختلف شیشه و برخی از کاربردهای آنها صحبت می کنیم.
شیشه ها یکی از انواع مهم موادمهندسی محسوب می شوند. این مواد در پنجره ها، ساخت بطری، لیزرها، الیاف نوری، عایق ها، لعاب کاری (glazing) ومینا کاری (enamelihg)، چاقوی جراحی، وسایل هنری وتابلوهای راهنمایی - رانندگی استفاده می شوند.
شیشه ها معمولا بازیافت می شوند واز این رو دوستدار محیط زیست هستند.مصریان آثار شیشه ای متنوعی بر جای گذاشته اند ولی آنها اولین کسانی نبودند که از این ماده استفاده می کردند.در دوران های دیرینه سنگی (paleolithic Times) شیشه های اولیه و شیشه های طبیعی (Obsidian: نوعی شیشه ی مصنوعی بدست آمده از آتش فشان ها ) بسیاراهمیت داشتند به خاطر اهمیت زیاد این ماده می توان گفت که شیشه نقش مهمی در شکل دهی تمدن ما داشته است.
به هر حال تعریفات مختلفی برای شیشه ها بیان شده است. دراین مقاله سعی می کنیم بگوییم چرا واژه های شیشه ای (glassy)، زجاجی (Vitreous) و آمورف (amor phous) همگی برای توصیف شیشه استفاده می شوند. همچنین سعی داریم جواب این سوال را بدهیم که: «شیشه چیست؟»
هنگام مطالعه ی این مقاله باید دو ذهنیت را داشته باشید:
1) ادعای Sturkey:"شیشه در دماهای بالا یک محلول شیمیایی است."
2) اگر شیشه که مایع فوق سرد شده است، پس جامد نیست وبنابراین یک ماده ی سرامیکی نیست (اما شیشه یک ماده ی سرامیکی است)

تعریف

تعریف کلاسیک شیشه براساس روش تاریخی تشکیل آن انجام شده است. البته این روش تعریف یک روش بسیار غیر معقولی برای تعریف هر ماده است. این مسئله باعث شده است تا امروز شیشه به چندین روش مختلف تعریف شود:
تعریف کلاسیک: شیشه یک مایع فوق سرد شده است(Supercooled liquid) مشکل بوجود آمده دراین تعریف این است که در برخی موارد می توان یک شیشه ی ویژه را به روشی تولید کرد که هیچگاه درحالت مایع قرار نداشته باشد.
ASTM شیشه را به صورت زیر تعریف کرده است:
"شیشه یک محصول غیر آلی از ترکیبی مذاب است که بدون آنکه کریستالی شود، سرد وصلب می گردد."
این تعریف نیز همان چیزی است که در تعریف کلاسیک آمده است. اما دراین تعریف شیشه ی پلیمری استثناء شده است. به وضوح مشخص است که استناد کردن به روش تولید برای تعریف یک گروه از مواد ایده آل و مناسب نمی باشد.

تعاریف دیگر :

1)" شیشه یک ماده ی جامد است که نظم دوربعد از خود نشان نمی دهد."
نداشتن نظم دوربعد یعنی ساختار شیشه درفواصل یک، دو یا سه برابر فاصله ی اجزای سازنده، دارای نظم نیست. این تعریف براساس مشاهدات حاصله از تفرق اشعه X، میکروسکوپ الکترونی عبوری (TEM) و... استوار است اما این تعریف نیز کمی قراردادی است زیرا به اندازه ی اجزاء تشکیل دهنده بستگی دارد.
2)" شیشه یک مایع است که قابلیت جاری شدن خود را از دست داده است."
این تعریف استوار است اما از تعریفی که بوسیله ی ASTM ارائه شده است فراگیرتر است .همچنین این تعریف از خاصیت مکانیکی برای تعریف شیشه استفاده می کند. درحقیقت این تعریف عملاً با دیدگاه فیزیک مدرن درباره ی شیشه مطابقت دارد.
اکثر شیشه هایی که ما در مورد آنها توضیح می دهیم، شیشه های با شبکه ی اکسیدی است . (مخصوصاً سیلیکات ها) تعریف ما از چنین شیشه هایی عبارتست از:
تجمعی جامد از تتراگونال هایی است که می توانند رئوس خود را به اشتراک گذاشته و البته این مواد نظم دور بعد ندارند.
دراین مقاله ما تنها درمورد شیشه های سرامیکی بحث می کنیم اما باید بدانیم که علاوه بر شیشه های سرامیکی، شیشه های فلزی و پلیمری نیز وجود دارد. شیشه های فلزی ترکیبات پیچیده ای هستند که در آنها عمل کریستالیزاسیون انجام نشده است. این مسئله بوسیله ی سریع سرد کردن فلز مذاب بوجود می آید.(این فرآیند اسپلات کوئنچینگ نامیده می شود). درادامه به بیان ویژگی شیشه ها می پردازیم:

ساختار

شیشه ها در اصل جامد های غیر کریستالی (یا آمورفی) هستند که در اغلب موارد از فریز شدن یک مایع فوق سرد شده بدست می آیند. دراین موارد نظم دور برد در آرایش اتمی وجود ندارد. البته نظم کوتاه برد (زیر 1nm) وجود دارد. این مواد دارای آرایش منظمی از سلولهای واحد نیستند.همانگونه که گفتیم شواهدی وجود دارد که ثابت می کند در شیشه ها نظم کوتاه برد وجود دارد.این نظم کوتاه برد به دلیل آرایش اتمی درمجاورت هر اتم (البته در فاصله ی کوتاه) بدست می آید. تلاش های فراوانی برای توصیف شیشه ها انجام شده است. که به بیان علت تشکیل شدن یا نشدن شیشه ها بحث می کند. دراین زمینه ما ازدو دیدگاه به شیشه ها نگاه می کنیم:
1) توجه به ساختار
2) توجه به مباحث کنیتیکی کریستالیزاسیون
درمورد اول ما به بیان هندسه ی اجزای تشکیل دهنده ی شیشه ها می پردازیم. همچنین دراین زمینه به بیان پیوندهای بین اتمی واستحکام پیوندها می پردازیم . درمورد دوم ما به بیان چگونگی دگرگونی های مایع به جامد در طی فرآیند سرد شدن می پردازیم.
دمای تبدیل شدن شیشه ای ( Tg )
درشکل 1 نموداری نشان داده شده است که در آن حجم ویژه به عنوان تابعی از دما رسم شده است.

شیشه ها (1)

این دیاگرام فرمی از دیاگرام استعاله ی دما – زمان (T.T.T) برای شیشه است. درهنگام سرد شدن مایع از دمای بالا دو پدید ه ممکن است در نقطه ی انجماد (Tm) اتفاق می افتد که عبارتند از :
1) اگر مایع کریستالیزه شود تغییرات حجم و سرعت سرد کردن گسسته است.
2) اگر کریستالیزاسیون اتفاق نیفتد، مایع به حالت فوق سرد شده تبدیل می شود و حجم در نزدیک دمای ذوب کاهش می یابد.
دردمای تبدیل شدن شیشه ای (Tg)، شیب نمودار کاهش می یابد و به شیب جامد کریستالی نزدیک می شود. این شکستگی بوجود آمده در نمودار سرد کردن نشان دهنده ی گذرگاه مایع فوق سرد شده به شیشه است. زیر دمای Tgساختار شیشه درحالت آسایش نیست زیرا این مواد اکنون جامد هستند. دراین ناحیه از Tg ویسکوزیته تقریبا شیشه ها (1) است. ضریب انبساط حالت شیشه ای معمولا نزدیک به ضریب انبساط جامد کریستالی است. اگر از سرعت های سرد کردن پایین تر استفاده شود، میزان آسایش ساختار افزایش می یابد. ومایع فوق سرد شده در دمای پایین تر تشکیل می شود. و شیشه ی حاصله ممکن است دانسیته ی بالاتری بدست آورند. (همانگونه که در شکل 1 دیده می شود)
فیزیک شیشه جنبه ی تردی آن را مورد بررسی قرار می دهد. در واقع این ویژگی یک ویژگی مایعات شیشه ساز در بالای دمای Tgاست واندزه ای از استعکام پیوندهای بین اتمی است. در ادامه ما درمورد شیشه ی نامحلول در آب یا بطری های شیشه ای آب صحبت می کنیم. البته چیزی که آگاهی کمتری از آن است این است که ما می توانیم آب را با سریع سرد کردن در اتاق مایع به حالت شیشه ای در آوریم. ماده ی حاصله یک شیشه ترد است اما این مسئله فهمیده شده است که بیشتر آب موجود در جهان به همین شکل وجود دارد.
تاریخچه
شیشه ماده ای است که پیوندی عمیق با تاریخچه ی انسان دارد. یکی از شواهد این مسئله استفاده از ابسیدیان (obsidian) یک شیشه ی طبیعی توسط بشر است. هیچ کس نمی داند که اولین جسم شیشه ای در چه زمانی ساخته شده است. قدیمی ترین یافته ها به 7000 سال پیش از میلاد برمی گردد. (البته ممکن است یافته هایی پیش از این تاریخ نیز وجود داشته باشد). درکاوش های باستان شناسی در بین النهرین روش های تولید شیشه کشف شده است . این کارها 4500 سال پیش از میلاد مسیح بوده است ومربوط به روش های تولید وسایل شیشه ای بوده است نه لعاب های مورد استفاده در وسایل سفالی. استفاده از شیشه در لعاب کاری سفال حتی به دوران های پیشین می رسد.

شیشه ها (1)

تقریبا در 3000 سال پیش از میلاد مسیح شیشه گران مصری شروع به تولید جواهر آلات شیشه ای و ظروف شیشه ای کوچک کردند. شیشه هم به عنوان یک جسم دکوری وهم به عنوان یک وسیله ی مورد استفاده در زندگی روزمره به شمار می آمد. قطعاتی از جواهر آلات شیشه ای در کاوش های اطراف کوه های مصر پیدا شده است. مثالی از این جواهرآلات شیشه ی فیزوزه ای آبی است که در شکل 2 دیده می شود. تقر یبا 1500 سال پیش از میلاد مسیح شیشه گران مصری ( در دوره ی touthmosis سوم ) روشی برای تولید قطعات تو خالی قابل استفاده، توسعه دادند. یک مثال قابل توجه از این نوع ساختار یک شیشه ی توخالی است که شبیه به سرماهی است (شکل 3) این ظرف بین سال های 1352 و 1336 قبل از میلاد ساخته شده است واین نظریه وجود دارد که برای نگه داری روغن خوش بو استفاده می شده است.

شیشه ها (1)

الگوی موجی این ظرف بسیار خاص است. در واقع این ظرف بوسیله ی کشیده شدن یک جسم تیز به شیشه ی خمیری شده تولید شده است.
نویسنده ی رومیPliny Fhe Elder (23-79 میلادی) اختراع شیشه را به صورت زیر توصیف می کند:
روزی یک کشتی که متعلق به چند تاجر نیتروم (Nitrum) بود در کنار ساحل لبنان کنونی توقف می کند. هنگام پخت غذا به دلیل نبود سنگ در ساحل، خدمه کشتی از کلوخ های نیترومی که در کشتی وجود داشته است. استفاده می کنند تا بتوانند دیگ غذا را در مکان مناسب استقرار دهند. پس از آنکه آتش روش شد، کلوخه ها با ماسه های ساحلی واکنش داده و تشکیل شیشه ی مذاب می دهد. این اولین منشع پدید آمدن شیشه است.
نیتروم (Nitrum) یک نوع سدیم کربنات (Soda) طبیعی است .این ماده یکی از اجزای مهم در شیشه های قدیمی و مدرن است. خاکستر گیاهان نیز یک منبع فقیر از سدیم برای شیشه گران فراهم می کند. گیاهان علف شوره (Saltwort) و رازیانه ی آبی (glass wort) از جمله گیاهانی هستند که برای مهیا شدن سدیم از آنها استفاده می شده است.
یکی از معمولی ترین روش ها برای شکل دهی شیشه روش دمش هوا است. اگر چه این تکنیک بیش از دوهزار سال پیش توسعه یافت، لوله های تولیدی به روش دمش در طی زمان تغییری نکرده است. توسعه ی عمده که دراین زمینه انجام شده است، روش دمش اتوماتیک است که برای تولید شیشه های بطری و حباب های لامپ استفاده می شود. دراین روش به قطعه ای شیشه در داخل قالب هوا دمیده می شود. و بدین شکل شیشه به شکل قالب در می آید. مهمترین مرحله ی رشد در تاریخ شیشه سازی مخصوصا درطی قرن بیستم مربوط به توسعه های اتفاق افتاده در زمینه ی تکنولوژی های تولید می باشد. این توسعه ها منجر به کاهش هزینه ی تولید محصولات شیشه ای می شود

در ادامه به بیان خواص شیشه ها می پردازیم:

ویسکوزیته ( η )

ویسکوزیته یک ویژگی کلیدی شیشه هاست.ما نیاز داریم تا درمورد ویسکوزیته ی شیشه در دماهای مختلف اطلاع داشته باشیم. و بتوانیم دمای مورد نیاز برا ی شکل دهی وآنیلینگ آن را تشخیص دهیم. ویسکوزیته یک ویژگی مکانیکی است. فرمول ویسکوزیتد به صورت زیر است:

شیشه ها (2)

دراین فرمول:
η : ویسکوزیته، F: نیروی مورد نیاز برای کشیدن یکی از صفحات موازی که در میان آنها مایع مورد نظر قرار دارد: ،d: فاصله ی صفحات، A: مساحت صفحات، V: سرعت حرکت صفحه. ویسکوزیته در واقع پاسخ یک مایع دربرابر تنش برشی است. مایعات دارای ویسکوزیته ای هستند که با واحد سانتی پوآز (CP) اندازه گیری می شود. واحد اندازه گیری ویسکوزیته ی گازها میکروپوآز(mp) است.

شیشه ها (2)

جدول 1 لیستی از اعداد ویسکوزیته ای است که برای فرآیندهای شیشه سازی مهم هستند. اعداد داده شده در جدول 2 نیز برای تعریف ویژگی های برجسته ی شیشه (با تأکید بر روی فرآیند) آورده شده است. بسیاری از اعداد آورده شده درجدول ویسکوزیته ها استاندارد هستند مثلا (2003) ASTMC338-93 یک روش تست استاندارد است که نقطه نرم شدگی شیشه بوسیله ی آن تعیین می شود.
محاسبه ی نقطه ی نرم شدگی شیشه بوسیله ی اندازه گیری دمایی که در آن یک فیبر شیشه ای استوانه ای با قطر شیشه ها (2) طول بوسیله ی وزن خودش تغییر طول می دهد. نرخ تغییر طول یک میلی متر بردقیقه است . در این روش 100 میلی متر از بخش بالایی فیبر بوسیله ی کوره ی خاصی با سرعت گرم شدنشیشه ها (2) گرم می شود.

شیشه ها (2)

ویسکوزیته ی برخی ازمایعات عمومی در جدول 2 آورده شده است. توجه کنید که در دمای کارپذیری شیشه ویسکوزیته ای شبیه به عسل در دمای اتاق دارد. به طور نمونه برای یک شیشه ی سیلیکاتی سودالایم این ویسکوزیته در دمایشیشه ها (2) بدست می آید. این جدول همچنین نشان می دهد که یک جامد دارای ویسکوزیته ای بیش ازشیشه ها (2) دسی پو آز است. ویسکوزیته ی به طور نمایی با تغییر دما ، تغییر می کند ( همانگونه که در شکل 1 برای انواع شیشه ی سیلیکاتی دیده می شود.) دمای فیکتیو (fictive temperature) دمایی است که در آن ساختار مایع به حالت شیشه ای تبدیل می شود. این دما بوسیله ی تقاطع منحنی های برونیابی شده در حالت دما بالا و دما پایین در نمودار ویسکوزیته – دما بدست می آید. دمای فیکتیو (Tf) مانند Tg به تبدیلات ساختاری شیشه بستگی دارد. البته Tg اندکی کمتر از Tf است.

شیشه ها (2)

شکل 2 وابستگی ویسکوزیته به دما را برای اکسیدهای شیشه ساز نشان می دهد. شما باید توجه کنید که بوسیله ی شیب این خطوط می توان انرژی اکتیواسیون جریان ویسکوز (EV) را بدست آوریم.

شیشه ها (2)

جدول 3 اعداد ویسکوزیته وسرعت های کریستالیزاسیون (v) برخی شیشه ها را نشان می دهد. سرعت کریستالیزاسیون مربوط می شود به سرعت تبادل مایع/جامد. V بسیار کم بیان کننده ی قابلیت شیشه سازی استثنایی ماده است.البته کریستالیزاسیون مذاب جامد شده ی سیلیس بسیار مشکل است.

شیشه ها (2)

روش های متعددی برای اندازه گیری ویسکوزیته وجود دارد. این روش ها با توجه به میزان ویسکوزیته انتخاب می شود.

شیشه ها (2)

شماتیک دو روش اول اندازه گیری ویسکوزیته در شکل 3 نشان داده شده است:

شیشه ها (2)

شیشه ( خلاصه ای از خواص )
 

شیشه ماده ای خنثی است. این مسئله به محیط بستگی دارد. اگر شیشه یک ماده ی سیلیکاتی باشد، این مسئله درست است . البته همه ی شیشه ها خنثی نیستند. مثلا بیوگلاس (bioglass)
شیشه یک ماده ی هموژن است. این مسئله نیز به نحوه ی شکل دهی و ترکیب شیمیایی شیشه بستگی دارد. ما می توانیم با استفاده از فرآیندهای خاص شیشه را به صورت غیر هموژن در آوریم.
شیشه می تواند تغییر شکل دهد. این مسئله عموماً درست می باشد و دلیلی است برای قابلیت بازیافت شیشه ها. برخی از شیشه ها به نحوه ای ساخته می شوند که بوسیله ی نور، انتشار نور در داخل آن وتابش نور و...تغییر ماهیت می دهد.
شیشه دارای ضریب انبساط کوچک است. البته همه ی شیشه ها مناسب استفاده شدن در کاربردهای حرارتی مانند ظروف پیرکس نیستند.
شیشه ها شفاف اند (trans Parent) این خاصیت برای الیاف نوری ضروری است. البته ما می توانیم با انجام عملیات های خاص شیشه به صورت اپک یا مات در آوریم.
بسیاری از شیشه های اولیه شفافیت کامل نداشتند زیرا در ساختار آنها ناخالصی وحباب هوا وجود داشت.
شیشه ارزان است. البته این مسئله برای شیشه های پنجره صحیح است. اما درمورد فیلم های نازک شیشه ای این مسئله صحیح نمی باشد. برخی از شیشه های قرمز رنگ بوسیله ی دپینگ (doping) طلا در آنها تولید می شود. که قیمت برخی از ظروف تولیدی از آن به پیش از 50 دلار می رسد.
شیشه یک ماده ی بالک است مگر در حالتی که آن را به صورت یک فیلم نازک ، یک فیلم انیتر گرانولار (IGF) یا یک سرامیک کریستالی رشد دهیم.

برخی از خواص مکانیکی شیشه

استحکام تئوریک شیشه ی سیلیکاتی درحدود 10GPa است. البته با حضور عیوب سطحی (ترک ها وجوانه ها ) این استحکام کاهش می یابد. شیشه ها موادی الاستیک هستند اما تحت کشش می شکنند. می توان استحکام این مواد را بوسیله ی ایجاد لایه های سطحی فشرده و یا بوسیله ی از بین بردن ترک های سطحی (با اسید شوئی یا پدید آوردن پوشش محافظ) افزایش داد. مثالی از این روش ها پدید آوردن ترک های اضافی در ساختار قطعات شیشه ای تزئینی به منظور بهبود خواص مکانیکی آنهاست. در این روش از سرد کردن شیشه ی مذاب در آب جهت ایجاد تنش های اضافه بهره برده می شود . در این حالت سطح قطعه ی شیشه ای مذاب زودتر از مرکز آن سرد می شود و بنابراین تنش های اضافی پدید می آید. قطعات جامد شده به این شیوه را می توان با چکش و بدون اینکه بشکنند چکش کاری کرد.

برخی از ویژگی های الکتریکی شیشه

شیشه معمولا دارای مقاومت الکتریکی بالایی است. که علت آن تفاوت زیاد میان باندهای انرژی (گپ بزرگ) در این ماده است. در مواردی که شیشه رساناست . بار بوسیله ی یون ها منتقل می شود.(در این مورد یون های قلیایی مانندشیشه ها (2) دارای سرعت انتقال بار بالایی هستند). در واقع به همین دلیل است که با افزایش دما رسانایی به شدت افزایش می یابد. رسانایی درشیشه های مختلف، متفاوت است.علت آن متفاوت بودن نوع شبکه ی این شیشه هاست. در شیشه هایی که دارای بیش از یک یون قلیایی هستند. پدیده ی جالبی رخ می دهد. رسانایی تولیدی در این نوع شیشه ها به طور مشخصی از شیشه های دارای یک یون کمتر است. این نوع شیشه ها در کاربردهای مختلف مانند لامپ های با توان بالا استفاده می شوند. ثابت دی الکتریک شیشه واقعاً بالاست اما نه به حدی که بتوان از آن در کاربردهای حافظه ای پیشرفته مانند حافظه ی با دستیابی دینامیک و رندوم (DRAMS) استفاده کرد. ظرفیت الکتریکی یک ماده میزان بار ذخیره شده در داخل ماده است. این خاصیت به ضخامت دی الکتریک بستگی دارد. همانطور که ضخامت دی الکتریک کمتر می شود، ظرفیت الکتریکی افزایش می یابد. اما کم کردن ضخامت نیز مشکلاتی به همراه دارد. مثلا با کاهش ضخامت احتمال شکست دی الکتریک بیشتر می شود. شیشه ی سیلیسی دارای مقاومت دی الکتریک بالاتری نسبت به سایر شیشه هاست. اما مقاومت این دی الکتریک نیز در حد دی الکتریک های پلیمری مانند رزین فنولیک نیست.

برخی از خواص اپتیکی شیشه

شفافیت دربرابر نور فرا بنفش ، مرئی و فرو سرخ به چندین فاکتور بستگی دارد. یکی از این فاکتورها طول موج تفرق است که بوسیله ی ناخالصی ها تغییر می کند. لبه ی فرو سرخ (IRedge) و لبه ی فرا بنفش ((uv edge اعدادی هستند که نشان دهنده ی فرکانس قطع شدن عبور این موج ها هستند. یک مانع لبه UV edge blocker)UV) از عبور UV جلوگیری می کند و این در حالی است که یک عبور دهنده ی لبه یUV (UV edge tran Smitter) اجازه ی عبور نور UV را می دهد.

عیوب در شیشه ها

اگر چه شیشه یک ماده ی آمورف است ولی مانند مواد کریستالی دارای عیوب و رسوبات است. و همچنین دچار جدایش فاز می شود. شیشه را می توان برای حبس کردن عناصر رادیو اکتیو استفاده کرد .در این عناصر مانند عیوب نقطه ای یا فاز ثانویه تشکیل می شوند. همچنین سرعت نفوذ این عناصر از میان شیشه بر روی میزان آن ها در شیشه تأثیر دارند. این مسئله استفاده می شود تا بتوان مواد رادیو اکتیو یا سایر مواد را کنترل کرد.

شیشه ی غیر هموژن

به دلیل آنکه شیشه یک مایع فوق سرد شده است. نمی توان گفت که این ماده حتما باید هموژن باشد. شیشه های خاص می توانند بدون نیاز به فرآیند کریستالیزاسیون به دو فاز تبدیل شوند. هنگامی که این دو فاز شیشه ای باشند این مسأله باعث می شود که سدی در برابر جدایش فازی پدید نیاید. در مورد فرآیند جدایش فازی مایع – مایع ممکن است مرحله ای برای جوانه زنی وجود داشته باشد. البته در این نوع تبدیلات ممکن است استعاله ی اسپینودال (Spinodal) نیز رخ می دهد. که هر دوی این استعاله ها به نفوذ وابسته اند.
قوانین امتزاج ناپذیری در شیشه ها بسیار مهم است. این مسئله مخصوصاً در شیشه های تولید شده با تکنولوژی روز نمود دارد. برای مثال امتزاج ناپذیری در شکل دهی شیشه – سرامیک ها ، تولید شیشه ی وایکور (Vycor) و شیشه های اپتیکی و تشکیل رسوب در شیشه ها مهم می باشد. بسیاری از اکسیدهای دوتایی و سه تایی در کنار سیلیس از خود مشکلات امتزاج پذیری نشان می دهند.
در دیاگرام فازی ناحیه ای وجود دارد که یک مایع به دو مایع با ترکیب شیمیایی متفاوت تبدیل می شود. این ناحیه گپ امتزاج پذیری (imisciblity gap) نامیده می شود. در زیر برخی از سیستم هایی که مشکل امتزاج پذیری دارند را نام برده ایم:

شیشه ها (2)

شیشه ها (2)

شکل 4 دیاگرام فازیشیشه ها (2) را نشان می دهد. در دمای پایین و در گوشه ی غنی از سیلیس دیاگرام ، فاز مایع به دو بخش مایع با ترکیب شیمیایی متفاوت تبدیل می شود. این دو مایع به صورت دو شکل گنبد مانند در شکل نشان داده شده اند. خط تیره نشان دهنده ی خط تقریبی ناحیه ی امتزاج ناپذیری است. مشکلی که در اندازه گیری این خط وجود دارد. این است که این پدیده در دمای پایین رخ می دهد و از این رو سرعت آن پایین است . و از این رو اندازه گیری آن مشکل است. دراین وضعیت میل جدایش فازی بیشتر از میل به کریستالیزاسیون است . البته کریستالیزاسیون مساعد تر از جدایش فازی است اما به دلیل آنکه جدایش فازی نیازی به باز آرایی اتم ها ندارد، این پدیده رخ می دهد. به عنوان یک قانون کلی برای سیلیس باید گفت که امتزاج ناپذیری با افزودنشیشه ها (2) افزایش می یابد اما با افزودنشیشه ها (2) کم می شود. در شیشه های وایکور از قوانین جدایش فازی استفاده می شود. در فرآیند تولید شیشه وایکور، شیشه ای پدید می آید که دارایشیشه ها (2) و 4 درصد تخلخل است.این نوع شیشه به عنوان فیلتر وبیومواد مخصوصا در جاهایی که تخلخل مهم می باشد، استفاده می شود. در فرآیند تولید وایکور، شیشه ای تولید می شود که پس از فرآیند شکل دهی دنس می گردد و شیشه ای با سیلیس خالص پدید می آید که در دمای پایین تر نسبت به کوارتز خالص شکل دهی گشته است

شیشه ی آلومینیوم – ایتریمی

شیشه های آلومینیوم –ایتریایی (YA) دارای درصد آلومینایی در گسترده ی تقریبی 75.6- 59.8 هستند. با این درصد آلومینایک شیشه ی دو فازی تشکیل می شود که در آن یک فاز قطره مانند در فاز دیگر تشکیل شده است. این شیشه به طور خود بخودی به صورت شیشه ی آلومینیوم – ایتریمی یا مخلوطی ازشیشه ها (3) تبدیل می شود. درشیشه های YA پدیده ای به نام پلی مورفیزم (Polymorphism) رخ می دهد

شیشه ی رنگی

اگر چه در بیشتر کاربردهای شیشه نیاز است تا این ماده بی رنگ باشد اما در برخی از کاربردها نیاز است شیشه رنگی باشد. هنگامی که پنجره های یک کلیسا رنگی باشد، تأثیر پذیری ازمحیط بیشتر می شود . درشیشه ها معمولا بوسیله ی افزودن اکسیدهای انتقالی و یا اکسیدهای عناصر خاک های کمیاب (rave –eavth) به بچ ماده ی اولیه ی آنها، رنگی می شوند. جدول 1 لیستی از رنگ های تولیدی بوسیله ی مواد رنگی کننده ی شیشه هاست . زرد کم رنگ، نارنجی و رنگ های قرمز بوسیله ی فلزات گران بها درحالت کلوئیدی تولید می شود. طلا (Au) رنگ قرمز، یا قوتی تولید می کند. (البته این شیشه ها گران قیمت هستند). سولفید کادمیم (cds) محصولاتی با رنگ زرد تولید می کند. اما هنگامی که علاوه بر se ، cds نیز استفاده شود. محصولاتی با رنگ قرمز یا قوتی با شدت رنگ بالا تولید می شود.

شیشه ها (3)

شیشه بوسیله ی افزودن دوپانت ها (dopants) رنگرزی می شوند. در واقع با افزودن این دو پانت ها در شیشه عیوب نقطه ای پدید می آوریم. رنگ شیشه به نوع دو پانت و حالت اکسیداسیون آن بستگی دارد.
دو پانت ها می توانند اثر بی رنگ کننده (decdorizo) ، پوشش دهنده (mask) یا اصلاح کننده (modify) داشته باشند. ما می توانیم اثرات رنگی آهن را بوسیله ی افزایش cr خنثی کنیم؛ البته اگر درصدشیشه ها (3) زیاد باشد اضافی به صورتشیشه ها (3) خارج می شود. اگر این شیشه به روش دمیدن شکل دهی شود، این پلیت لت هایشیشه ها (3) منظم گشته و شیشه ای اپک به نام آونتورین کرومی (chromium aventurine) تولید می کنند. مس (cu) برای تولید شیشه ی آبی مصری (Egyptian Blue glass) استفاده می شود.
CO (کبالت ) دربرخی از شیشه های پالایش یافته ی تولید در قرن دوازدهم استفاده می شده است. البته Co در تولید لعاب های پرسلانی مورد استفاده در چین ( در دوره ی سلسله ی منیگ وتانگ) استفاده می شده است. کبالت مورد استفاده در این لعاب ها رنگ آبی کبالتی تولید می کند.
با افزودن Se به شیشه های دپ شده با Cds باعث پدید آمدن رنگ یاقوتی سلینومی (Selenium Ruby) می شود. جزئیات پدید آمده ازهر کدام از این رنگ ها به ترکیب شیمیایی و شرایط پخت شیشه بستگی دارد.
شرکت کورینگ (Cornig) میکرو بارکدهایی با شیشه دپ شده با خاکهای کم یاب تولید کرده است. خاکهای کم یاب دارای باندهای نشر کم پهنا هستند و از میان 13 عنصر خاکهای قلیایی که مورد آزمایش قرار گرفته ، تنها 4 عنصر (Tm,Ce,Tb و Dy) می توانند در برابر تابش UV برانگیخته شوند. و لذا می توان از آنها در شناسایی بوسیله ی UV استفاده کرد. این نوع بارکدها همچنین مشکلات تداخل با سایر بارکدها را نیز ندارد. از این بارکدها در کاربردهای بیولوژیکی استفاده می شود زیرا سمی نیستند.(البته بر چسب زنی با کوانتوم دات ها خطرات کمتری دارد) و می توان از آنها در کاربردهای ژنتیکی استفاده کرد. با استفاده از چند عنصر خاکی کمیاب می توان ترکیب رنگی بیشتر پدید آورد.
شیشه های رنگی خاص شامل موارد زیر می شود :

شیشه ی یاقوتی یا کرانبری ( Cranberry )
 

شیشه ی یاقوتی با افزودن Au به شیشه سربی با حضور Sn پدید می آید. شیشه ی کرانبری که اولین بار در سال 1685 گزارش شده است، یک نوع شیشه ی بی رنگ (معمولاً صورتی کم رنگ ) است. علت پدید آمدن این رنگ در صد کم طلای موجود در آن است . راز تولید شیشه قرمز رنگ برای قرن ها ی زیادی گم شده بود و در قرن هفدهم دوباره کشف شد.

شیشه ی اورانیومی یا وازلینی

محصولات اورانیومی هنگامی که در شیشه ی با سرب بالا استفاده شود، رنگ قرمز تیره تولید می کند. البته شیشه های اورانیومی دیگری نیز وجود دارد که با صطلاح به آنها شیشه های وازلینی (Vaseline glass) می گویند. این نوع شیشه ها دارای رنگ سبز هستند. مسأله ای که این نوع شیشه ها را خاص کرده است این است که این نوع شیشه ها هنگام تابش اشعه ی UV به آنها ، خاصیت فلئورسانس پیدا می کنند. از سال 1940 تنها اورانیوم تهی شده (uranium depleted) به عنوان دو پانت استفاده می شود. علت استفاده از این نوع دو پانت، فراوانی آن است. اما از 100 سال گذشته به بعد اورانیوم طبیعی (natural uranium) استفاده می شود.

شیشه ها (3)

شکل 1 مثالی از یک شیشه ی وازلینی است.

لیزر شیشه ای

عناصر خاکهای کم یاب (rave – earth elements) مانند Nd در تولید شیشه های لیزر و سایر وسایل اپتیکی کاربرد دارند. (شکل 2) . لیزر شیشه ای دپ شده با Nd (Nd-doped glass laser) مانند یک لیزر یاقوتی (ruby laser) کار می کند . اگر چه نوع شیشه ای دارای تفاوت هایی است . میله ی لیزر قطری بینشیشه ها (1) اینچ دارد و معمولا بوسیله ی یک لامپ حلزونی تخلیه می شود. علت استفاده از لامپ های حلزونی این است که طول غیر بار دار این نوع لامپ ها از لامپ های خطی طولانی تر است. لیزر شیشه ای دپ شده با Nd دارای بازدهی بیش از 2% است. این بازده 4 برابر بازده یک لیزر یاقوتی است. به دلیل آنکه رسانایی گرمایی شیشه پایین است بنابراین نیاز به زمان بیشتری برای خنک سازی است.

شیشه ها (3)

رسوبات در شیشه

وجود رسوبات در شیشه عموما اجتناب ناپذیر است. سوال این است که چه زمانی طول می کشد تا رسوبات تشکیل شود. (مخصوصا اگر جوانه زنی هموژن باشد). ما ممکن است عوامل هسته زا برای تسریع جوانه زنی به شیشه اضافه کنیم. جوانه زنی کریستال ها در شیشه از تئوری کلاسیک پیروی می کند. رسوبات تشکیل شده در شیشه می تواند موجب رنگی شدن شیشه شود.

شیشه به عنوان لعاب

لعاب ها مانند شیشه ها در همه جا دیده می شوند. لعاب کاری (glazing) استفاده از ویژگی های ویسکوز شیشه و تشکیل یک لایه ی یک پارچه و صاف بر روی یک زیر لایه ی سرامیکی است.
مینا کاری (enameling) تشکیل همان لایه بر روی یک زیر لایه ی فلزی است. چیزی که باید به آن توجه کرد این است که عموما لعاب ها قدمت زیادتری دارند. در ادامه به بیان برخی از اصطلاحات لعاب می پردازیم:

زیر لعاب ( underglaze )

هنگامی که یک بیسکوییت سرامیکی را می خواهیم مورد عملیات دکور قرار دهیم باید قبل از آن یک لعاب کاری بر روی آن انجام دهیم که این نوع لعاب را زیر لعاب گویند. این لایه به علت تشکیل بهتر دکور بر روی بدنه اعمال می شود. پس از آن که فرآیند دکوراسیون جسم سرامیکی انجام شود برروی آن یک لعاب دیگر اعمال می شود. البته این لعاب پیش از پخت دکور اعمال می شود.
عیب کراولینگ لعاب ( glaze craweling ) این عیب که در لعاب اتفاق می افتد بدین صورت است که لعاب از لایه ی سرامیکی زیرین جدا می گردد. این پدیده به دلیل عدم ترشوندگی بیسکوییت سرامیکی بالعاب در طی فرآیند پخت اتفاق می افتد.
لعاب ترک خورده ( crackle glaze )اگر انبساط گرماییشیشه ها (3) لعاب از سرامیک بستر بزرگ تر باشد، لعاب ممکن است در طی فرآیند سرد کردن (در طی پخت) بشکند. هنگامی که غلظت یون سدیم و پتاسیم در لعاب بیشتر باشد، ترک ها بیشتر پدید می آیند. هنگامی که سرعت سرد کردن بالا رود ترک های حاصل ریزتر می شوند.
لعابهای سلادون (celadon )، تنموکو (tenmoku)، راکو (raku) و کوپر ( copper) لعاب های ویژه ای هستند که در دنیای هنر سرامیک یافت می شوند.
لعاب های سلادوناین لعاب ها اولین بار در حدود 3500 سال پیش تولید شده اند. این لعاب ها دارای گستره ی رنگی از آبی کم رنگ تا سبز مایل به زرد هستند و می توانند رنگی کاملا تیره پدید آورند. رنگ تولیدی در این لعاب ها بوسیله ی آهن تولید می شود(3.o - o.5 در صدشیشه ها (3) به لعاب افزوده می شود). ظروف لعاب خورده توسط این نوع لعاب سپس در دمای تقریباًشیشه ها (3) پخت می گردند. ظروف تولید شده با این لعاب ها زیبایی خاصی داشته و در کاربردهای تزئینی استفاده می شوند. مثلا کوزه ی لعاب خورده با این لعاب که درکشور کره تولید شده است، درسال 1946 از سوی کشور کره به هاری ترومن رئیس جمهور آمریکا هدیه شد. امروزه این ظرف که 23cm ارتفاع دارد قیمتی برابر با 3 میلیون دلار دارد.
لعاب تنموکواین نوع لعاب در زمان سلسله ی سونگ (sung Dynasty) بوجود آمده است. و دارای رنگ قهوه ای تیره یا حتی سیاه است. برای ایجاد این رنگ میزان 8-5 درصد وزنیشیشه ها (3) به لعاب افزوده می شود. تشکیل مناسب این نوع لعاب به شرایط اکسایش – کاهش اتمسفر پخت بستگی دارد. و در شرایط مختلف اکسایش و کاهش رنگ های متنوعی پدید می آید. در لعاب های کوپرنیز از کربنات مس به عنوان منبع Cuاستفاده می شود. البته در طی فرآیند پختشیشه ها (3) تجزیه گشته و Cuoباقی می ماند. Cuo تولید نیز با مونواکسیدکربن (CO) موجود در کوره واکنش داده تا ذرات مس در لعاب تشکیل شوند. این ذرات رنگ قرمز به لعاب می دهند.
لعاب های راکولعاب های راکو اغلباً لعاب هایی فلزی به نظر می رسند. (اگر بوسیله ی یک لایه از فلز Ti پوشش داده شده باشند)
یک روش پیشرفته در تولید لعاب های راکو بدین صورت است که ظروف سرامیکی به شیوه ی معمولی پخت می شوند سپس آنها را در داخل یک محیط کاهنده مانند خاک اره وارد می کنند و سپس آنها را قبل از آنکه بتوانند اکسید شوند، به سرعت سرد می کنند. این نوع لعاب ها اغلبا حالت استثنا داشته و می توانند با زمان تغییر کنند. این مسئله ساده است. زیرا آنها در طی فرآیندهای بعدی تولید اکسید می شوند. این نوع لعاب بر خلاف سایر لعاب ها خنثی نبوده و تنها برای دکوراسیون استفاده می شوند.
لعاب های کریستالی ( crystalline glaze )این نوع لعاب ها ، لعاب هایی دکوراسیونی هستند اما به طور مستقیم با تکنولوژی تشکیل شیشه – سرامیک در ارتباطند. کریستال ها بوسیله ی سرد کردن آهسته لعاب ایجاد می شوند. این سرد کردن آهسته به کریستال های لعاب اجازه ی رشد کردن می دهند. رشد این کریستال ها مد نظر است؛ زیرا لعاب ضخامت کمی داشته و از این رو کریستال ها باید به صورت پلیت لت (platelets) در آیند. برای آنکه عمل رشد کریستال ها بهتر انجام شود از جوانه زاهای تیتانیایی استفاده می شود. این نوع جوانه زاها در لعاب های باویسکوزیته ی پایین استفاده می شوند و در آنهاشیشه ها (3) تشکیل می شود. ترکیب شیمیایی این نوع لعاب ها بسیار مهم است. در آن شیشه ها (3) وشیشه ها (3) به میزان کم و Pbo به میزان 10-8 درصد وزنی استفاده می شود. رشد کریستال با اضافه شدن fe به لعاب افزایش می یابد. اما این اضافه شدن می تواند همچنین موجب پدید آمدن اثراتی بر سایر دو پانت های اضافه شده به لعاب شود.
سفالگران امروزی ازشیشه ها (3) به عنوان اصلاح کننده و تولید کننده ی کریستال های ویلمایت (Crystals Willemite) استفاده می کنند. (ویلمایت یک مینرال کمیاب از روی است). این تکنیک نیازمند مهارت ویژه است. زیرا افزودن مقادیر زیادشیشه ها (3) به لعاب باعث می شود ویسکوزیته ی آن حتی در دماهای پایین نیز کم باشد، بنابراین این مسئله باعث می شود که لعاب از روی سطح سفالی جریان پیدا کند. رشد اسفرولیتی (Spherulite growth) از جوانه زا در لعاب در شکل 3 نشان داده شده است. هر اسفرولیت در واقع توده ای از کریستال های شعاعی است که با توجه به مرکز اسفرولیت دورهم گرد آمده اند.

شیشه ها (1)

لعاب های اپک ( opaque glazes ) اگر به لعاب مذاب کریستال هایی افزوده شود، لعاب می تواند اپک شود. برای این کار می توان ازO_2 S_n یا زیر کن استفاده کرد. که زیر کن ارزان تر است .شیشه ها (3) برای تولید رنگ سفید در لعاب های زیرکنی (Zircon glaze) استفاده می شود. برای اپک کردن کمتر ازشیشه ها (3) استفاده می شود زیرا کریستال های روتایل طلایی رنگ هستند. و بنابراین لعاب را به رنگ زرد در می آورند. ما همچنین می توانیم با تشکیل کریستال لعاب را اپک کنیم (مثلا ولاستونیت:شیشه ها (3). این کار بوسیله ی عملیات حرارتی مناسب، حبس کردن گاز (هوا یاشیشه ها (3) ) ) و یا بوسیله ی جدایش فازی مایع – مایع انجام می شود. لعاب های مات (Matt glazes) بوسیله ی تشکیل کریستال های بسیار کوچک در لعاب بوجود می آیند (مثلا کریستال های ولاستونیت برای لعاب های مات – آهکی و وبلیمایت (شیشه ها (3):Willemite ) برای لعاب های مات – زینک). کریستال های ریز ولاستونیت بوسیله ی افزودن کلسیت به لعاب پایه سیلیس تشکیل می شود. یک روش دیگر برای این کار افزودن مقادیر زیادی از ماده ی کریستالی به لعاب است تا در طی فرآیند پخت درصدی از آن به صورت کریستالی باقی بماند

رنگ در لعاب و لعاب موضوعاتی هستند که امروزه تحقیقات فراوانی بر روی آنها به عمل آورده شده است. امروزه رنگ های جدیدی بوسیله ی افزودن نانو ذرات در لعاب پدید می آید. عموما نانو ذرات نقره و طلا رنگ طلایی بوجود می آورند. و نانو ذرات مس رنگ قرمز بوجود می آورند. توضیح در مورد نحوه ی پدید آمدن رنگ در لعاب واقعاً پیچیده تر از نحوه ی پدید آمدن رنگ در شیشه هاست. زیرا لعاب بر روی یک لایه اعمال می شود و از این سو نباید ترانسپارنت باشد. همچنین لعاب یک لایه ی نازک است و در اتمسفر مختلف (کاهنده – اکسید کننده) بوجود می آید از این دو بررسی عوامل موثر بر تشکیل یک لعاب مشکل است.

لعاب های رنگی ( Colored glazes )

در لعاب های رنگی باید از پیگمنت های سرامیکی با پایداری مناسب بهره برد. از اکسیدهای رنگ زای ارزان قیمت می توان برای ایجاد رنگ در محصولات متنوع سفالی بهره برد. البته بسیاری از مواد رنگ زا برای لعاب همانهایی هستند که ما برای رنگرزی شیشه از آنها استفاده می کنیم
اکسید کبالت شیشه ها (4) یک اکسید سیاه رنگ است اما کمتر از یک درصد وزنی از آن در لعاب ایجاد رنگ آبی تیره می کند (اگر چه در بیشتر موارد از کربنات کبالت استفاده می شود).
به دلیل آنکه شیشه ها (4) در این گونه لعاب ها بوجود می آید، ویسکوزیته ی لعاب تغییر می کند.
اکسید کروم که تا 3-2% وزنی نیز می تواند به لعاب افزوده شود به جای رنگ سبز، رنگهای زرد، صورتی یا قهوه ای بوجود می آورد (رنگ قرمز در حضور سرب در ترکیب لعاب اولیه پدید می آید. اگر Zn در لعاب اولیه وجود داشته باشد، رنگ لعاب قهوه ای می شود مگر آنکه سرب ها هم وجود داشته باشد. که در صورت وجود سرب و روی در لعاب اولیه رنگ زرد پدید می آید).
شیشه ها (4)که به صورت کربنات به لعاب افزوده می شود، رنگ لعاب را به صورت قهوه ای در آورده البته این ماده می تواند رنگ قرمز، بنفش و حتی سیاه نیز تولید کند. که این تغییر رنگ به درصد سدیم موجود در لعاب اولیه بستگی دارد. افزودن Cuo به اندازه ی %2-1 وزنی به یک لعاب با سدیم بسیار کم سبب پدید آمدن رنگ فیروزه ای می شود. این درحالی است که افزودن بیش از 3% از این رنگ زا باعث پدید آمدن رنگ سبز یا آبی می شود. اگر درصد Cuo در لعاب افزایش یابد، لعاب ظاهری فلزی مانند مفرغ به خود می گیرد. اگر لعاب دارای 0.3– 2 درصد وزنی Cuo در اتمسفر کاهنده پخت شود، رنگ قرمز مسی پدید می آید. این رنگ به دلیل حضور ذرات کلوئیدی CU درلعاب بوجود می آید.
اگر یک لعاب رنگ زرد داشته باشد، این رنگ ممکن است بوسیله ی افزودن Cds یا Cdse بوجود آمده باشد. البته این نوع افزودنی های رنگ زا ممکن است رنگ های قرمز یا نارنجی را نیز پدید آورند. درصورت حضور سرب در این نوع لعاب ها ، Pds تشکیل می شود که باعث سیاه شدن لعاب می شود. زیرکن در صنعت برای کمک کردن به پایدار شدن این نوع رنگ ها (برپایه ی cd) استفاده می شود. درحقیقت شیشه ها (4) (زیر کن وانادیومی آبی رنگ) و شیشه ها (4)(pr,zr) (زیر کن پراسئودیومی زرد رنگ) مهم ترین تثبیت کننده های مورد استفاده در این رنگ هاست. هنگامی که اورانیوم به لعاب اضافه شود، به جای پدید آوردن رنگ زرد کم رنگ، رنگ قهوه ای تیره پدید می آید. (اورانیوم در شیشه های وازلینی تولید رنگ زرد کم رنگ می کند). البته بسته به ترکیب لعاب ، اورانیوم می تواند رنگ های قرمز یا نارنجی روشن نیز بدهد.

لعاب نمکی ( saltglaze )

دراین نوع فرآیند لعاب کاری سفال در کوره های با دمای بالا با نمک واکنش می دهد. در واقع سفالگر نمک را بر روی سفال اعمال می کند. این فرآیند هنگامی اتفاق می افتد که سفال در داخل کوره است. این فن بوسیله ی سفالگران ایرانی وانگلیسی در دهه ی 1700 ابداع گشته است. همچنین شما می توانید مثال های فراوانی از فرآیند رنگ آمیزی بوسیله ی اکسیدهای فلزی را در آلمان ببنید. در این نوع لعاب ها نمک با رس واکنش داده و تشکیل لایه ای شیشه ای بر روی سطح می دهد. این تکنیک دقیقاً فرآیند خوردگی خاک نسوز در دمای بالاست (بوسیله ی سود سوز آور).
واژه ی مینا (enamel) معمولا در هنگامی استفاده می شود که یک لایه ی لعابی بر روی فلز اعمال می شود. البته این واژه در هنگامی که یک لایه لعابی بر روی لعاب اولیه اعمال می شود نیز استفاده می شود. بازار مصرف مینا بسیار بزرگ است. این بازار از لوازم بهداشتی تا جواهر آلات گسترده است.

خوردگی شیشه و لعاب

این تصور وجود دارد که شیشه خنثی است اما باید بدانید که اسید سیتریک و اسید استیک موجود در غذاها و میوه ها می توانند بایون های موجود در شیشه واکنش دهند و ترکیبات کمپلکس پدید آورند. با خروج یون های قلیایی از داخل شیشه یون های هیدروژن مثبت جایگزین آنها می شود. هنگامی که بخواهیم استحکام سطح شیشه را افزایش دهیم باید یون های پتاسیم و سدیم مثبت را با لیتیم مثبت ( شیشه ها (4) ) جایگزین کنیم. در شیشه ی آلایش یافته (Stain glass) می توان یون نقره ی مثبت و مس را جایگزین شیشه ها (4) کرد.
همانند مواد کریستالی ، شیشه ها نیز دارای عیوب کریستالی اند. یکی از چالش هایی که ما با آنها روبرو هستیم محاسبه ی خواص بوجود آمده ازعیوب (مانند نفوذ) در شیشه هاست. زیرا در شیشه ها شبکه ی مرجع وجود ندارد.

انواع شیشه های سرامیکی

همه ی شیشه ها براساس تتراهدرال های سیلیسی ایجاد نمی شوند؛ واحدهای ساختاری این شیشه ها در جدول 1 آورده شده است. برخی از ترکیبات این شیشه ها نیز در جدول 2 آورده شده است.

شیشه ها (4)

شیشه ها (4)

شیشه ی سیلیکاتی ( سودالایم )

این شیشه ها بر پایه ی شیشه ها (4) هستند. (معمولا این نوع شیشه ها علاوه بر این مواد دارای شیشه ها (4) نیز هستند.) این نوع شیشه نستبا ارزان هستند و دارای دوام خوبی نیز هستند همچنین از این نوع شیشه به طور فراوان در صنعت بسته بندی و ساختمان استفاده می شود. ضریب انبساط حرارتی شیشه ها (4) این نوع شیشه ها ناچیز نیست. همچنین این نوع از شیشه ها عایق های خوبی نیستند. استفاده های عمده از این نوع شیشه در صفحات شیشه ای ،بطری ها ، وسایل غذا خوری و صنعت الکترونیک (حباب لامپ) است. شیشه های آلومینو سیلیکاتی قلیایی (شیشه ها (4)= عنصر قلیایی) دارای ضریب انبساط حرارتی پایینی است. این نوع شیشه دارای دوام و خواص عایق کاری بهتری است. وهمچنین نسبت به سایر شیشه های هم گروه استحکام بالاتری دارد. استفاده های این نوع شیشه عبارتست از تیوپ های اختراق، حباب های لامپ هالوژن و به عنوان بسترهای صنعت الکترونیک کاربرد دارد.

شیشه ی سربی

ترکیب عمومی این شیشه ها سیلیکات های قلیایی سربی استشیشه ها (4). در این نوع شیشه ها Pbo به جای CaO در شیشه ی سودالایمی قرار گرفته است. این نوع شیشه دارای مقاومت بالایی است. همچنین ضریب انبساط حرارتی آن بالاست. و دمای نرم شوندگی پایینی دارد. دلیل آنکه از این نوع شیشه ها در تولید ظروف کریستال استفاده می شود این است که ضریب شکست این نوع شیشه بالاست و علاوه بر این که از این شیشه ها در ظروف تزئینی استفاده می شود، از آنها در ساخت تیوپ های لامپ، لامپ تصویر تلویزیون و تیوپ های ترمومترها استفاده می شود. در ظروف کریستال انگلیسی که به صورت سنتی تولید می شوند، میزان Pbo حداقل 30% است. برطبق رهنمود اتحادیه ی اروپا میزان Pbo باید بیش از 24 درصد باشد. همچنین بر طبق استاندارد اروپا شیشه های کریستال سربی باز یافت نمی شوند. شیشه های سربی که برای ساخت حفاظ های تابشی استفاده می شوند ممکن است دارای بیش از 65% Pbo باشند. کاربرد این گونه شیشه ها در لامپ تصویر تلویزیون است اگر چه شیشه های باریمی برای ساخت صفحه و تابلوهای تلویزیون استفاده می شود. (تفنگ الکترونی تلویزیون اشعه ی x ساتع می کند که این نوع شیشه باید این تابش ها را جذب کند.)شیشه های سرب – بوراتی می توانند به عنوان لحیم های شیشه ای استفاده شوند. این نوع شیشه ها دارای در صد کمیشیشه ها (4) است و کاملا خنثی است.
شیشه های فیلنیتی (flint glass) دارای تفرق بالایی است. در واقع این نوع شیشه ها از نوع شیشه های سیلیکاتی قلیایی ـ سربی است که از ذوب سنگ های فیلنیتی ساخته شده اند(فیلنیت فرم خالص سیلیس است) .لازم به توضیح است که این نوع سنگ کلسینه شده و به طور فراوان در ساخت بدنه های سرامیکی استفاده می شود.

شیشه ی بورانی ( شیشه ی بورو سیلیکاتی )

شیشه های بوروسیلیکاتی قلیاییشیشه ها (4) به خاطر ضریب انبساط حرارتیشیشه ها (4) کوچکشان ویژه هستند. این نوع شیشه دوام بالایی داشته و خواص الکتریکی مفیدی دارند. پیرکس (Pyrex) که یک نوع ماده در تولید وسایل پخت و پز است . از جنس بروسیلیکات است .شیشه ی بروسیلیکاتی به طور وسیع در فرآیندهای شیمیایی استفاده می شود. برخی از شیشه های براتی دارای دمای ذوب پایینیشیشه ها (4) هستند از این رو آنها را می توان به همراه سایر شیشه ها استفاده کرد. شیشه ی بروسیلیکاتی – زنیکی به شیشه های منفعل شهرت دارند. این شیشه ها مواد قلیایی ندارند و از این رو از آنها می توان در ساخت اجزای الکترونیکی سیلیسیمی استفاده کرد.

سیلیس فیوزد

این نوع شیشه از نوع سیلیس خالص است. این شیشه ها ، شیشه های سیلیکاتی برای کاربردهای دما بالا هستند. ضریب انبساط حرارتی این نوع شیشه ها نزدیک به صفر است. این نوع شیشه ها برای تولید آینه های تلسکوپ و زیر لایه ها (Substrates) استفاده می شود. به خاطر داشتن ضریب انبساط حرارتی نزدیک به صفر به این شیشه ها ، شیشه های با انبساط حرارتی بسیار پایین (VLE Silica) می گویند .
شیشه های VLE دارای 7 درصد وزنیشیشه ها (4) برای تولید لفافه های لیتوگرافی نوری (masks photolithography) استفاده می شود. البته به خاطر دمای بالای فرآیند شکل دهی این شیشه ها ؛ می توان به جای آنها از شیشه های وایکور استفاده کرد.

شیشه ی فسفاتی ( phosphate – glass )
 

شیشه های فسفاتی شیشه های مهمی هستند زیرا این نوع شیشه ها خاصیت نیمه رسانایی دارند. یکی از کاربرد این مواد در ساخت تقویت کننده های الکترون (electron multipliers) است . در این نوع وسایل با استفاده از دپ کردن Er (افزودنشیشه ها (4) ) ، این تقویت کننده ها ساخته می شود. کایتون های موجود در این نوع شیشه ها معمولا V و P هستند اما لابراتوار ملی او آ ک ریچ (Oak Ridge National labroatory) یک نوع شیشه ی فسفاتی اندیوم – سربی تولید کرده است که دارای ضریب شکست بالایی است. از ویژگی های دیگر این شیشه می توان به دمای ذوب پایین و خاصیت ترانسپارنتی در برابر گسترده ی وسیعی از طول موج ها را نام برد. به دلیل آنکه این نوع شیشه می تواند درصد بالایی از عناصر خاکهای کم یاب را در خود حل کنند، از آنها در تولید وسایل نوری اکتیو مانند آمپلی فایرهای فیبر اپتیک و لیزرها استفاده می شود. شیشه های فسفاتی دپ شده با Nd در لیزرهای حالت جامد استفاده می شوند. ترکیب شیمیایی نمونه وار از این نوع شیشه عبارتست ازشیشه ها (4) است. که در صد Nd بین O.2-2.O درصد مولی است.

شیشه ی چالکوژیندی ( Chalcogenide glass )

این نوع شیشه براساس Se,As و Te بوجود می آید. این شیشه ها نور فرو سرخ را از خود عبور می دهند و نیمه رسانا های غیر اکسیدی هستند. از این نوع شیشه در وسایل و لنزهای الکترونیکی ویژه استفاده می شود. در این وسایل هنگامی که ولتاژ اعمالی به آنها از میزان بحرانی فراتر رود، به طور ناگهانی تغییر رسانایی رخ می دهد. کاربرد این نوع شیشه ها بسیار خاص است زیرا این شیشه ها دوام پایینی داشته و دمای نرم شوندگی شان پایین است.

شیشه ی فلورایدی ( fluoride glass )

عموماً شیشه های هالیدی بر پایه یشیشه ها (4) را شیشه های فلورایدی می گویند. کاربرد این نوع شیشه ها در وسایل همسو کننده نوری (optical waveguides) است. و درجاهایی که قیمت توجیه پذیر باشد استفاده می شوند.

شیشه ی طبیعی

این مسئله که شیشه در طبیعت بوجود می آید حتی این پدیده یک امر نسبتاً معمولی است، باعث شگفتی بسیاری از مردم می شود. تکتیت ها (tektites) درهنگام برخورد شهاب سنگ ها به زمین و در دهانه ی حاصله از برخورد شهاب سنگ پدید می آیند. مولد اویت (Moldavite) نیز یک شیشه ی سبز رنگ است که در مولداوی (Moldavia) یافت می شود . فولگلاریت (fulgarite) نیز تیوپ های شکننده از شیشه هستند که در هنگام برخورد برق آسمان به خاکهای ماسه ای پدید می آید. ابسیدیان (obsidian) نیز یک نوع شیشه است که در جریان های آتش فشانی تشکیل می شود. رنگ سیاه رنگ این نوع شیشه به خاطر ناخالصی پدید می آید. در طی دوره ی پارینه سنگی از ابسیدیان در ساخت وسایل استفاده می شده است. سنگ پا (Pamice) یکی دیگر از شیشه هایی است که از فوران های آتش فشانی تشکیل می شود. این ماده می تواند تخلخل های فراوانی داشته باشد. (درصورتی که ماده ی اولیه ی تشکیل دهنده ی آن دارای مواد گازی فراوانی باشد). سنگ پا شکل متخلخل ابسیدیان است

شیشه ها

مقدمه:

دراین مقاله ها در مورد انواع مختلف شیشه و برخی از کاربردهای آنها صحبت می کنیم.
شیشه ها یکی از انواع مهم موادمهندسی محسوب می شوند. این مواد در پنجره ها، ساخت بطری، لیزرها، الیاف نوری، عایق ها، لعاب کاری (glazing) ومینا کاری (enamelihg)، چاقوی جراحی، وسایل هنری وتابلوهای راهنمایی - رانندگی استفاده می شوند.
شیشه ها معمولا بازیافت می شوند واز این رو دوستدار محیط زیست هستند.مصریان آثار شیشه ای متنوعی بر جای گذاشته اند ولی آنها اولین کسانی نبودند که از این ماده استفاده می کردند.در دوران های دیرینه سنگی (paleolithic Times) شیشه های اولیه و شیشه های طبیعی (Obsidian: نوعی شیشه ی مصنوعی بدست آمده از آتش فشان ها ) بسیاراهمیت داشتند به خاطر اهمیت زیاد این ماده می توان گفت که شیشه نقش مهمی در شکل دهی تمدن ما داشته است.
به هر حال تعریفات مختلفی برای شیشه ها بیان شده است. دراین مقاله سعی می کنیم بگوییم چرا واژه های شیشه ای (glassy)، زجاجی (Vitreous) و آمورف (amor phous) همگی برای توصیف شیشه استفاده می شوند. همچنین سعی داریم جواب این سوال را بدهیم که: «شیشه چیست؟»
هنگام مطالعه ی این مقاله باید دو ذهنیت را داشته باشید:
1) ادعای Sturkey:"شیشه در دماهای بالا یک محلول شیمیایی است."
2) اگر شیشه که مایع فوق سرد شده است، پس جامد نیست وبنابراین یک ماده ی سرامیکی نیست (اما شیشه یک ماده ی سرامیکی است)

تعریف

تعریف کلاسیک شیشه براساس روش تاریخی تشکیل آن انجام شده است. البته این روش تعریف یک روش بسیار غیر معقولی برای تعریف هر ماده است. این مسئله باعث شده است تا امروز شیشه به چندین روش مختلف تعریف شود:
تعریف کلاسیک: شیشه یک مایع فوق سرد شده است(Supercooled liquid) مشکل بوجود آمده دراین تعریف این است که در برخی موارد می توان یک شیشه ی ویژه را به روشی تولید کرد که هیچگاه درحالت مایع قرار نداشته باشد.
ASTM شیشه را به صورت زیر تعریف کرده است:
"شیشه یک محصول غیر آلی از ترکیبی مذاب است که بدون آنکه کریستالی شود، سرد وصلب می گردد."
این تعریف نیز همان چیزی است که در تعریف کلاسیک آمده است. اما دراین تعریف شیشه ی پلیمری استثناء شده است. به وضوح مشخص است که استناد کردن به روش تولید برای تعریف یک گروه از مواد ایده آل و مناسب نمی باشد.

تعاریف دیگر :

1)" شیشه یک ماده ی جامد است که نظم دوربعد از خود نشان نمی دهد."
نداشتن نظم دوربعد یعنی ساختار شیشه درفواصل یک، دو یا سه برابر فاصله ی اجزای سازنده، دارای نظم نیست. این تعریف براساس مشاهدات حاصله از تفرق اشعه X، میکروسکوپ الکترونی عبوری (TEM) و... استوار است اما این تعریف نیز کمی قراردادی است زیرا به اندازه ی اجزاء تشکیل دهنده بستگی دارد.
2)" شیشه یک مایع است که قابلیت جاری شدن خود را از دست داده است."
این تعریف استوار است اما از تعریفی که بوسیله ی ASTM ارائه شده است فراگیرتر است .همچنین این تعریف از خاصیت مکانیکی برای تعریف شیشه استفاده می کند. درحقیقت این تعریف عملاً با دیدگاه فیزیک مدرن درباره ی شیشه مطابقت دارد.
اکثر شیشه هایی که ما در مورد آنها توضیح می دهیم، شیشه های با شبکه ی اکسیدی است . (مخصوصاً سیلیکات ها) تعریف ما از چنین شیشه هایی عبارتست از:
تجمعی جامد از تتراگونال هایی است که می توانند رئوس خود را به اشتراک گذاشته و البته این مواد نظم دور بعد ندارند.
دراین مقاله ما تنها درمورد شیشه های سرامیکی بحث می کنیم اما باید بدانیم که علاوه بر شیشه های سرامیکی، شیشه های فلزی و پلیمری نیز وجود دارد. شیشه های فلزی ترکیبات پیچیده ای هستند که در آنها عمل کریستالیزاسیون انجام نشده است. این مسئله بوسیله ی سریع سرد کردن فلز مذاب بوجود می آید.(این فرآیند اسپلات کوئنچینگ نامیده می شود). درادامه به بیان ویژگی شیشه ها می پردازیم:

ساختار

شیشه ها در اصل جامد های غیر کریستالی (یا آمورفی) هستند که در اغلب موارد از فریز شدن یک مایع فوق سرد شده بدست می آیند. دراین موارد نظم دور برد در آرایش اتمی وجود ندارد. البته نظم کوتاه برد (زیر 1nm) وجود دارد. این مواد دارای آرایش منظمی از سلولهای واحد نیستند.همانگونه که گفتیم شواهدی وجود دارد که ثابت می کند در شیشه ها نظم کوتاه برد وجود دارد.این نظم کوتاه برد به دلیل آرایش اتمی درمجاورت هر اتم (البته در فاصله ی کوتاه) بدست می آید. تلاش های فراوانی برای توصیف شیشه ها انجام شده است. که به بیان علت تشکیل شدن یا نشدن شیشه ها بحث می کند. دراین زمینه ما ازدو دیدگاه به شیشه ها نگاه می کنیم:
1) توجه به ساختار
2) توجه به مباحث کنیتیکی کریستالیزاسیون
درمورد اول ما به بیان هندسه ی اجزای تشکیل دهنده ی شیشه ها می پردازیم. همچنین دراین زمینه به بیان پیوندهای بین اتمی واستحکام پیوندها می پردازیم . درمورد دوم ما به بیان چگونگی دگرگونی های مایع به جامد در طی فرآیند سرد شدن می پردازیم.
دمای تبدیل شدن شیشه ای ( Tg )
درشکل 1 نموداری نشان داده شده است که در آن حجم ویژه به عنوان تابعی از دما رسم شده است.

شیشه ها (1)

این دیاگرام فرمی از دیاگرام استعاله ی دما – زمان (T.T.T) برای شیشه است. درهنگام سرد شدن مایع از دمای بالا دو پدید ه ممکن است در نقطه ی انجماد (Tm) اتفاق می افتد که عبارتند از :
1) اگر مایع کریستالیزه شود تغییرات حجم و سرعت سرد کردن گسسته است.
2) اگر کریستالیزاسیون اتفاق نیفتد، مایع به حالت فوق سرد شده تبدیل می شود و حجم در نزدیک دمای ذوب کاهش می یابد.
دردمای تبدیل شدن شیشه ای (Tg)، شیب نمودار کاهش می یابد و به شیب جامد کریستالی نزدیک می شود. این شکستگی بوجود آمده در نمودار سرد کردن نشان دهنده ی گذرگاه مایع فوق سرد شده به شیشه است. زیر دمای Tgساختار شیشه درحالت آسایش نیست زیرا این مواد اکنون جامد هستند. دراین ناحیه از Tg ویسکوزیته تقریبا شیشه ها (1) است. ضریب انبساط حالت شیشه ای معمولا نزدیک به ضریب انبساط جامد کریستالی است. اگر از سرعت های سرد کردن پایین تر استفاده شود، میزان آسایش ساختار افزایش می یابد. ومایع فوق سرد شده در دمای پایین تر تشکیل می شود. و شیشه ی حاصله ممکن است دانسیته ی بالاتری بدست آورند. (همانگونه که در شکل 1 دیده می شود)
فیزیک شیشه جنبه ی تردی آن را مورد بررسی قرار می دهد. در واقع این ویژگی یک ویژگی مایعات شیشه ساز در بالای دمای Tgاست واندزه ای از استعکام پیوندهای بین اتمی است. در ادامه ما درمورد شیشه ی نامحلول در آب یا بطری های شیشه ای آب صحبت می کنیم. البته چیزی که آگاهی کمتری از آن است این است که ما می توانیم آب را با سریع سرد کردن در اتاق مایع به حالت شیشه ای در آوریم. ماده ی حاصله یک شیشه ترد است اما این مسئله فهمیده شده است که بیشتر آب موجود در جهان به همین شکل وجود دارد.
تاریخچه
شیشه ماده ای است که پیوندی عمیق با تاریخچه ی انسان دارد. یکی از شواهد این مسئله استفاده از ابسیدیان (obsidian) یک شیشه ی طبیعی توسط بشر است. هیچ کس نمی داند که اولین جسم شیشه ای در چه زمانی ساخته شده است. قدیمی ترین یافته ها به 7000 سال پیش از میلاد برمی گردد. (البته ممکن است یافته هایی پیش از این تاریخ نیز وجود داشته باشد). درکاوش های باستان شناسی در بین النهرین روش های تولید شیشه کشف شده است . این کارها 4500 سال پیش از میلاد مسیح بوده است ومربوط به روش های تولید وسایل شیشه ای بوده است نه لعاب های مورد استفاده در وسایل سفالی. استفاده از شیشه در لعاب کاری سفال حتی به دوران های پیشین می رسد.

شیشه ها (1)

تقریبا در 3000 سال پیش از میلاد مسیح شیشه گران مصری شروع به تولید جواهر آلات شیشه ای و ظروف شیشه ای کوچک کردند. شیشه هم به عنوان یک جسم دکوری وهم به عنوان یک وسیله ی مورد استفاده در زندگی روزمره به شمار می آمد. قطعاتی از جواهر آلات شیشه ای در کاوش های اطراف کوه های مصر پیدا شده است. مثالی از این جواهرآلات شیشه ی فیزوزه ای آبی است که در شکل 2 دیده می شود. تقر یبا 1500 سال پیش از میلاد مسیح شیشه گران مصری ( در دوره ی touthmosis سوم ) روشی برای تولید قطعات تو خالی قابل استفاده، توسعه دادند. یک مثال قابل توجه از این نوع ساختار یک شیشه ی توخالی است که شبیه به سرماهی است (شکل 3) این ظرف بین سال های 1352 و 1336 قبل از میلاد ساخته شده است واین نظریه وجود دارد که برای نگه داری روغن خوش بو استفاده می شده است.

شیشه ها (1)

الگوی موجی این ظرف بسیار خاص است. در واقع این ظرف بوسیله ی کشیده شدن یک جسم تیز به شیشه ی خمیری شده تولید شده است.
نویسنده ی رومیPliny Fhe Elder (23-79 میلادی) اختراع شیشه را به صورت زیر توصیف می کند:
روزی یک کشتی که متعلق به چند تاجر نیتروم (Nitrum) بود در کنار ساحل لبنان کنونی توقف می کند. هنگام پخت غذا به دلیل نبود سنگ در ساحل، خدمه کشتی از کلوخ های نیترومی که در کشتی وجود داشته است. استفاده می کنند تا بتوانند دیگ غذا را در مکان مناسب استقرار دهند. پس از آنکه آتش روش شد، کلوخه ها با ماسه های ساحلی واکنش داده و تشکیل شیشه ی مذاب می دهد. این اولین منشع پدید آمدن شیشه است.
نیتروم (Nitrum) یک نوع سدیم کربنات (Soda) طبیعی است .این ماده یکی از اجزای مهم در شیشه های قدیمی و مدرن است. خاکستر گیاهان نیز یک منبع فقیر از سدیم برای شیشه گران فراهم می کند. گیاهان علف شوره (Saltwort) و رازیانه ی آبی (glass wort) از جمله گیاهانی هستند که برای مهیا شدن سدیم از آنها استفاده می شده است.
یکی از معمولی ترین روش ها برای شکل دهی شیشه روش دمش هوا است. اگر چه این تکنیک بیش از دوهزار سال پیش توسعه یافت، لوله های تولیدی به روش دمش در طی زمان تغییری نکرده است. توسعه ی عمده که دراین زمینه انجام شده است، روش دمش اتوماتیک است که برای تولید شیشه های بطری و حباب های لامپ استفاده می شود. دراین روش به قطعه ای شیشه در داخل قالب هوا دمیده می شود. و بدین شکل شیشه به شکل قالب در می آید. مهمترین مرحله ی رشد در تاریخ شیشه سازی مخصوصا درطی قرن بیستم مربوط به توسعه های اتفاق افتاده در زمینه ی تکنولوژی های تولید می باشد. این توسعه ها منجر به کاهش هزینه ی تولید محصولات شیشه ای می شود

در ادامه به بیان خواص شیشه ها می پردازیم:

ویسکوزیته ( η )

ویسکوزیته یک ویژگی کلیدی شیشه هاست.ما نیاز داریم تا درمورد ویسکوزیته ی شیشه در دماهای مختلف اطلاع داشته باشیم. و بتوانیم دمای مورد نیاز برا ی شکل دهی وآنیلینگ آن را تشخیص دهیم. ویسکوزیته یک ویژگی مکانیکی است. فرمول ویسکوزیتد به صورت زیر است:

شیشه ها (2)

دراین فرمول:
η : ویسکوزیته، F: نیروی مورد نیاز برای کشیدن یکی از صفحات موازی که در میان آنها مایع مورد نظر قرار دارد: ،d: فاصله ی صفحات، A: مساحت صفحات، V: سرعت حرکت صفحه. ویسکوزیته در واقع پاسخ یک مایع دربرابر تنش برشی است. مایعات دارای ویسکوزیته ای هستند که با واحد سانتی پوآز (CP) اندازه گیری می شود. واحد اندازه گیری ویسکوزیته ی گازها میکروپوآز(mp) است.

شیشه ها (2)

جدول 1 لیستی از اعداد ویسکوزیته ای است که برای فرآیندهای شیشه سازی مهم هستند. اعداد داده شده در جدول 2 نیز برای تعریف ویژگی های برجسته ی شیشه (با تأکید بر روی فرآیند) آورده شده است. بسیاری از اعداد آورده شده درجدول ویسکوزیته ها استاندارد هستند مثلا (2003) ASTMC338-93 یک روش تست استاندارد است که نقطه نرم شدگی شیشه بوسیله ی آن تعیین می شود.
محاسبه ی نقطه ی نرم شدگی شیشه بوسیله ی اندازه گیری دمایی که در آن یک فیبر شیشه ای استوانه ای با قطر شیشه ها (2) طول بوسیله ی وزن خودش تغییر طول می دهد. نرخ تغییر طول یک میلی متر بردقیقه است . در این روش 100 میلی متر از بخش بالایی فیبر بوسیله ی کوره ی خاصی با سرعت گرم شدنشیشه ها (2) گرم می شود.

شیشه ها (2)

ویسکوزیته ی برخی ازمایعات عمومی در جدول 2 آورده شده است. توجه کنید که در دمای کارپذیری شیشه ویسکوزیته ای شبیه به عسل در دمای اتاق دارد. به طور نمونه برای یک شیشه ی سیلیکاتی سودالایم این ویسکوزیته در دمایشیشه ها (2) بدست می آید. این جدول همچنین نشان می دهد که یک جامد دارای ویسکوزیته ای بیش ازشیشه ها (2) دسی پو آز است. ویسکوزیته ی به طور نمایی با تغییر دما ، تغییر می کند ( همانگونه که در شکل 1 برای انواع شیشه ی سیلیکاتی دیده می شود.) دمای فیکتیو (fictive temperature) دمایی است که در آن ساختار مایع به حالت شیشه ای تبدیل می شود. این دما بوسیله ی تقاطع منحنی های برونیابی شده در حالت دما بالا و دما پایین در نمودار ویسکوزیته – دما بدست می آید. دمای فیکتیو (Tf) مانند Tg به تبدیلات ساختاری شیشه بستگی دارد. البته Tg اندکی کمتر از Tf است.

شیشه ها (2)

شکل 2 وابستگی ویسکوزیته به دما را برای اکسیدهای شیشه ساز نشان می دهد. شما باید توجه کنید که بوسیله ی شیب این خطوط می توان انرژی اکتیواسیون جریان ویسکوز (EV) را بدست آوریم.

شیشه ها (2)

جدول 3 اعداد ویسکوزیته وسرعت های کریستالیزاسیون (v) برخی شیشه ها را نشان می دهد. سرعت کریستالیزاسیون مربوط می شود به سرعت تبادل مایع/جامد. V بسیار کم بیان کننده ی قابلیت شیشه سازی استثنایی ماده است.البته کریستالیزاسیون مذاب جامد شده ی سیلیس بسیار مشکل است.

شیشه ها (2)

روش های متعددی برای اندازه گیری ویسکوزیته وجود دارد. این روش ها با توجه به میزان ویسکوزیته انتخاب می شود.

شیشه ها (2)

شماتیک دو روش اول اندازه گیری ویسکوزیته در شکل 3 نشان داده شده است:

شیشه ها (2)

شیشه ( خلاصه ای از خواص )
 

شیشه ماده ای خنثی است. این مسئله به محیط بستگی دارد. اگر شیشه یک ماده ی سیلیکاتی باشد، این مسئله درست است . البته همه ی شیشه ها خنثی نیستند. مثلا بیوگلاس (bioglass)
شیشه یک ماده ی هموژن است. این مسئله نیز به نحوه ی شکل دهی و ترکیب شیمیایی شیشه بستگی دارد. ما می توانیم با استفاده از فرآیندهای خاص شیشه را به صورت غیر هموژن در آوریم.
شیشه می تواند تغییر شکل دهد. این مسئله عموماً درست می باشد و دلیلی است برای قابلیت بازیافت شیشه ها. برخی از شیشه ها به نحوه ای ساخته می شوند که بوسیله ی نور، انتشار نور در داخل آن وتابش نور و...تغییر ماهیت می دهد.
شیشه دارای ضریب انبساط کوچک است. البته همه ی شیشه ها مناسب استفاده شدن در کاربردهای حرارتی مانند ظروف پیرکس نیستند.
شیشه ها شفاف اند (trans Parent) این خاصیت برای الیاف نوری ضروری است. البته ما می توانیم با انجام عملیات های خاص شیشه به صورت اپک یا مات در آوریم.
بسیاری از شیشه های اولیه شفافیت کامل نداشتند زیرا در ساختار آنها ناخالصی وحباب هوا وجود داشت.
شیشه ارزان است. البته این مسئله برای شیشه های پنجره صحیح است. اما درمورد فیلم های نازک شیشه ای این مسئله صحیح نمی باشد. برخی از شیشه های قرمز رنگ بوسیله ی دپینگ (doping) طلا در آنها تولید می شود. که قیمت برخی از ظروف تولیدی از آن به پیش از 50 دلار می رسد.
شیشه یک ماده ی بالک است مگر در حالتی که آن را به صورت یک فیلم نازک ، یک فیلم انیتر گرانولار (IGF) یا یک سرامیک کریستالی رشد دهیم.

برخی از خواص مکانیکی شیشه

استحکام تئوریک شیشه ی سیلیکاتی درحدود 10GPa است. البته با حضور عیوب سطحی (ترک ها وجوانه ها ) این استحکام کاهش می یابد. شیشه ها موادی الاستیک هستند اما تحت کشش می شکنند. می توان استحکام این مواد را بوسیله ی ایجاد لایه های سطحی فشرده و یا بوسیله ی از بین بردن ترک های سطحی (با اسید شوئی یا پدید آوردن پوشش محافظ) افزایش داد. مثالی از این روش ها پدید آوردن ترک های اضافی در ساختار قطعات شیشه ای تزئینی به منظور بهبود خواص مکانیکی آنهاست. در این روش از سرد کردن شیشه ی مذاب در آب جهت ایجاد تنش های اضافه بهره برده می شود . در این حالت سطح قطعه ی شیشه ای مذاب زودتر از مرکز آن سرد می شود و بنابراین تنش های اضافی پدید می آید. قطعات جامد شده به این شیوه را می توان با چکش و بدون اینکه بشکنند چکش کاری کرد.

برخی از ویژگی های الکتریکی شیشه

شیشه معمولا دارای مقاومت الکتریکی بالایی است. که علت آن تفاوت زیاد میان باندهای انرژی (گپ بزرگ) در این ماده است. در مواردی که شیشه رساناست . بار بوسیله ی یون ها منتقل می شود.(در این مورد یون های قلیایی مانندشیشه ها (2) دارای سرعت انتقال بار بالایی هستند). در واقع به همین دلیل است که با افزایش دما رسانایی به شدت افزایش می یابد. رسانایی درشیشه های مختلف، متفاوت است.علت آن متفاوت بودن نوع شبکه ی این شیشه هاست. در شیشه هایی که دارای بیش از یک یون قلیایی هستند. پدیده ی جالبی رخ می دهد. رسانایی تولیدی در این نوع شیشه ها به طور مشخصی از شیشه های دارای یک یون کمتر است. این نوع شیشه ها در کاربردهای مختلف مانند لامپ های با توان بالا استفاده می شوند. ثابت دی الکتریک شیشه واقعاً بالاست اما نه به حدی که بتوان از آن در کاربردهای حافظه ای پیشرفته مانند حافظه ی با دستیابی دینامیک و رندوم (DRAMS) استفاده کرد. ظرفیت الکتریکی یک ماده میزان بار ذخیره شده در داخل ماده است. این خاصیت به ضخامت دی الکتریک بستگی دارد. همانطور که ضخامت دی الکتریک کمتر می شود، ظرفیت الکتریکی افزایش می یابد. اما کم کردن ضخامت نیز مشکلاتی به همراه دارد. مثلا با کاهش ضخامت احتمال شکست دی الکتریک بیشتر می شود. شیشه ی سیلیسی دارای مقاومت دی الکتریک بالاتری نسبت به سایر شیشه هاست. اما مقاومت این دی الکتریک نیز در حد دی الکتریک های پلیمری مانند رزین فنولیک نیست.

برخی از خواص اپتیکی شیشه

شفافیت دربرابر نور فرا بنفش ، مرئی و فرو سرخ به چندین فاکتور بستگی دارد. یکی از این فاکتورها طول موج تفرق است که بوسیله ی ناخالصی ها تغییر می کند. لبه ی فرو سرخ (IRedge) و لبه ی فرا بنفش ((uv edge اعدادی هستند که نشان دهنده ی فرکانس قطع شدن عبور این موج ها هستند. یک مانع لبه UV edge blocker)UV) از عبور UV جلوگیری می کند و این در حالی است که یک عبور دهنده ی لبه یUV (UV edge tran Smitter) اجازه ی عبور نور UV را می دهد.

عیوب در شیشه ها

اگر چه شیشه یک ماده ی آمورف است ولی مانند مواد کریستالی دارای عیوب و رسوبات است. و همچنین دچار جدایش فاز می شود. شیشه را می توان برای حبس کردن عناصر رادیو اکتیو استفاده کرد .در این عناصر مانند عیوب نقطه ای یا فاز ثانویه تشکیل می شوند. همچنین سرعت نفوذ این عناصر از میان شیشه بر روی میزان آن ها در شیشه تأثیر دارند. این مسئله استفاده می شود تا بتوان مواد رادیو اکتیو یا سایر مواد را کنترل کرد.

شیشه ی غیر هموژن

به دلیل آنکه شیشه یک مایع فوق سرد شده است. نمی توان گفت که این ماده حتما باید هموژن باشد. شیشه های خاص می توانند بدون نیاز به فرآیند کریستالیزاسیون به دو فاز تبدیل شوند. هنگامی که این دو فاز شیشه ای باشند این مسأله باعث می شود که سدی در برابر جدایش فازی پدید نیاید. در مورد فرآیند جدایش فازی مایع – مایع ممکن است مرحله ای برای جوانه زنی وجود داشته باشد. البته در این نوع تبدیلات ممکن است استعاله ی اسپینودال (Spinodal) نیز رخ می دهد. که هر دوی این استعاله ها به نفوذ وابسته اند.
قوانین امتزاج ناپذیری در شیشه ها بسیار مهم است. این مسئله مخصوصاً در شیشه های تولید شده با تکنولوژی روز نمود دارد. برای مثال امتزاج ناپذیری در شکل دهی شیشه – سرامیک ها ، تولید شیشه ی وایکور (Vycor) و شیشه های اپتیکی و تشکیل رسوب در شیشه ها مهم می باشد. بسیاری از اکسیدهای دوتایی و سه تایی در کنار سیلیس از خود مشکلات امتزاج پذیری نشان می دهند.
در دیاگرام فازی ناحیه ای وجود دارد که یک مایع به دو مایع با ترکیب شیمیایی متفاوت تبدیل می شود. این ناحیه گپ امتزاج پذیری (imisciblity gap) نامیده می شود. در زیر برخی از سیستم هایی که مشکل امتزاج پذیری دارند را نام برده ایم:

شیشه ها (2)

شیشه ها (2)

شکل 4 دیاگرام فازیشیشه ها (2) را نشان می دهد. در دمای پایین و در گوشه ی غنی از سیلیس دیاگرام ، فاز مایع به دو بخش مایع با ترکیب شیمیایی متفاوت تبدیل می شود. این دو مایع به صورت دو شکل گنبد مانند در شکل نشان داده شده اند. خط تیره نشان دهنده ی خط تقریبی ناحیه ی امتزاج ناپذیری است. مشکلی که در اندازه گیری این خط وجود دارد. این است که این پدیده در دمای پایین رخ می دهد و از این رو سرعت آن پایین است . و از این رو اندازه گیری آن مشکل است. دراین وضعیت میل جدایش فازی بیشتر از میل به کریستالیزاسیون است . البته کریستالیزاسیون مساعد تر از جدایش فازی است اما به دلیل آنکه جدایش فازی نیازی به باز آرایی اتم ها ندارد، این پدیده رخ می دهد. به عنوان یک قانون کلی برای سیلیس باید گفت که امتزاج ناپذیری با افزودنشیشه ها (2) افزایش می یابد اما با افزودنشیشه ها (2) کم می شود. در شیشه های وایکور از قوانین جدایش فازی استفاده می شود. در فرآیند تولید شیشه وایکور، شیشه ای پدید می آید که دارایشیشه ها (2) و 4 درصد تخلخل است.این نوع شیشه به عنوان فیلتر وبیومواد مخصوصا در جاهایی که تخلخل مهم می باشد، استفاده می شود. در فرآیند تولید وایکور، شیشه ای تولید می شود که پس از فرآیند شکل دهی دنس می گردد و شیشه ای با سیلیس خالص پدید می آید که در دمای پایین تر نسبت به کوارتز خالص شکل دهی گشته است

شیشه ی آلومینیوم – ایتریمی

شیشه های آلومینیوم –ایتریایی (YA) دارای درصد آلومینایی در گسترده ی تقریبی 75.6- 59.8 هستند. با این درصد آلومینایک شیشه ی دو فازی تشکیل می شود که در آن یک فاز قطره مانند در فاز دیگر تشکیل شده است. این شیشه به طور خود بخودی به صورت شیشه ی آلومینیوم – ایتریمی یا مخلوطی ازشیشه ها (3) تبدیل می شود. درشیشه های YA پدیده ای به نام پلی مورفیزم (Polymorphism) رخ می دهد

شیشه ی رنگی

اگر چه در بیشتر کاربردهای شیشه نیاز است تا این ماده بی رنگ باشد اما در برخی از کاربردها نیاز است شیشه رنگی باشد. هنگامی که پنجره های یک کلیسا رنگی باشد، تأثیر پذیری ازمحیط بیشتر می شود . درشیشه ها معمولا بوسیله ی افزودن اکسیدهای انتقالی و یا اکسیدهای عناصر خاک های کمیاب (rave –eavth) به بچ ماده ی اولیه ی آنها، رنگی می شوند. جدول 1 لیستی از رنگ های تولیدی بوسیله ی مواد رنگی کننده ی شیشه هاست . زرد کم رنگ، نارنجی و رنگ های قرمز بوسیله ی فلزات گران بها درحالت کلوئیدی تولید می شود. طلا (Au) رنگ قرمز، یا قوتی تولید می کند. (البته این شیشه ها گران قیمت هستند). سولفید کادمیم (cds) محصولاتی با رنگ زرد تولید می کند. اما هنگامی که علاوه بر se ، cds نیز استفاده شود. محصولاتی با رنگ قرمز یا قوتی با شدت رنگ بالا تولید می شود.

شیشه ها (3)

شیشه بوسیله ی افزودن دوپانت ها (dopants) رنگرزی می شوند. در واقع با افزودن این دو پانت ها در شیشه عیوب نقطه ای پدید می آوریم. رنگ شیشه به نوع دو پانت و حالت اکسیداسیون آن بستگی دارد.
دو پانت ها می توانند اثر بی رنگ کننده (decdorizo) ، پوشش دهنده (mask) یا اصلاح کننده (modify) داشته باشند. ما می توانیم اثرات رنگی آهن را بوسیله ی افزایش cr خنثی کنیم؛ البته اگر درصدشیشه ها (3) زیاد باشد اضافی به صورتشیشه ها (3) خارج می شود. اگر این شیشه به روش دمیدن شکل دهی شود، این پلیت لت هایشیشه ها (3) منظم گشته و شیشه ای اپک به نام آونتورین کرومی (chromium aventurine) تولید می کنند. مس (cu) برای تولید شیشه ی آبی مصری (Egyptian Blue glass) استفاده می شود.
CO (کبالت ) دربرخی از شیشه های پالایش یافته ی تولید در قرن دوازدهم استفاده می شده است. البته Co در تولید لعاب های پرسلانی مورد استفاده در چین ( در دوره ی سلسله ی منیگ وتانگ) استفاده می شده است. کبالت مورد استفاده در این لعاب ها رنگ آبی کبالتی تولید می کند.
با افزودن Se به شیشه های دپ شده با Cds باعث پدید آمدن رنگ یاقوتی سلینومی (Selenium Ruby) می شود. جزئیات پدید آمده ازهر کدام از این رنگ ها به ترکیب شیمیایی و شرایط پخت شیشه بستگی دارد.
شرکت کورینگ (Cornig) میکرو بارکدهایی با شیشه دپ شده با خاکهای کم یاب تولید کرده است. خاکهای کم یاب دارای باندهای نشر کم پهنا هستند و از میان 13 عنصر خاکهای قلیایی که مورد آزمایش قرار گرفته ، تنها 4 عنصر (Tm,Ce,Tb و Dy) می توانند در برابر تابش UV برانگیخته شوند. و لذا می توان از آنها در شناسایی بوسیله ی UV استفاده کرد. این نوع بارکدها همچنین مشکلات تداخل با سایر بارکدها را نیز ندارد. از این بارکدها در کاربردهای بیولوژیکی استفاده می شود زیرا سمی نیستند.(البته بر چسب زنی با کوانتوم دات ها خطرات کمتری دارد) و می توان از آنها در کاربردهای ژنتیکی استفاده کرد. با استفاده از چند عنصر خاکی کمیاب می توان ترکیب رنگی بیشتر پدید آورد.
شیشه های رنگی خاص شامل موارد زیر می شود :

شیشه ی یاقوتی یا کرانبری ( Cranberry )
 

شیشه ی یاقوتی با افزودن Au به شیشه سربی با حضور Sn پدید می آید. شیشه ی کرانبری که اولین بار در سال 1685 گزارش شده است، یک نوع شیشه ی بی رنگ (معمولاً صورتی کم رنگ ) است. علت پدید آمدن این رنگ در صد کم طلای موجود در آن است . راز تولید شیشه قرمز رنگ برای قرن ها ی زیادی گم شده بود و در قرن هفدهم دوباره کشف شد.

شیشه ی اورانیومی یا وازلینی

محصولات اورانیومی هنگامی که در شیشه ی با سرب بالا استفاده شود، رنگ قرمز تیره تولید می کند. البته شیشه های اورانیومی دیگری نیز وجود دارد که با صطلاح به آنها شیشه های وازلینی (Vaseline glass) می گویند. این نوع شیشه ها دارای رنگ سبز هستند. مسأله ای که این نوع شیشه ها را خاص کرده است این است که این نوع شیشه ها هنگام تابش اشعه ی UV به آنها ، خاصیت فلئورسانس پیدا می کنند. از سال 1940 تنها اورانیوم تهی شده (uranium depleted) به عنوان دو پانت استفاده می شود. علت استفاده از این نوع دو پانت، فراوانی آن است. اما از 100 سال گذشته به بعد اورانیوم طبیعی (natural uranium) استفاده می شود.

شیشه ها (3)

شکل 1 مثالی از یک شیشه ی وازلینی است.

لیزر شیشه ای

عناصر خاکهای کم یاب (rave – earth elements) مانند Nd در تولید شیشه های لیزر و سایر وسایل اپتیکی کاربرد دارند. (شکل 2) . لیزر شیشه ای دپ شده با Nd (Nd-doped glass laser) مانند یک لیزر یاقوتی (ruby laser) کار می کند . اگر چه نوع شیشه ای دارای تفاوت هایی است . میله ی لیزر قطری بینشیشه ها (1) اینچ دارد و معمولا بوسیله ی یک لامپ حلزونی تخلیه می شود. علت استفاده از لامپ های حلزونی این است که طول غیر بار دار این نوع لامپ ها از لامپ های خطی طولانی تر است. لیزر شیشه ای دپ شده با Nd دارای بازدهی بیش از 2% است. این بازده 4 برابر بازده یک لیزر یاقوتی است. به دلیل آنکه رسانایی گرمایی شیشه پایین است بنابراین نیاز به زمان بیشتری برای خنک سازی است.

شیشه ها (3)

رسوبات در شیشه

وجود رسوبات در شیشه عموما اجتناب ناپذیر است. سوال این است که چه زمانی طول می کشد تا رسوبات تشکیل شود. (مخصوصا اگر جوانه زنی هموژن باشد). ما ممکن است عوامل هسته زا برای تسریع جوانه زنی به شیشه اضافه کنیم. جوانه زنی کریستال ها در شیشه از تئوری کلاسیک پیروی می کند. رسوبات تشکیل شده در شیشه می تواند موجب رنگی شدن شیشه شود.

شیشه به عنوان لعاب

لعاب ها مانند شیشه ها در همه جا دیده می شوند. لعاب کاری (glazing) استفاده از ویژگی های ویسکوز شیشه و تشکیل یک لایه ی یک پارچه و صاف بر روی یک زیر لایه ی سرامیکی است.
مینا کاری (enameling) تشکیل همان لایه بر روی یک زیر لایه ی فلزی است. چیزی که باید به آن توجه کرد این است که عموما لعاب ها قدمت زیادتری دارند. در ادامه به بیان برخی از اصطلاحات لعاب می پردازیم:

زیر لعاب ( underglaze )

هنگامی که یک بیسکوییت سرامیکی را می خواهیم مورد عملیات دکور قرار دهیم باید قبل از آن یک لعاب کاری بر روی آن انجام دهیم که این نوع لعاب را زیر لعاب گویند. این لایه به علت تشکیل بهتر دکور بر روی بدنه اعمال می شود. پس از آن که فرآیند دکوراسیون جسم سرامیکی انجام شود برروی آن یک لعاب دیگر اعمال می شود. البته این لعاب پیش از پخت دکور اعمال می شود.
عیب کراولینگ لعاب ( glaze craweling ) این عیب که در لعاب اتفاق می افتد بدین صورت است که لعاب از لایه ی سرامیکی زیرین جدا می گردد. این پدیده به دلیل عدم ترشوندگی بیسکوییت سرامیکی بالعاب در طی فرآیند پخت اتفاق می افتد.
لعاب ترک خورده ( crackle glaze )اگر انبساط گرماییشیشه ها (3) لعاب از سرامیک بستر بزرگ تر باشد، لعاب ممکن است در طی فرآیند سرد کردن (در طی پخت) بشکند. هنگامی که غلظت یون سدیم و پتاسیم در لعاب بیشتر باشد، ترک ها بیشتر پدید می آیند. هنگامی که سرعت سرد کردن بالا رود ترک های حاصل ریزتر می شوند.
لعابهای سلادون (celadon )، تنموکو (tenmoku)، راکو (raku) و کوپر ( copper) لعاب های ویژه ای هستند که در دنیای هنر سرامیک یافت می شوند.
لعاب های سلادوناین لعاب ها اولین بار در حدود 3500 سال پیش تولید شده اند. این لعاب ها دارای گستره ی رنگی از آبی کم رنگ تا سبز مایل به زرد هستند و می توانند رنگی کاملا تیره پدید آورند. رنگ تولیدی در این لعاب ها بوسیله ی آهن تولید می شود(3.o - o.5 در صدشیشه ها (3) به لعاب افزوده می شود). ظروف لعاب خورده توسط این نوع لعاب سپس در دمای تقریباًشیشه ها (3) پخت می گردند. ظروف تولید شده با این لعاب ها زیبایی خاصی داشته و در کاربردهای تزئینی استفاده می شوند. مثلا کوزه ی لعاب خورده با این لعاب که درکشور کره تولید شده است، درسال 1946 از سوی کشور کره به هاری ترومن رئیس جمهور آمریکا هدیه شد. امروزه این ظرف که 23cm ارتفاع دارد قیمتی برابر با 3 میلیون دلار دارد.
لعاب تنموکواین نوع لعاب در زمان سلسله ی سونگ (sung Dynasty) بوجود آمده است. و دارای رنگ قهوه ای تیره یا حتی سیاه است. برای ایجاد این رنگ میزان 8-5 درصد وزنیشیشه ها (3) به لعاب افزوده می شود. تشکیل مناسب این نوع لعاب به شرایط اکسایش – کاهش اتمسفر پخت بستگی دارد. و در شرایط مختلف اکسایش و کاهش رنگ های متنوعی پدید می آید. در لعاب های کوپرنیز از کربنات مس به عنوان منبع Cuاستفاده می شود. البته در طی فرآیند پختشیشه ها (3) تجزیه گشته و Cuoباقی می ماند. Cuo تولید نیز با مونواکسیدکربن (CO) موجود در کوره واکنش داده تا ذرات مس در لعاب تشکیل شوند. این ذرات رنگ قرمز به لعاب می دهند.
لعاب های راکولعاب های راکو اغلباً لعاب هایی فلزی به نظر می رسند. (اگر بوسیله ی یک لایه از فلز Ti پوشش داده شده باشند)
یک روش پیشرفته در تولید لعاب های راکو بدین صورت است که ظروف سرامیکی به شیوه ی معمولی پخت می شوند سپس آنها را در داخل یک محیط کاهنده مانند خاک اره وارد می کنند و سپس آنها را قبل از آنکه بتوانند اکسید شوند، به سرعت سرد می کنند. این نوع لعاب ها اغلبا حالت استثنا داشته و می توانند با زمان تغییر کنند. این مسئله ساده است. زیرا آنها در طی فرآیندهای بعدی تولید اکسید می شوند. این نوع لعاب بر خلاف سایر لعاب ها خنثی نبوده و تنها برای دکوراسیون استفاده می شوند.
لعاب های کریستالی ( crystalline glaze )این نوع لعاب ها ، لعاب هایی دکوراسیونی هستند اما به طور مستقیم با تکنولوژی تشکیل شیشه – سرامیک در ارتباطند. کریستال ها بوسیله ی سرد کردن آهسته لعاب ایجاد می شوند. این سرد کردن آهسته به کریستال های لعاب اجازه ی رشد کردن می دهند. رشد این کریستال ها مد نظر است؛ زیرا لعاب ضخامت کمی داشته و از این رو کریستال ها باید به صورت پلیت لت (platelets) در آیند. برای آنکه عمل رشد کریستال ها بهتر انجام شود از جوانه زاهای تیتانیایی استفاده می شود. این نوع جوانه زاها در لعاب های باویسکوزیته ی پایین استفاده می شوند و در آنهاشیشه ها (3) تشکیل می شود. ترکیب شیمیایی این نوع لعاب ها بسیار مهم است. در آن شیشه ها (3) وشیشه ها (3) به میزان کم و Pbo به میزان 10-8 درصد وزنی استفاده می شود. رشد کریستال با اضافه شدن fe به لعاب افزایش می یابد. اما این اضافه شدن می تواند همچنین موجب پدید آمدن اثراتی بر سایر دو پانت های اضافه شده به لعاب شود.
سفالگران امروزی ازشیشه ها (3) به عنوان اصلاح کننده و تولید کننده ی کریستال های ویلمایت (Crystals Willemite) استفاده می کنند. (ویلمایت یک مینرال کمیاب از روی است). این تکنیک نیازمند مهارت ویژه است. زیرا افزودن مقادیر زیادشیشه ها (3) به لعاب باعث می شود ویسکوزیته ی آن حتی در دماهای پایین نیز کم باشد، بنابراین این مسئله باعث می شود که لعاب از روی سطح سفالی جریان پیدا کند. رشد اسفرولیتی (Spherulite growth) از جوانه زا در لعاب در شکل 3 نشان داده شده است. هر اسفرولیت در واقع توده ای از کریستال های شعاعی است که با توجه به مرکز اسفرولیت دورهم گرد آمده اند.

شیشه ها (1)

لعاب های اپک ( opaque glazes ) اگر به لعاب مذاب کریستال هایی افزوده شود، لعاب می تواند اپک شود. برای این کار می توان ازO_2 S_n یا زیر کن استفاده کرد. که زیر کن ارزان تر است .شیشه ها (3) برای تولید رنگ سفید در لعاب های زیرکنی (Zircon glaze) استفاده می شود. برای اپک کردن کمتر ازشیشه ها (3) استفاده می شود زیرا کریستال های روتایل طلایی رنگ هستند. و بنابراین لعاب را به رنگ زرد در می آورند. ما همچنین می توانیم با تشکیل کریستال لعاب را اپک کنیم (مثلا ولاستونیت:شیشه ها (3). این کار بوسیله ی عملیات حرارتی مناسب، حبس کردن گاز (هوا یاشیشه ها (3) ) ) و یا بوسیله ی جدایش فازی مایع – مایع انجام می شود. لعاب های مات (Matt glazes) بوسیله ی تشکیل کریستال های بسیار کوچک در لعاب بوجود می آیند (مثلا کریستال های ولاستونیت برای لعاب های مات – آهکی و وبلیمایت (شیشه ها (3):Willemite ) برای لعاب های مات – زینک). کریستال های ریز ولاستونیت بوسیله ی افزودن کلسیت به لعاب پایه سیلیس تشکیل می شود. یک روش دیگر برای این کار افزودن مقادیر زیادی از ماده ی کریستالی به لعاب است تا در طی فرآیند پخت درصدی از آن به صورت کریستالی باقی بماند

رنگ در لعاب و لعاب موضوعاتی هستند که امروزه تحقیقات فراوانی بر روی آنها به عمل آورده شده است. امروزه رنگ های جدیدی بوسیله ی افزودن نانو ذرات در لعاب پدید می آید. عموما نانو ذرات نقره و طلا رنگ طلایی بوجود می آورند. و نانو ذرات مس رنگ قرمز بوجود می آورند. توضیح در مورد نحوه ی پدید آمدن رنگ در لعاب واقعاً پیچیده تر از نحوه ی پدید آمدن رنگ در شیشه هاست. زیرا لعاب بر روی یک لایه اعمال می شود و از این سو نباید ترانسپارنت باشد. همچنین لعاب یک لایه ی نازک است و در اتمسفر مختلف (کاهنده – اکسید کننده) بوجود می آید از این دو بررسی عوامل موثر بر تشکیل یک لعاب مشکل است.

لعاب های رنگی ( Colored glazes )

در لعاب های رنگی باید از پیگمنت های سرامیکی با پایداری مناسب بهره برد. از اکسیدهای رنگ زای ارزان قیمت می توان برای ایجاد رنگ در محصولات متنوع سفالی بهره برد. البته بسیاری از مواد رنگ زا برای لعاب همانهایی هستند که ما برای رنگرزی شیشه از آنها استفاده می کنیم
اکسید کبالت شیشه ها (4) یک اکسید سیاه رنگ است اما کمتر از یک درصد وزنی از آن در لعاب ایجاد رنگ آبی تیره می کند (اگر چه در بیشتر موارد از کربنات کبالت استفاده می شود).
به دلیل آنکه شیشه ها (4) در این گونه لعاب ها بوجود می آید، ویسکوزیته ی لعاب تغییر می کند.
اکسید کروم که تا 3-2% وزنی نیز می تواند به لعاب افزوده شود به جای رنگ سبز، رنگهای زرد، صورتی یا قهوه ای بوجود می آورد (رنگ قرمز در حضور سرب در ترکیب لعاب اولیه پدید می آید. اگر Zn در لعاب اولیه وجود داشته باشد، رنگ لعاب قهوه ای می شود مگر آنکه سرب ها هم وجود داشته باشد. که در صورت وجود سرب و روی در لعاب اولیه رنگ زرد پدید می آید).
شیشه ها (4)که به صورت کربنات به لعاب افزوده می شود، رنگ لعاب را به صورت قهوه ای در آورده البته این ماده می تواند رنگ قرمز، بنفش و حتی سیاه نیز تولید کند. که این تغییر رنگ به درصد سدیم موجود در لعاب اولیه بستگی دارد. افزودن Cuo به اندازه ی %2-1 وزنی به یک لعاب با سدیم بسیار کم سبب پدید آمدن رنگ فیروزه ای می شود. این درحالی است که افزودن بیش از 3% از این رنگ زا باعث پدید آمدن رنگ سبز یا آبی می شود. اگر درصد Cuo در لعاب افزایش یابد، لعاب ظاهری فلزی مانند مفرغ به خود می گیرد. اگر لعاب دارای 0.3– 2 درصد وزنی Cuo در اتمسفر کاهنده پخت شود، رنگ قرمز مسی پدید می آید. این رنگ به دلیل حضور ذرات کلوئیدی CU درلعاب بوجود می آید.
اگر یک لعاب رنگ زرد داشته باشد، این رنگ ممکن است بوسیله ی افزودن Cds یا Cdse بوجود آمده باشد. البته این نوع افزودنی های رنگ زا ممکن است رنگ های قرمز یا نارنجی را نیز پدید آورند. درصورت حضور سرب در این نوع لعاب ها ، Pds تشکیل می شود که باعث سیاه شدن لعاب می شود. زیرکن در صنعت برای کمک کردن به پایدار شدن این نوع رنگ ها (برپایه ی cd) استفاده می شود. درحقیقت شیشه ها (4) (زیر کن وانادیومی آبی رنگ) و شیشه ها (4)(pr,zr) (زیر کن پراسئودیومی زرد رنگ) مهم ترین تثبیت کننده های مورد استفاده در این رنگ هاست. هنگامی که اورانیوم به لعاب اضافه شود، به جای پدید آوردن رنگ زرد کم رنگ، رنگ قهوه ای تیره پدید می آید. (اورانیوم در شیشه های وازلینی تولید رنگ زرد کم رنگ می کند). البته بسته به ترکیب لعاب ، اورانیوم می تواند رنگ های قرمز یا نارنجی روشن نیز بدهد.

لعاب نمکی ( saltglaze )

دراین نوع فرآیند لعاب کاری سفال در کوره های با دمای بالا با نمک واکنش می دهد. در واقع سفالگر نمک را بر روی سفال اعمال می کند. این فرآیند هنگامی اتفاق می افتد که سفال در داخل کوره است. این فن بوسیله ی سفالگران ایرانی وانگلیسی در دهه ی 1700 ابداع گشته است. همچنین شما می توانید مثال های فراوانی از فرآیند رنگ آمیزی بوسیله ی اکسیدهای فلزی را در آلمان ببنید. در این نوع لعاب ها نمک با رس واکنش داده و تشکیل لایه ای شیشه ای بر روی سطح می دهد. این تکنیک دقیقاً فرآیند خوردگی خاک نسوز در دمای بالاست (بوسیله ی سود سوز آور).
واژه ی مینا (enamel) معمولا در هنگامی استفاده می شود که یک لایه ی لعابی بر روی فلز اعمال می شود. البته این واژه در هنگامی که یک لایه لعابی بر روی لعاب اولیه اعمال می شود نیز استفاده می شود. بازار مصرف مینا بسیار بزرگ است. این بازار از لوازم بهداشتی تا جواهر آلات گسترده است.

خوردگی شیشه و لعاب

این تصور وجود دارد که شیشه خنثی است اما باید بدانید که اسید سیتریک و اسید استیک موجود در غذاها و میوه ها می توانند بایون های موجود در شیشه واکنش دهند و ترکیبات کمپلکس پدید آورند. با خروج یون های قلیایی از داخل شیشه یون های هیدروژن مثبت جایگزین آنها می شود. هنگامی که بخواهیم استحکام سطح شیشه را افزایش دهیم باید یون های پتاسیم و سدیم مثبت را با لیتیم مثبت ( شیشه ها (4) ) جایگزین کنیم. در شیشه ی آلایش یافته (Stain glass) می توان یون نقره ی مثبت و مس را جایگزین شیشه ها (4) کرد.
همانند مواد کریستالی ، شیشه ها نیز دارای عیوب کریستالی اند. یکی از چالش هایی که ما با آنها روبرو هستیم محاسبه ی خواص بوجود آمده ازعیوب (مانند نفوذ) در شیشه هاست. زیرا در شیشه ها شبکه ی مرجع وجود ندارد.

انواع شیشه های سرامیکی

همه ی شیشه ها براساس تتراهدرال های سیلیسی ایجاد نمی شوند؛ واحدهای ساختاری این شیشه ها در جدول 1 آورده شده است. برخی از ترکیبات این شیشه ها نیز در جدول 2 آورده شده است.

شیشه ها (4)

شیشه ها (4)

شیشه ی سیلیکاتی ( سودالایم )

این شیشه ها بر پایه ی شیشه ها (4) هستند. (معمولا این نوع شیشه ها علاوه بر این مواد دارای شیشه ها (4) نیز هستند.) این نوع شیشه نستبا ارزان هستند و دارای دوام خوبی نیز هستند همچنین از این نوع شیشه به طور فراوان در صنعت بسته بندی و ساختمان استفاده می شود. ضریب انبساط حرارتی شیشه ها (4) این نوع شیشه ها ناچیز نیست. همچنین این نوع از شیشه ها عایق های خوبی نیستند. استفاده های عمده از این نوع شیشه در صفحات شیشه ای ،بطری ها ، وسایل غذا خوری و صنعت الکترونیک (حباب لامپ) است. شیشه های آلومینو سیلیکاتی قلیایی (شیشه ها (4)= عنصر قلیایی) دارای ضریب انبساط حرارتی پایینی است. این نوع شیشه دارای دوام و خواص عایق کاری بهتری است. وهمچنین نسبت به سایر شیشه های هم گروه استحکام بالاتری دارد. استفاده های این نوع شیشه عبارتست از تیوپ های اختراق، حباب های لامپ هالوژن و به عنوان بسترهای صنعت الکترونیک کاربرد دارد.

شیشه ی سربی

ترکیب عمومی این شیشه ها سیلیکات های قلیایی سربی استشیشه ها (4). در این نوع شیشه ها Pbo به جای CaO در شیشه ی سودالایمی قرار گرفته است. این نوع شیشه دارای مقاومت بالایی است. همچنین ضریب انبساط حرارتی آن بالاست. و دمای نرم شوندگی پایینی دارد. دلیل آنکه از این نوع شیشه ها در تولید ظروف کریستال استفاده می شود این است که ضریب شکست این نوع شیشه بالاست و علاوه بر این که از این شیشه ها در ظروف تزئینی استفاده می شود، از آنها در ساخت تیوپ های لامپ، لامپ تصویر تلویزیون و تیوپ های ترمومترها استفاده می شود. در ظروف کریستال انگلیسی که به صورت سنتی تولید می شوند، میزان Pbo حداقل 30% است. برطبق رهنمود اتحادیه ی اروپا میزان Pbo باید بیش از 24 درصد باشد. همچنین بر طبق استاندارد اروپا شیشه های کریستال سربی باز یافت نمی شوند. شیشه های سربی که برای ساخت حفاظ های تابشی استفاده می شوند ممکن است دارای بیش از 65% Pbo باشند. کاربرد این گونه شیشه ها در لامپ تصویر تلویزیون است اگر چه شیشه های باریمی برای ساخت صفحه و تابلوهای تلویزیون استفاده می شود. (تفنگ الکترونی تلویزیون اشعه ی x ساتع می کند که این نوع شیشه باید این تابش ها را جذب کند.)شیشه های سرب – بوراتی می توانند به عنوان لحیم های شیشه ای استفاده شوند. این نوع شیشه ها دارای در صد کمیشیشه ها (4) است و کاملا خنثی است.
شیشه های فیلنیتی (flint glass) دارای تفرق بالایی است. در واقع این نوع شیشه ها از نوع شیشه های سیلیکاتی قلیایی ـ سربی است که از ذوب سنگ های فیلنیتی ساخته شده اند(فیلنیت فرم خالص سیلیس است) .لازم به توضیح است که این نوع سنگ کلسینه شده و به طور فراوان در ساخت بدنه های سرامیکی استفاده می شود.

شیشه ی بورانی ( شیشه ی بورو سیلیکاتی )

شیشه های بوروسیلیکاتی قلیاییشیشه ها (4) به خاطر ضریب انبساط حرارتیشیشه ها (4) کوچکشان ویژه هستند. این نوع شیشه دوام بالایی داشته و خواص الکتریکی مفیدی دارند. پیرکس (Pyrex) که یک نوع ماده در تولید وسایل پخت و پز است . از جنس بروسیلیکات است .شیشه ی بروسیلیکاتی به طور وسیع در فرآیندهای شیمیایی استفاده می شود. برخی از شیشه های براتی دارای دمای ذوب پایینیشیشه ها (4) هستند از این رو آنها را می توان به همراه سایر شیشه ها استفاده کرد. شیشه ی بروسیلیکاتی – زنیکی به شیشه های منفعل شهرت دارند. این شیشه ها مواد قلیایی ندارند و از این رو از آنها می توان در ساخت اجزای الکترونیکی سیلیسیمی استفاده کرد.

سیلیس فیوزد

این نوع شیشه از نوع سیلیس خالص است. این شیشه ها ، شیشه های سیلیکاتی برای کاربردهای دما بالا هستند. ضریب انبساط حرارتی این نوع شیشه ها نزدیک به صفر است. این نوع شیشه ها برای تولید آینه های تلسکوپ و زیر لایه ها (Substrates) استفاده می شود. به خاطر داشتن ضریب انبساط حرارتی نزدیک به صفر به این شیشه ها ، شیشه های با انبساط حرارتی بسیار پایین (VLE Silica) می گویند .
شیشه های VLE دارای 7 درصد وزنیشیشه ها (4) برای تولید لفافه های لیتوگرافی نوری (masks photolithography) استفاده می شود. البته به خاطر دمای بالای فرآیند شکل دهی این شیشه ها ؛ می توان به جای آنها از شیشه های وایکور استفاده کرد.

شیشه ی فسفاتی ( phosphate – glass )
 

شیشه های فسفاتی شیشه های مهمی هستند زیرا این نوع شیشه ها خاصیت نیمه رسانایی دارند. یکی از کاربرد این مواد در ساخت تقویت کننده های الکترون (electron multipliers) است . در این نوع وسایل با استفاده از دپ کردن Er (افزودنشیشه ها (4) ) ، این تقویت کننده ها ساخته می شود. کایتون های موجود در این نوع شیشه ها معمولا V و P هستند اما لابراتوار ملی او آ ک ریچ (Oak Ridge National labroatory) یک نوع شیشه ی فسفاتی اندیوم – سربی تولید کرده است که دارای ضریب شکست بالایی است. از ویژگی های دیگر این شیشه می توان به دمای ذوب پایین و خاصیت ترانسپارنتی در برابر گسترده ی وسیعی از طول موج ها را نام برد. به دلیل آنکه این نوع شیشه می تواند درصد بالایی از عناصر خاکهای کم یاب را در خود حل کنند، از آنها در تولید وسایل نوری اکتیو مانند آمپلی فایرهای فیبر اپتیک و لیزرها استفاده می شود. شیشه های فسفاتی دپ شده با Nd در لیزرهای حالت جامد استفاده می شوند. ترکیب شیمیایی نمونه وار از این نوع شیشه عبارتست ازشیشه ها (4) است. که در صد Nd بین O.2-2.O درصد مولی است.

شیشه ی چالکوژیندی ( Chalcogenide glass )

این نوع شیشه براساس Se,As و Te بوجود می آید. این شیشه ها نور فرو سرخ را از خود عبور می دهند و نیمه رسانا های غیر اکسیدی هستند. از این نوع شیشه در وسایل و لنزهای الکترونیکی ویژه استفاده می شود. در این وسایل هنگامی که ولتاژ اعمالی به آنها از میزان بحرانی فراتر رود، به طور ناگهانی تغییر رسانایی رخ می دهد. کاربرد این نوع شیشه ها بسیار خاص است زیرا این شیشه ها دوام پایینی داشته و دمای نرم شوندگی شان پایین است.

شیشه ی فلورایدی ( fluoride glass )

عموماً شیشه های هالیدی بر پایه یشیشه ها (4) را شیشه های فلورایدی می گویند. کاربرد این نوع شیشه ها در وسایل همسو کننده نوری (optical waveguides) است. و درجاهایی که قیمت توجیه پذیر باشد استفاده می شوند.

شیشه ی طبیعی

این مسئله که شیشه در طبیعت بوجود می آید حتی این پدیده یک امر نسبتاً معمولی است، باعث شگفتی بسیاری از مردم می شود. تکتیت ها (tektites) درهنگام برخورد شهاب سنگ ها به زمین و در دهانه ی حاصله از برخورد شهاب سنگ پدید می آیند. مولد اویت (Moldavite) نیز یک شیشه ی سبز رنگ است که در مولداوی (Moldavia) یافت می شود . فولگلاریت (fulgarite) نیز تیوپ های شکننده از شیشه هستند که در هنگام برخورد برق آسمان به خاکهای ماسه ای پدید می آید. ابسیدیان (obsidian) نیز یک نوع شیشه است که در جریان های آتش فشانی تشکیل می شود. رنگ سیاه رنگ این نوع شیشه به خاطر ناخالصی پدید می آید. در طی دوره ی پارینه سنگی از ابسیدیان در ساخت وسایل استفاده می شده است. سنگ پا (Pamice) یکی دیگر از شیشه هایی است که از فوران های آتش فشانی تشکیل می شود. این ماده می تواند تخلخل های فراوانی داشته باشد. (درصورتی که ماده ی اولیه ی تشکیل دهنده ی آن دارای مواد گازی فراوانی باشد). سنگ پا شکل متخلخل ابسیدیان است